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The concentration dependent diffusion problem is studied in two
dimensions for a variety of cases relevant to the fabrication of narrow-
channel Mos transistors. A method for solving the partial differential
equation is presented which allowed the solutions to be computed on
an available minicomputer. This method enables analytic transfor-
mations to be exploited which improve the accuracy of the solutions
and increase the speed of computation. The simulations demonstrate
that there are three principal nonlinear effects: (i) a large translation
of the diffusion front, (ii) a marked steepening of the front itself, and
(iii) a very noticeable decrease in the ratio of the lateral to vertical
diffusions. The ratio of the lateral to vertical diffusion as predicted
by the model is compared with physical values experimentally deter-
mined using a scanning electron microscope.

I. INTRODUCTION

In 1965, Kennedy and O’Brien analytically investigated the impurity
atom distribution near the edge of a diffusion mask.' The geometric
effects are significant, and the results of their study are routinely
applied in semiconductor device design.” The Kennedy and O’Brien
model used the simple, linear, constant-coefficient, diffusion equation.
In 1968, Hu and Schmidt introduced a concentration dependent dif-
fusion model which included the effects of both the charged vacancy
reaction and the impurity-induced electric fields. This model was
investigated in one dimension, and it established that, in the regime in
which semiconductors are actually fabricated, these nonlinear effects
are quite significant for some impurities, such as arsenic.
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In the decade since these studies, there have been significant im-
provements in fabrication technologies and lithographic techniques for
both bipolar and Mos transistors. Furthermore, the importance of M0os
transistors has also greatly increased. In this paper, we investigate the
combination of nonlinear and geometric effects on the impurity atom
distribution by studying a two-dimensional, concentration dependent
diffusion model in a region containing the edge of the diffusion mask.

In Section I, the nonlinear diffusion coefficient, including the effects
of “autodoping,” electric fields, and multiply ionized impurities, is
derived in a form suitable for the calculation of the desired impurity
profiles. The modeling parameters, the geometries, and the boundary
conditions for the partial differential equations are also described.
Section III outlines the numerical method used to solve the model.
Additional details of the method are presented in the appendix. Several
combinations of initial and boundary conditions are analyzed in this
paper. Section IV analyzes the case where the impurity concentration
in the window is held at a constant value throughout the diffusion,
and Section V analyzes the case where a fixed quantity of impurity
has been implanted and then diffused. This section also presents the
simulation which is to be compared with experimental results. The
simulations demonstrate that there are three principal nonlinear ef-
fects: (i) a large translation of the diffusion front, (ii) a marked
steepening of the front itself, and (iif) a very noticeable decrease in
the ratio of the lateral to vertical diffusions.

To confirm the applicability of the physical model, a numerical
solution of determined accuracy is compared with experimental mea-
surements. Section VI contains a careful assessment of the accuracy of
the numerical solution, while Section VII describes the experimental
measurements of the lateral to vertical diffusion ratio. This experiment
employed a scanning electron microscope (SEM), and the resolution
obtained is superior to that previously obtained by optical measure-
ments. These measurements are compared with the predictions cal-
culated in Section V. The comparison corroborates the validity of the
concentration dependent diffusion model for arsenic and demonstrates
its relevance for contemporary processing technology. Section VIII
briefly discusses the application of the concentration dependent dif-
fusion model to general process simulation.

Il. THE NONLINEAR, CONCENTRATION DEPENDENT DIFFUSION
MODEL
The diffusion can be modeled, as in Hu and Schmidt,” with a
concentration dependent diffusion coefficient which incorporates the
charged vacancy reaction and the self-induced electric field. For a
noninteracting impurity, the transport of the impurity atoms in an
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isotropic medium is described by a continuity equation for the impurity
current,

oN
T —V-(dJ), (1)

where N is the impurity concentration and oJ is the impurity current
density. The current density is determined by diffusion and drift terms
of the form

J=—-Dy\WN+ Z#NNE, (2)

where Dy is the diffusion coefficient, Z is the impurity charge, py is the
mobility, and E is the electric field.

The self-induced electric field term can be approximated from the
concentration, N, by assuming local space charge neutrality,

n-p-2ZN=0. (3)

Under these conditions, with the potential, y, referred to the center of
the band gap, solving

exp(2%) = niexp( = 9% — ZN = 2n,sinh( 2% — 2N =
niexp(ﬁ;) n,exp( kT) ZN-—2n.smh(kT) ZN=0

for ¢ yields
V= %‘ sinh™'(ZN/2n,),

where n; is the intrinsic carrier concentration. Hence,
kT ZVN

E=-V{=—— S
9 2n,V(ZN/2n,)® + 1

Using Einstein's relation and this expression for E, (2) becomes

J= —DN(I + ZN )VN. (5)
2n.-~'(ZN/2n.-)2 +1

Following Ref. 3, we combine the electric field term in eq. (2) with the
diffusion coefficient to obtain

(4)

da

i V. (Dxh(a)Va), (6)
where
Za
hla) =1+ ——o=— (™
“ JZa) +1
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and

a = N/2n,. (8)

Finally, we incorporate the following formulation of Dy which was
derived in Ref. 4 to account for the charged vacancy reaction,

(1+8f)

Dy = Do TEYIR (9)

Here D, is the phenomenological low concentration diffusion constant,

f is the ratio of the electron or hole concentration to the intrinsic

carrier concentration at the diffusion temperature ( f = n/n, for donors

and f = p/n: for acceptors), and B is a phenomenological coefficient

discussed in detail in Ref. 4. By combining the equilibrium condition,

np = n?, with the assumption of local space charge neutrality, (3), we

obtain the following approximation for fin terms of the concentration

=|Z|a+\f|Z|a)2+1. (10)

Existing models of the type presented in this sectlon have a’long
history of experimental validation. In his review paper, ® Fair discusses
in detail the cases of phosphorus, arsenic, and boron diffusion in
silicon. In Ref. 3, Hu and Schmidt suggested that the correct values of
B were 8 = 100 for donors and B = 0.01 for acceptors. They also
presented experimental evidence which tended to support these values.
Subsequent experimental work, which incorporates more accurate
measurements at high concentrations, has continued to corroborate
B = 100 for arsenic,"” but has shown that for boron g = 19 is the
correct value.**® For impurities such as phosphorus, which have mul-
tiple vacancy reactions, this model is inappropriate. A model for
phosphorus is discussed in detail in Ref. 10 and is beyond the scope of
the present work.

The assumptions upon which the present theoretical model is based
are given in Ref. 4. Briefly, these assumptions are: (f) the density of
the charged vacancies is much lower than the density of the impurity
atoms, (ii) the charged vacancy population is in a state of quasi-
equilibrium determined by the local equilibrium between the impurity
atoms and the charged vacancies, and (iii) the vacancy-impurity
interactions are never more complex than pair interactions. These
assumptions have been confirmed in the one-dimensional case by Fair
and Tsai.”

In the present work, which is restricted to singly ionized impurities,

Z=-1 and B =19 for acceptors,
while

Z=1 and B =10 for donors.
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Thus we want to solve

da
—_— V‘ v
m (D(a)Va), (11)

where the concentration dependent diffusion coefficient, D(a), is de-
fined by eqs. (7) through (10), i.e.,
1+B[a+\/a2+1]l:1+ a j|
1+ Va4 1 '
Figures 1 and 2 present plots of D(«a)/D, versus a for boron and

arsenic respectively. Each figure displays the normalized diffusion
coefficient for three ranges of a: 0.0 to 0.2, 0.0 to 2.0, and 0.0 to 20.

D(a) = Dy

(12)
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Fig. 1—The nonlinear diffusion coefficient for acceptor impurities.
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Fig. 2—The nonlinear diffusion coefficient for donor impurities.

Although the behavior of the diffusion coefficient is mildly nonlinear
for small values of a, it quickly approaches a straight line for « larger
than 2. The limiting behavior of D(a)/D; for large « is 3.80a + 0.100
for boron and 3.96a + 0.0198 for arsenic. This nearly linear behavior
is consistent with the experimental results summarized in Ref. 9. It
should be noted, however, that the approximations for both A (a) and
f assume uncompensated material, whereas the experiments in Ref. 9
are for heavily compensated material.

The geometry of an idealized two-dimensional structure is presented
in Fig. 3. It is a finite rectangle bounded by the lines x = x;, x = 0,
y = y;and y = y». The mask, which runs along x = 0 from y; to 0, is
assumed to be an impenetrable barrier for impurity atoms so that the
flux across the interface is zero, i.e. da/dx = 0. The line y = y is
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Fig. 3—The idealized structure.

assumed to bisect the window so that the appropriate boundary
condition is also that the flux across the edge is zero. Along the edges
x = x;and y = y; the concentration will be held at a nominal background
concentration, typically 5 to 7 orders of magnitude less than the initial
peak concentration. The initial conditions and the boundary conditions
in the window, x = 0 and 0 < y < y,, will depend on the specific
problem being investigated.

Two classes of diffusion problems are considered in this paper. The
first class corresponds to the case where throughout the diffusion the
concentration is held at a constant value, ay, in the window, x = 0 and
0 = y < yu. The corresponding initial condition is that throughout the
interior of the semiconductor the concentration is set at a background
level of 10 "ay. This class of constant-surface-concentration diffusion
problems is treated in Section IV. The second class corresponds to the
case where an initial fixed quantity of impurity has been implanted,
then diffused with a no-flux condition holding along the window. As
an initial condition, we use an appropriately scaled Gaussian distri-
bution corresponding to published results for actual implants. The
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peak value of this distribution is denoted by ao. This class of implant
diffusion problems is treated in Section V.

In each numerical solution which is described, the constants ao, £,
and D, as well as other relevant parameters, are specified and the
time evolution is carried forward to a specified time, £..p. In discussing
the solutions and their properties, it is frequently convenient to use
the conventional dimensionless unit of diffusion length, where the
dimensionless unit corresponds to physical length divided by
V4Dotyop. This dimensionless unit is commonly used in diffusion
problems which admit self-similar solutions. However, we should un-
derscore the obvious fact that the problems we have just described do
not admit self-similar solutions. This follows both from the bounded-
ness of the domain and from the nonlinear nature of the differential
equation. The implication, of course, is that each physical problem
requires a separate numerical simulation, and in general this is true.
However, in the case of constant-surface-concentration diffusion for
wide mask devices it may be possible to develop a family of self-similar
solutions parameterized by the surface concentration ao. This is dis-
cussed in Section VIII, which deals with the application of the nonlin-
ear model to process simulation.

lll. THE NUMERICAL METHOD

Equation (11) and its variations, which are derived later, are special
instances of the following partial differential equation,

ft, X, ¥, U, Ux, Uy, U, Use, Uye) = Degi(t, X, ¥, Uy Us, Uy, Wiy Usey Upt)
+ D,g:(t, x, ¥, U, Ux, Uy, U, Ust, Uye), (132)
with initial conditions
u(0, x, y) = h(x, y) (13b)
and boundary conditions
a(t, x, yn(x, y)- (g, &) = b(t, x, ¥, u, w), (13c)

where the unknown function, u(t, x, y), is defined on the domain Z.an
<t < tyop, X1 < X < xp and y; < y < y», and where the vector, n(x, y),
denotes the outward pointing normal along the boundary of the
rectangle determined by x;, xs, yr and ya.

Given a well-posed problem of the form (13}, the following numerical
method is applicable. Represent the approximate solution, i(t, x, y),
as a linear combination of tensor product B-splines with time-depen-
dent coefficients

i(t, x,y) =Y ¥ Uu(t)Bj(x)Bi(y).

=0 k=0
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Using this representation, discretize (13) in space using Galerkin’s
method.'’ This creates a large first-order system of nonlinear ordinary
differential equations. The time evolution of this system can then be
determined by any technique suitable for the solution of “stiff,” implicit
systems of differential equations."™" Our particular approach is to
discretize in space with Galerkin’s method applied to a second-order
B-spline representation. An example of a second-order B-spline, usu-
ally called a chapeau function, is shown in Fig. 4. In this figure the
mesh points which define the chapeau function occur at integer coor-
dinates (0, 0), (1, 0), (0, 1), etc., while the quadrature points used in
Galerkin’s method occur at ('%, %), (=%, '4), etc. The time evolution is
then developed using extrapolation of the strongly A-stable implicit
Euler rule. Additional details are presented in the appendix.

By employing this general algorithm and by judiciously applying the
chain rule for differentiation, we were able to develop our software so
that the statement of the specific partial differential equation is
separated from the general algorithm for solving it. There are two
important consequences of this approach. First, it is extremely easy to
investigate several models incorporating different physical effects.
Second, it is easy to introduce analytic transformations of the original

04
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Fig. 4—A typical chapeau function.
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problem which do not remove it from the canonical class defined by
(13), but which may enhance the numerical accuracy and efficiency.
Two such transformations are exploited in this paper. In Section 4.1
we introduce a logarithmic transformation which substantially en-
hances the accuracy of the solution. Then in Section 5.1 we introduce
a Boltzmann-type, moving-coordinate system which enables us to
obtain a solution in which the impurity dose is accurately conserved.

All the simulations presented in this paper have been calculated on
a coarse mesh of 11 X 21 points and on a fine mesh of 21 X 41 points.
The meshes are defined as the cross product of 11 (21) points, uni-
formly spaced between x; and 0, with 21 (41) points, uniformly spaced
between y; and y,. The difference between the solutions on the coarse
and fine meshes provides a reasonable estimate of the error for the
coarse mesh. In several cases, asymptotic relations may be applied to
this estimate to yield a good estimate for the error on the fine mesh.
In addition to comparing the solutions on two different meshes, we
have also applied checks against the linear problems, which have
known analytic solutions, as well as against the nonlinear one-dimen-
sional problems which can be solved numerically to very high accuracy.
These checks on the numerical error are discussed in detail in Section
VL

IV. CONSTANT-SURFACE-CONCENTRATION DIFFUSION

In this section we discuss the numerical solution of the constant-
surface-concentration diffusion problem, i.e., the case where the im-
purity concentration in the window is held constant throughout the
diffusion. Referring to Fig. 3, the initial conditions are that inside the
semiconductor material (the rectangle determined by x; < x < 0 and
y1 < y < ya), there is a background doping of 10~aq, while along the
window (x = 0, 0 < y < y;), the concentration is ao. The boundary
conditions for this problem are the following. In the window the
concentration is maintained at an. Along the sides x = x; and y = yi,
the concentration is maintained at the background level, 10"ay. The
mask is assumed to be an ideal barrier, so that the boundary condition
along the mask (x = 0, y; < y < 0) is da/dx = 0. Finally, we assume the
edge, y = y, bisects the window so that the boundary condition along
here is da/dy = 0. For each diffusion problem presented, we have set
the constant D, to 1 and we have calculated the time evolution forward
to time fuop = 1.

4.1 The logarithmic transformation

The first point to observe is that the solution, which should always
be positive, ranges over five orders of magnitude. This means that
relative error—not absolute error—is the appropriate criterion. How-
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ever, the Galerkin discrétization in space tends to minimize absolute
rather than relative error. This is also true of the vast majority of finite
difference discretizations. One consequence is that an absolute error

which is extremely small with respect to large values of the solution -

may be large enough to change the sign of small values. A relative
error criterion is easily achieved if, instead of solving (11) directly, we
derive and solve a partial differential equation for the logarithm of
a(t, x, y) since, if « = exp(u) and a = exp(u + §), then a = a(1 + 68) for
small 8. Let

alt, x, y) = e" =)
and let
D(u) = D(e").
Then (11) can be rewritten as
ur — D(u)[u? + ul] = V-(D(u)Vu). (14)

Although this equation contains the additional nonlinear terms,
u? and u3, it can be solved more efficiently than (11), and the answers
obtained are significantly more accurate in the sense of relative error.

4.2 Linear, concentration independent diffusion

The first case we consider is the case studied by Kennedy and
O’Brien, namely, constant-surface-concentration diffusion for the lin-
ear, concentration independent diffusion model on an idealized semi-
infinite device.'' Our interest in this case is twofold. First, this case
offers a natural baseline against which to assess the significance of the
nonlinear effects. Second, our numerical solution can be compared
directly with the analytic solution provided by Kennedy and O’'Brien.
The accuracy of our discretization for this problem is then a rough
estimate of the best accuracy achievable in the numerical solutions of
the subsequent nonlinear problems.

For this problem, the function D(a) is simply the constant Do, and
eq. (11) simplifies to

a; = V.(DgVa). (15)

Let C(t, x, y) denote the solution developed by Kennedy and O’Brien
in Ref. 1. This function satisfies equation (15) and the following
constraints

Cit,x,y)=0 for t=0, x<0
Cit,x,y)=1 for t=0, x=0,0=<y
Ci(t,x,y) =0 for t=0, x=0,y<0.

In order to use the Kennedy and O’Brien solution to check our
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numerical technique, we pose a problem on the finite rectangle whose
solution is C(¢, x, y) + co. To do this, simply require that a. = 0 along
the mask and a(¢, x, y) = C(t, x, y) + co along the remaining boundaries.
Although this problem would form a mathematically precise test case,
a somewhat more interesting test is to modify the boundary conditions
to agree with those proposed for the nonlinear simulations, i.e., a(t, x,
y) = co along y = y; and x = x;, and &, = 0 along y = y». Inspection of
C(t, x, y) shows that this problem is only a slight perturbation of the
first problem if ¢, = 107" and the dimensions of the device, relative to
tuop, are greater than three diffusion lengths. ,

The solution to the problem with Dy = 1, tyep = 1, x; = y1 = =5, and
yn = 5 is presented in Fig. 5. This numerical solution is not only
qualitatively correct, but the error in the concentration is less than 7.5
percent, while the error in the log concentration is less than 2.8 percent.
The precise definition of this error, which is relative to the maximum
magnitude of the solution, is presented in Section VI. In that section
it will also be pointed out that the larger errors are extremely localized
and can be traced to two specific problems, the singularity at the edge
of the mask and small displacements in the position of the diffusion
front.

4.3 Nonlinear, concentration dependent diffusion

We now consider the nonlinear problem with the charged vacancy
reaction and impurity-induced electric fields. Two cases of arsenic
diffusion will be treated in this section. In the first case, a low-
concentration case, the concentration in the window is held at aq = 1,
while in the second, high-concentration case, the concentration in the
window is held at ap = 20. Because of the similarity of the diffusion
coefficients, results for boron will be qualitatively the same. For both
cases, Do and t.., are set to 1. For the low-concentration case, the
dimensions of the device are x; = y; = —5 and y, = 5, while for the
high-concentration case the dimensions are x; = y, = —8.5 and y, = 8.5.

Figures 6 and 7 present the results for ap = 1 and ao = 20, respectively.
As might be expected, for the low-concentration case the diffusion is
enhanced, but the differences from the linear case are modest. How-
ever, for the high-concentration case the diffusion enhancement is very
pronounced. The diffusion front has become extremely abrupt and has
been translated from the region of 1 to 2 diffusion lengths from the
mask edge in the linear case to a distance of 6 to 7 diffusion lengths in
the high concentration case.

The following rationale provides some qualitative insight into these
nonlinear effects. When the concentration in the window is held
constant, the diffusion coefficient near the window also remains con-
stant and the solution in the immediate vicinity of the window behaves
like the solution to a linear problem with an effective diffusion coeffi-
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Fig. 5—Constant surface concentration diffusion, linear model.

cient of 3.96 Doa. However, this coefficient is falling linearly with the
solution. In the critical region where a = 0.1 the solution becomes
similar to that of a linear problem with a coefficient of Dy. This causes
the gradient of the solution to rapidly increase and generates an abrupt
junction with a sharp corner.

In summary, the combination of nonlinear and two-dimensional
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Fig. 6—Constant surface concentration diffusion, nonlinear model with donor impu-
rities and ap = 1.

effects for the constant-surface-concentration diffusion implies that, as
the surface concentration increases, the diffusion front is translated
further into the device, the shape of the front becomes more abrupt,
and the curvature in the corner region is increased. Moreover, these
effects are modest for low impurity concentrations but extremely
pronounced for high impurity concentrations.
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V. DIFFUSION OF AN IMPLANTED IMPURITY

In this section, we consider the case where an initial impurity dose
has been implanted in the device just inside the window (x =0,0 <y
< y,); see Fig. 3. The impurity is then diffused into the semiconductor.
Along the mask (x = 0, y; < y < 0) and the edges x = x;, y = y;, and
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Fig. 7—Constant surface concentration diffusion, nonlinear model with donor impu-
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y = yn, the boundary conditions are the same as for the constant-
surface-concentration problem discussed in Section IV. However, the
boundary condition in the window is now a no-flux condition, da/dx
= 0. In addition, we now have a nontrivial condition, which is the
description of the impurity implant.

In this section, we are concerned primarily with two simulations
corresponding to a boron implant and an arsenic implant. The initial
conditions for each implant will correspond to an appropriately scaled
Gaussian whose mean and standard deviation are functions of the
beam energy and the dose. We also assume that under the mask the
implant decays quickly as a Gaussian in y. The case corresponding to
a boron implant is somewhat hypothetical, but the case corresponding
to an arsenic implant is carefully modeled after the key processing
steps used to fabricate the junction studied in Section VII.

5.1 The Boltzmann coordinate transformation

For this problem, it is useful to introduce yet another analytic
transformation. A carefully selected moving coordinate system enables
us to model the solution accurately throughout the transient evolution.
This, in turn, improves our numerical conservation of the implanted
dose. The natural transformation is

x ¥y

§ = ] g = y T = t,
4Dt vaDot
with the associated differential operators
d 1 d a 1 a

% aDa ol B Jani ok
and

This transforms eq. (14) into

R PR A LA A

5.2 Linear, concentration independent diffusion

Again, the first case we consider is the case studied by Kennedy and
O’Brien, namely, instantaneous source diffusion for the linear, concen-
tration independent diffusion model on an idealized semi-infinite de-
vice.! Let C(¢, x, ¥) denote the solution developed by Kennedy and
O'Brien. This function satisfies (15) on the left half-plane with the
boundary condition C.(¢, x, y) = 0 for t = 0, x = 0, and the initial
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condition that it should yield an instantaneous unit dose per unit
length for t =0, y = 0.

For our numerical problem, we consider eq. (15) with the initial
condition

allsar, X, ¥) = Cllsan, X, ¥) + co
and the boundary conditions
alt, x,y) =co for x=x or y=y
ay(t, x,y) =0 for y=y,
ar(t,x,y) =0 for x=0,

where fyan = 1072 and ¢o = 107", Inspection of C(t, x, y) shows that if
Y, relative to fyop, is larger than three diffusion lengths, than a(¢, x, y)
should be nearly identical to C(¢, x, y) + co.

The solution of eq. (16) for Dy = 1, tuep = 1, 21 = y» = =5, and
yn = 5 is presented in Fig. 8. The key property of the Boltzman
coordinate transformation is that the solution to (16) with the corre-
sponding semi-infinite boundary conditions does not change its shape
as time evolves. The amplitude of the solution simply decays as
1/v4Dot. Thus the solution to our finite problem should simply decay
in the transformed coordinate system with no change of shape. This is
indeed the case. The numerical accuracy proves to be limited only by
the accuracy requested in the time evolution. For the example shown,
the worst error is less than 0.4 percent.

5.3 Nonlinear, concentration dependent diffusion

We now consider two nonlinear problems, modeling diffusions of
boron and arsenic implants. Referring to Fig. 3, the boundary condi-
tions are that the concentration is held at the background doping along
x = x,and y = y;. Along x = 0 and y = y», a no-flux condition must
hold. If this condition is valid at ¢ = fu.p, then for the transformed
system we obtain

p(ir,{,¢§) =co for {=§ or £&=§
ve(r, $,€) =0 for (=0

vE(T) {) E) = 0 for g = gh!

where 1 = Tuan.

For the boron simulation we consider a hypothetical device with
x; =y = —2.0 pm and y, = 2.0 pm. The diffusion temperature is taken
to be 1400°K. The implant is taken to be the familiar Gaussian with a
spread of 0.04 ym and a peak concentration of ay = 18.45, where the
concentration is normalized to the intrinsic carrier concentration. The
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Fig. 8—Implant diffusion, linear model.

background doping is set seven orders of magnitude below this peak
concentration. The length of the diffusion is 900 seconds, and the value
of tuar 15 set at 65.0 seconds. The choice of t... is dictated by the
resulting value of the low-concentration diffusion constant, which in

18 THE BELL SYSTEM TECHNICAL JOURNAL, JANUARY 1980



this case is Dy = 3.37 X 10" c¢m?/s, and the requirement that the
boundary conditions will be valid on the window defined by ¢, ¢, and
&n. The result of the boron simulation is shown in Fig. 9.

For the arsenic simulation, the dimensions of the device are taken
to be x; = y; = —0.9 pm and y» = 0.9 pm. The diffusion temperature is
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Fig. 9—Implant diffusion, nonlinear model for boron.
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1373°K. The implant is assumed to have a spread of 0.017 um and a
peak concentration of 114. Again, the background doping is set seven
orders of magnitude below the peak concentration and the length of
the diffusion is 900 seconds. In this case, Dy = 2.03 X 107" em?®/s, and
t.un is set to 67.2 seconds. The result of the arsenic simulation is shown
in Fig. 10.

As the peak concentration drops, the nonlinear model becomes
increasingly linear. However, the solutions shown in Figs. 9 and 10
clearly demonstrate that for contemporary fabrication the combination
of peak concentration and diffusion time cause the solutions to exhibit
several nonlinear effects. In particular, the shape of the diffusion front,
the curvature of the corner, and the ratio of lateral-to-vertical diffusion
distances are at variance with the linear predictions even for boron.

VI. NUMERICAL ACCURACY

A numerical simulation should be subjected to the same careful
scrutiny as a physical experiment to establish error bounds and insure
that the results are free from any systematic bias. This is particularly
important in the current study where we are employing a new algo-
rithm on a relatively small computer to investigate the two-dimen-
sional effects predicted by a nonlinear model. In this section, we
discuss the checks we have applied to this study and present various
estimates for the accuracy of the numerical results.

First, we establish some meaningful but concise error descriptions.
Let a(t, x, y) denote the concentration and u(¢, x, y) the log concen-
tration, exp(u(t, x, ¥)) = a(t, x, y). Let ||«| and |«| denote the
maximum magnitude of each function over the rectangle x; < x < 0
and y; < y < y». If & and # are computed solutions, define (¢, x, y) =
| a(t, x, ¥y)—alt, x,y)| and 6(¢, x, y) = | (¢, x,¥) — u(t, x,y)|. Then two
concise error measurements are || || /|| a| and || 8[| /]| « ||, where || ¢ || and
||6]| denote the maximum magnitude of these functions over the
rectangle. It is important to realize that these conventional criteria,
although mathematically precise, represent the worst-case error and
may be unduly pessimistic or even misleading.

We have applied three types of checks to the simulations. First, we
have computed the numerical solution to linear problems for which we
already know an excellent analytic approximation. This serves first as
a consistency check and second as a gauge of the best achievable
accuracy for the nonlinear results. Second, we have computed each
solution on a coarse mesh of 11 X 21 points and on a fine mesh of 21
X 41 points. Four-thirds of the difference between these two solutions
yields a good estimate on the error in the coarse mesh solution. With
some exceptions which are discussed later, the error in the fine mesh
solution should be one-third the difference. These estimates of the
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Fig. 10—Implant diffusion, nonlinear model for arsenic.

error follow from the fact that we are applying a second-order discre-
tization in space. Finally, the solutions along the line y = y, should
correspond to the solution of a one-dimensional problem, provided, of
course, that the dimensions of the device are sufficiently large. Our
third check is to compute the solutions to these one-dimensional

v
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problems to very high accuracy. We use a very well-tested one-dimen-
sional PDE package, PosT," and meshes of 11, 21, 41, and 81 points.
These highly accurate solutions are then compared with the two-
dimensional solutions to provide a check along this boundary. This
last approach yields a consistency check both on the numerical soft-
ware and on the dimensions of the device in that the one-dimensional
numerical solution for 21 mesh points should be identical to the
corresponding two-dimensional solution. In every case, the one- and
two-dimensional solutions for the same mesh do, in fact, agree to the
precision requested in the time evolution.

6.1 Errors in the implant diffusions

Since the error analysis is simpler in the case of the implant
simulations, we address them first. Figure 11 graphs the four one-
dimensional solutions for boron. A number of interesting facts can be
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Fig. 11—One-dimensional solutions, nonlinear model for boron.
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Fig. 12—Relative difference in the concentration, nonlinear model for boron.

observed. First, the solutions are rapidly converging as the mesh is
refined. In fact, closer inspection shows that the asymptotic 42 rate of
convergence is being achieved, that is, the error is being decreased by
a factor of one-fourth each time the mesh spacing is halved. Second,
the 21-point solution, while still discernibly in error, is quite good. The
maximum error in the concentration is only 9.6 percent, while the
maximum error in the log concentration is only 8.4 percent. Third, we
see that for boron the chief contribution to the error is an underesti-
mate of the amplitude. This is probably due to the fact that the coarser
meshes do not conserve the dose well. We also note that the maximum
error in the log concentration occurs in the steepest part of the front
where a small change in the x coordinate introduces a very large
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change in the value of the concentration. In fact, it is probably far
more relevant to remark that the maximum error in the position of
the front is less than 0.06 um, a relative error of about 4.0 percent if
the front is assumed to be located 1.5 pm inside the window.

Figures 12 and 13 are plots of the relative differences between the
coarse (11 % 21) and fine (21 X 41) mesh, two-dimensional solutions.
Both figures show that the maximum error is quite localized and that
it should be well estimated by the one-dimensional errors. Conse-
quently, we can safely estimate the maximum errors in the fine mesh
solution by applying the A? relation, i.e. 8fne = (Ucoarse — Usine)/3. The
error estimates for boron are summarized in Table 1.

Because of the increased nonlinearity of the donor model as well as
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Fig. 13—Relative difference in the log concentration, nonlinear model for boron.
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Table |—Error estimates for the implant simulations

Error Estimate Boron Implant Arsenic Implant
One-Dimensional
81|/ 8.4% 2.4%
ell/[la 9.6% 2.2%
Two-Dimensional
8|/ 5.6% 32.6%
ell /[l e 5.5% 33.0%
Frontal Displacement
Absolute error 0.06 um 0.018 pm
Relative error 4.0% 2.7%
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Fig. 14—One-dimensional solutions, nonlinear model for arsenic.

the much higher initial peak concentration, the case of the arsenic
implant is considerably more difficult numerically than boron. Figure
14 shows the four one-dimensional solutions for this case. Two facts
leap out. First, the 11-point solution is extremely inaccurate, while the
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21-point solution is in fact more accurate than the corresponding
solution for boron. The maximum estimated errors in the concentra-
tion and log concentration are 2.2 percent and 2.4 percent, respectively.
Second, the front is somewhat steeper which, in turn, amplifies the
sensitivity of the error to small changes in the position of the front.
The front is displaced by about 0.018 um, a relative error of about 2.7
percent if the front is assumed to be located 0.67 pm inside the window.
In spite of the relatively good accuracy, the errors indicate that the
asymptotic h® rate of convergence has not yet been achieved.

Figures 15 and 16 are plots of the relative differences between the
coarse (11 x 21) and fine (21 X 41) mesh, two-dimensional solutions.
Both plots indicate that the dominant error is caused by the displace-
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Fig. 15—Relative difference in the concentration, nonlinear model for boron.
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Fig. 16—Relative difference in the log concentration, nonlinear model for arsenic.

ment of the front. Figure 16 also indicates that the error in the log
concentration should be well estimated by the one-dimensional anal-
ysis.

Table I summarizes the error analysis for the implant study. The
one-dimensional and frontal displacement error estimates are taken
directly from Figs. 11 and 14. The two-dimensional error estimates are
simply the maximum differences shown in Figs. 12, 13, 15, and 16,
multiplied by the asymptotic correction factor, ‘4. In the case of boron,
the one-dimensional analysis indicates that, although the errors are
beginning to display the proper asymptotic behavior, the two-dimen-
sional estimate is overoptimistic. In the case of arsenic on the other
hand, the one-dimensional analysis shows that, although the errors are
not yet behaving asymptotically, the two-dimensional estimates are
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grossly pessimistic. Clearly, the poor placement of the front in the 11
X 21 point mesh completely dominates the error. We conclude that
the 21 X 41 point mesh is quite adequate for engineering work. We
also note that merely reporting the maximum error is too simplistic.

6.2 Errors in the constant-surface-concentration diffusions

In the case of constant-surface-concentration diffusion, the concen-
tration in the window is pinned throughout the diffusion. This means
that the dominant error in the one-dimensional region is simply the
frontal displacement. However, this also means that the true solution
is singular at the edge of the mask (x = 0, y = 0). Such boundary
singularities invalidate the h? asymptotic property of the numerical
method we are employing (as well as virtually any other numerical
method that does not deal with the singularity directly). Fortunately,

100
107 =
Z L
=
g 42
T 10
[ E
B =
w -
Q -
=z
D -
Q
a -
i
~N
e I
2 107
s -
z -
£ C
Z —
104 O 11 MESH POINTS
= O 21 MESH POINTS
- A 41 MESH POINTS
- @ B1MESH POINTS
10°°
1

-5 4 -3 -2 -1 0
X—AXIS (DIFFUSION LENGTHS)

Fig. 17—One-dimensional solutions, constant surface concentration diffusion, a, = 1.
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the effect of such a singularity is generally restricted to the immediate
vicinity of the singularity.

Figures 17 and 18 present the four one-dimensional solutions for the
low and high concentration cases, respectively. The frontal displace-
ment problem is particularly acute in the high concentration case. The
error in the position of the front is about 11.6 percent. While this may
well be acceptable as far as locating the front, the fact that the front
is so steep means that the value of §/| u|| in this region is essentially
meaningless.

Another way of describing the error in a problem of this nature is to
apply a type of backward error analysis. It may be more informative
to compare the solution with a more accurate solution evolved forward
to a different time. For each solution of the four constant-surface-
concentration cases, we have picked a mesh point in the diffusion front
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and have then required that the 11-, 41-, and 81-point solutions take
on the same value at this position as the 21-point solution. Figure 19
presents the results for this one-dimensional study in the high concen-
tration case. From this point of view, the error in the stopping time is
18.1 percent, while the maximum error in the concentration is only 1.0
percent, and the maximum error in the log concentration is 2.3 percent.

We now consider the effect of the mask edge singularity. That the
mask singularity has an effect is clearly evidenced from the small
irregularities near the mask edge in Figures 5 to 7. Figure 20 presents
the relative error in the concentration between the numerical solution
to the linear problem and the analytic solution. Two things are
apparent. First, the major contribution to the error is the mask
singularity, and second, its effects are quite localized. This second
observation is important if we are to place any confidence in the
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Fig. 19—One-dimensional solutions, t.., varying, constant surface concentration
diffusion ay = 20.
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Fig. 20—Relative error in the concentration, constant surface concentration diffusion,
linear model.

prediction of the position, y; (y; < y; < 0), of the “lateral out-diffusion
front.” Figure 21 presents the relative error in the log concentration
for the linear problem. Figure 21 indicates that, for the nonlinear
model, the dominant error in the log concentration will be due to the
frontal displacement. Comparisons of the cearse and fine mesh solu-
tions yield plots that are qualitatively the same as the last two figures.
The error in the concentration is dominated by the mask edge singu-
larity, and the error in the log concentration is dominated by the
frontal displacement.

The error estimates for the constant-surface-concentration diffu-
sions are summarized in Table II. The absolute error in the location of
the diffusion front is given in diffusion lengths. The relative time error
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Table Il—Error estimates for the constant-surface-
concentration simulations

Error Estimate ap=1 ap =20

One-Dimensional

8|/ 1.2% 2.3%

ell/] e 0.3% 1.0%

At/ taop 5.9% 22.2%
Two-Dimensional

8|1/ e 3.6% 34.1%

ell/] 12.8% 9.6%
Atftavy 9.7% 37.2%
Frontal Displacement

Absolute error 0.08 0.85

Relative error 3.6% 11.6%
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estimates for the two-dimensional cases are determined by evolving
the coarse mesh solution forward until it interpolates the fine mesh
solution at a prescribed point in the diffusion front. The one-dimen-
sional error estimates are simply the maximum differences between
the 21-point and 81-point solutions, and the two-dimensional estimates
are simply the maximum differences between the 11 x 21 point and
the 21 X 41 point solutions. Obviously, the two-dimensional estimates
are unduly pessimistic. However, no asymptotic relations appear to be
applicable because of the difference in stopping times as well as the
presence of the mask edge singularity. Again it seems reasonable to
conclude that the accuracy obtained by the 21 X 41 point mesh is
adequate for engineering work.

The analysis presented in this section would appear to conclusively
establish four facts: (i) the algorithm outlined in Section I11 is effective,
(i) the various diffusion simulations are free from systematic errors,
(iii) for acceptor and donor impurities in low concentrations, the
simulators can obtain answers accurate to a few percent, and (iv) for
high concentrations of impurities, the simulators can obtain answers
which are qualitatively correct and probably suitable for engineering
design. At the same time, the fact that for high concentrations the
errors were on the order of 10 to 30 percent clearly indicates that more
accurate results in this regime will require more sophisticated tech-
niques or larger computers.

We have indicated two analytic transformations of the partial dif-
ferential equation which have made it more tractable numerically.
Several other ideas have also suggested themselves and should be
explored some time in the future. First, boundary singularities, such as
the one caused by the mask edge, are well-known problems, and for
simple linear problems there are two standard remedies, either explic-
itly model the analytic singularity or locally refine the mesh in the
vicinity of the singularity. For nonlinear problems, the same ideas
should apply and we have briefly explored both possibilities, but we
have not as yet achieved any notable success. Second, the underlying
mesh used in the calculations presented in this paper consists of points
uniformly distributed along the x and y axes. Clearly, a graded mesh
could further enhance the accuracy of the solution. However, while a
graded mesh will not adversely affect the asymptotic behavior of the
errors, care must be exercised in grading the mesh to insure that the
conditioning of the Galerkin matrix is not unduly degraded. Third, in
view of the generality of the underlying differential equation, a natural
idea would be to explore curvilinear coordinate systems. The level
curves of the solutions immediately suggest a system based on the
conformal map, w = (z + z7')"”*, which gives rise to an elliptic-
hyperbolic coordinate system.
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VIl. PROFILE MEASUREMENTS

The calculations of concentration dependent diffusion profiles dis-
cussed here depend, for their validity, on the applicability of the
underlying physical theory developed by Hu.” Experimental measure-
ments of the vertical diffusion have verified the one-dimensional
version of the model.” Verification of the two-dimensional model
requires that the lateral diffusion effects also be examined. This section
presents the results of such an experiment.

Measurement of lateral diffusion effects by angle lapping is impos-
sible since the vertical extent of the doping profiles precludes magni-
fication by angle lapping. The resolution of optical microscopes is
insufficient to provide accurate measurements of the small lateral
distances involved, ~0.5 pm. The resolution problem is solved by
making measurements of required distances using a scanning electron
microscope (SEM). The remaining difficulty arises from exposing the
junctions to be measured and preparing samples in a way which will
allow the junctions to be detected.

Two methods of junction exposure were attempted. Conventional
angle lapping of the junction has been previously used to expose
junctions.' This technique results in smooth, easily cleaned surfaces,
but control of the specific location of the surface cut is difficult. A
second method of laser scribing to £25 um on either side of the junction
and cleaving provides accurate +25-um surface cut location, but leaves
a surface which can contain numerous surface cracks which trap
charge and obscure the surface during sEm studies. Both methods
allow operation of the device with substantially the same electrical
characteristics as before the sample preparation.

Two kinds of imaging techniques were used to make the junction
position visible. MacDonald and Everhart'” have shown that the width
of p-n junction depletion layers can be measured using the SEM.
Furthermore, Child, Ranasinghe and White'® have shown that the
depletion layer in MOs transistors can be directly measured using the
SEM in the beam-induced conductivity (B1c) mode.'” The MacDonald
and Everhart technique was used on angle-lapped samples, but the
resolution obtained was not adequate for the present study. The BIC
mode of exposure was used on laser-scribed samples and provides
acceptable images; however, scattering of the incident electron beam
and collection of BIC electrons away from the depletion layer by
diffusion make interpretation of the images unduly complex for junc-
tion profile measurements."”

The most successful method of profile measurement involves differ-
ential etching of doped material after cleaving or angle lapping. The
most successful etch used was nitric acid containing 1 to 2 percent
hydrofluoric acid. Etching for 2 to 3 seconds under strong illumination
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is adequate. A 5 percent hydrogen-peroxide solution with 1 to 2 percent
hydrofluoric acid was also used successfully with 3-minute etch time.
The nitric-based solution has the added advantage of acting as an
optical stain which makes sample preparation easier. After etching,
samples are not operated electrically, but are coated with 100 to 200 A
of gold to improve electron emission.

The electron microscope used is equipped with image-processing
equipment which allows contrast ratios in the final image to be
improved by contrast adjustments of pseudo-color image processing.
A typical image is shown in Fig. 22. The thin rectangle at the top is
the polysilicon gate electrode with a width of 3.43 um + 0.14 um.
Lateral diffusion of the arsenic source and drain implants under the
gate results in the source and drain junctions etched out below the
gate. Vertical junction depth is 0.57 p = 0.025 um; the ratio of lateral-
to-vertical junction depth is 0.66 + 0.09. These means and standard
deviations were obtained by making several sEm photographs and
calculating the means and standard deviations from this distribution
of measurements.

For those lengths which are resolvable by optical means, the length
ratios given above are within one standard deviation of the SEM data.
Optical measurements of our diffusion are not possible, however, and

Fig. 22—sEM photograph of an exposed junction.
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in general measurements on the sEm have at least five times the
resolving power of the optical measurements, greater depth of field,
and freedom from optical interfacing effects in lapped oxides.

The diffusion of the arsenic implant for the samples studied was
numerically simulated. As described in Section 5.3, the initial implant
was modeled by a Gaussian with a peak concentration of 114.39
(relative to the intrinsic carrier concentration) and a spread of 0.017
pm. The implant was then diffused for a period of 900 seconds at a
temperature of 1373.16°K. In the samples studied, the ratio of surface
concentration to bulk concentration was 10*. Applying inverse linear
interpolation to the results of the simulation (see Figs. 10 and 14), we
calculate that the lateral junction depth is 0.486 pm + 0.021 pm, the
vertical junction depth is 0.687 um * 0.018 pm, and the ratio of lateral
to vertical junction depths is 0.707 + 0.051. The lateral junction depth
is computed from the two-dimensional solution, while the vertical
junction depth is computed from the more accurate one-dimensional
solutions. Thus, the nonlinear model predicts greater penetration than
observed experimentally. This is consistent both with the physical
assumptions presented in Section II and with the fact that the simu-
lation neglects oxide growth during the drive-in cycle. However, the
shape of the diffusion front, as evidenced by the ratio of the lateral-to-
vertical junction depths, is in excellent agreement with the predictions
of the nonlinear model.

Viil. PROCESS SIMULATION

The results presented in this paper demonstrate that accurate
simulations of realistic diffusions involving a single impurity can be
obtained with limited computing resources. Clearly, numerical simu-
lations should lead to deeper understanding in more complex process-
ing situations such as multiple diffusions of interacting species and
diffusions involving narrow masks and/or windows. Such simulations
may, in fact, prove essential in developing technologies.

With respect to the limited computing resources, all the simulations
presented in this paper were performed on two minicomputers, the
Harris Slash 7 and the Interdata 8/32. Both provide 256K words of
directly addressable primary memory. In the case of the Harris Slash
7, this was accomplished through a virtual memory system. In our
implementation, which relies on direct banded-matrix techniques,
primary memory has proven to be the crucial resource. Typical run
times for the fine mesh solutions have been on the order of one to two
hours. However in the case of high concentrations of donor impurities
the run times have been on the order of 10 to 16 hours. Several months
after the completion of this study, some of the simulations were rerun
on a Cray-1 computer, the largest and fastest commercially available
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scientific computer. The most difficult of the simulations required only
7.25 minutes. Thus, in a production environment simple economics
will favor large computers.

Finally we note that if equilibrium solutions exist for (16), then the
constant-surface-concentration diffusion problem for the ideal semi-
infinite device has a family of self-similar solutions, parameterized by
the surface concentration, a,. For a suitable selection of ao’s, such
equilibrium solutions could be calculated numerically. The resulting
collection of solutions could then supplement the linear model pre-
sented in Ref. 2.

IX. CONCLUSIONS

In this paper we investigated the combination of nonlinear and
geometric effects on the impurity atom distribution by studying a two-
dimensional, concentration dependent diffusion model in a region
containing the edge of the diffusion mask. This study involved four
major efforts. First, we developed software for solving the nonlinear
partial differential equation describing the diffusion model, and we
used this software to perform several numerical simulations on two
different minicomputers, the Harris Slash 7 and the Interdata 8/32.
Second, we applied a number of checks on the accuracy of the results
from the simulations and concluded that the results are sufficiently
accurate for device design using current fabrication technologies. In
particular, we find that large minicomputers are adequate for process
simulation of this limited scope. Third, we analyzed the simulation
results in the light of the behavior of the nonlinear diffusion coefficient,
D(«). From its behavior, one would anticipate that the nonlinear
effects would become increasingly pronounced as the ratio of the
impurity concentration to the intrinsic carrier concentration became
larger, and that they should be more pronounced for donor impurities.
The simulations confirmed this and demonstrated that there are three
principal nonlinear effects: (i) a large translation of the diffusion front,
(if) a marked steepening of the front itself, and (iii) a very noticeable
decrease in the ratio of the lateral-to-vertical diffusions. One inescap-
able consequence is that, as the mask width approaches the junction
depth, channel widths will be determined by these nonlinear, two-
dimensional effects. Fourth, one of the authors, C. L. Wilson, obtained
experimental measurements of actual lateral-to-vertical diffusion ra-
tios for arsenic diffused in silicon. These measurements confirm the
validity of the concentration dependent diffusion model.
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APPENDIX

In this appendix we present the details of our semi-discretization
algorithm for solving problems such as the nonlinear diffusion equa-
tion. We start with a partial differential equation in general divergence
form.

F(t, X, ¥, Wy Uz, Uy, Ury Ust, Uyt) = Do (8, X, Y, U, U, Uy, U, Uty Uye)
+ Dygo(t, x, ¥, U, Ux, Uy, Ur, Ust, Uy)  (172)
with initial conditions
u(0, x,y) = h(x, y) (17b)
and boundary conditions
a(t, x, yn(x, y)- (g, &) = b(t, x, ¥, u, w), (17¢)

where the unknown function, u(¢, x, y), is defined on the domain
0 < ¢ < lyop, X1 < X < X1, and y; < y < y», and where the vector, n(x, y),
denotes the outward pointing normal along the boundary of the
rectangle determined by x:, X, i, and yx.

Given meshes

XL=Xo<X1 < ++* <Xm-1<Xm=XR

and
YL=Yo<N <=+ < Yn-1 < Yn=)YR,

we will approximate u(t, x, y), the solution of (13), by a linear combi-
nation of second-order B-splines

a(t, x,y) = ¥ ¥ Un(t)B;(x)Bi(y). (18)

j=0 k=0
A second-order B-spline, B;(x), also called a chapeau function, is a
piecewise linear function which is 1 at x;and 0 at all other mesh points.

Outside the interval [x., xx], the spline is defined to be 0. Inside the
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interval, it is defined by requiring it to be continuous. The set of
product functions {B;(x)B,(y):0<j<m,0<k <n}is commonly
referred to as the tensor product basis.

The basic idea is to choose the coefficients, U/;,(¢), so that the
remainder function,

r(ty xr y; d) = f(t, x, _}', ﬁr &.l: &_\‘1 ah &.n’p ﬁ_vf)
- D,\'gl(ty X, y; d; li_\, d_\u d-’, '&.\1’; &_vf)
- Dvg'_’(tp X, y, d: dx' d_v‘ ijh ﬁ.rh dyl)n

is orthogonal to the basis elements {B;(x)B;(y)}. Thus we obtain the
following system of equations

J’ f [f_ D.\'gl - D_\-g:!]Bj!.- dx d_')’ = 0, (19)
R

where j =0, -..,m; k=0, --., n and B, denotes the basis function,
B;(x)B.:(y). This is a system of (m + 1) X (n + 1) nonlinear equations
in the (m + 1) X (n + 1) unknowns, U, ,(t). We can rewrite (19) as

f J [fBﬂ-‘ + (D.‘Bm)gl + (D_\-ijn)gz] dx dy
R

= f j D.\‘(Bj.a-gl) + D_V(B,kgz) dx dy.
K
Applying Green’s theorem to the right-hand side, we obtain

f f [fBﬂ-' + (D.nB;l.-)gl + (D)-B;f.-)g-_l] d:c dy
R

= J n-(B;.g, B;.g:) ds. (20)
N
By the definition of the B,., the right-hand side of (19) will vanish
whenever 0 j < m or 0 < k < n. However, for those splines which do
not vanish on T, this integral will enable us to incorporate the boundary
conditions (17¢) into the Galerkin formulation.

The next step is to replace the integrals in (19) with simple quad-
rature formulas. For a detailed discussion of the technical details, see
Ref. 11. This reduces (20) to an (m + 1) X (n + 1) implicit system of
ordinary differential equations which may be written in the form

F(t, U, U") =0,
with -
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Systems of ordinary differential equations derived from such semi-
discretization processes are usually stiff.”” The solution of stiff equa-
tions typically requires the use of an implicit method. Any of a number
of standard techniques' can be applied. We start with the strongly A-
stable implicit Euler rule. Then, using Schryer’s step-size and order
monitor,”® we extrapolate trial answers obtained by this method to
obtain a powerful variable-order, variable-step time evolution.

This reduces the problem to the repeated solution of a large system
of nonlinear equations. These are solved using a variant of Newton’s
method in which the Jacobian matrix is only infrequently recomputed.
The resulting linear systems are solved with direct methods. This
approach insures that the nonlinear iterations converge quickly at the
expense of large storage requirements for the factored Jacobian matrix.
The use of direct techniques also allows us to ignore certain mesh
restrictions which might be necessary to insure the convergence of a
fully iterative technique such as successive overrelaxation. As noted in
Section IV, this additional robustness is particularly important during
the initial transient analysis on the nonlinear diffusion problem.
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