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We consider a simple direct-sequence model of spread-spectrum
communications over a bandwidth W using signals of duration T. In
addition to the dimension n = 2WT of signal space, the other
parameters of interest are the number (u + 1) of simultaneous users
of the system, the error rate Pe(u), and the number M of subscribers,
or potential users. We investigate the relationships between these
parameters, and, in particular, study the validity of the usual Gaus-
sian approximation often used to compute Pe(u). Basically, we con-
clude that, if M is larger than n*/2, then the Gaussian approximation
is not a guaranteed error rate for (u + 1) users, but rather an average
over all possible (u + 1) users. If M is somewhat less than this number
(the exact value is not known), codes can be assigned so that a
uniform performance at least as good as Pe(u) can be obtained,
where, again, Pe(u) is calculated from the Gaussian approximation.
Uniform performance guarantees are given for any value of M, but
they (for M large) permit fewer simultaneous users that the Gaussian
approximation predicts. These bounds explicitly use the maximum
cross-correlation between the signals of the different subscribers.
This quantity played no role in the Gaussian approximation.

I. INTRODUCTION

In general, spread-spectrum communications refers to a class of
modulation methods by which the information-bearing signal is trans-
mitted via a modulated signal having much greater bandwidth. Two
common methods are used to accomplish the spreading. In one method,
direct-sequence modulation, the information signal is multiplied by a
rapidly varying waveform. This waveform, which the receiver is re-
quired to know, may be thought of as having a pseudo-random char-
acter. For practical reasons, it has finite duration and is repeated in
time. We refer to any particular suitable waveform, or a collection of
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such, as a code. The other method for spectrum spreading is frequency
hopping. In this case, the available transmission band is divided into
a large number of disjoint frequency intervals, and the information is
conveyed by hopping from one such frequency to another. The infor-
mation may be transmitted by phase-shift-keying each frequency or
by using a particular set of frequencies for a particular symbol, etc.
Again the code for frequency hopping must be known to the receiver.

The initial motivation for introducing such a scheme appears to be
in its military use as an anti-jamming device. The jammer, not knowing
the transmitter’s code for spectrum spreading, must thus blanket all
codes. Most of the jammer’s power is wasted in codes that are orthog-
onal to the one in actual use.

An additional application of more commercial interest was intro-
duced by Costas.' His idea was to use spread spectrum as a way to
make a large bandwidth, W, available as a communication resource to
many potential users without preassigning frequency divided channels
(rDM) (and thus overlimiting the number of potential users) and
without having a dynamic assignment of rpM (thus incurring the need
and cost of external control). In modern work, this is usually accom-
plished, or imagined to be accomplished, by assigning “almost orthog-
onal” codes, or code vectors, to different users as a means to limit the
mutual interference between users.

Very recently, attention has been drawn to spread spectrum as a
possible modulation method for cellular mobile radio systems.? Our
interest was drawn to this area by Henry’s subsequent criticism® of the
analysis of Cooper and Nettleton.® While the particular question in
this controversy appears to have been resolved (in Henry’s favor), our
own survey of the situation has brought out some deeper questions
relating to assumptions made in the analysis by Cooper, Nettleton,
and Henry, and often made elsewhere. Specifically, lip service is often
paid to making the codes approximately orthogonal. Yet when the
performance analysis is finally made for these digital systems, one
typical user is considered and all other users which are simultaneously
using the channel are treated as interfering Gaussian noise having
uniform power spectrum over the band of interest. Nowhere does any
measure of the approximate orthogonality of the signals of different
users enter the performance estimates. Our objective, then, is to
examine what validity can be given to performance curves calculated
using the Gaussian approximation and what relation, if any, this
approximation has to the idea of approximate orthogonality of different
users’ signals.

To gain some insight into these questions, we examine a simple
direct-sequence system designed to transmit binary data and give
upper bounds or the error rate Pe(x) that a user will experience when
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there are u other users on the channel. Assuming that the bounds yield
a good description, we can reach some easily stated conclusions.

Let there be M subscribers or potential users of the system and let
there be (u + 1) simultaneous users, u + 1 = M. Also denote the
calculated error rate by Pe(ux). Then, by a random coding argument,
we conclude for M = u + 1 that there is a code such that the (z + 1)
users each have error rate Pe(u), where Pe(u) is calculated via the
Gaussian approximation. This, however, does not take into account
the possibility that the u + 1 users may be selected from M > u + 1
subscribers. The random coding argument also suggests that, in fact,
no limit need be placed on M if Pe(u) is estimated from the Gaussian
approximation. However, the interpretation given to Pe(uz) immedi-
ately changes. It is no longer an error rate for each of (z + 1) users,
but is an average error rate where the average is taken over all ways
(u + 1) users are selected from the subscriber population.

Next, the question of a guaranteed error rate for any (u + 1) users
is taken up. That is, we present a performance bound valid for each of
the (z + 1) users which is independent of how the (u + 1) users are
selected from the population of size M. The results show that if, in our
n-dimensional signal space, we are packing so many unit energy signal
vectors (corresponding to different subscribers) that the cross-corre-
lations (cosines between vectors) are required to be as large as
(¢/n)"? in magnitude, where ¢ > 1 is simply a convenient parameter,
then the number of simultaneous users is reduced by a factor of ¢
compared to what the Gaussian approximation would predict. Finally,
recent bounds by Kabatyovskii and Levenshtein for sphere-packing
problems are applied to give upper bounds on M so that the (¢/n)/?
bound on the cross-correlations can be met. For ¢ = 1, the upper bound
is n®/2 vectors, which, for n large, is quite generous. How closely this
can be approached is not known.

Il. MODEL AND ANALYSIS

We consider the following simple model of direct-sequence, binary,
spread-spectrum communication. We have a bandwidth W over which
u + 1 independent users simultaneously communicate binary infor-
mation with a central station at the rate R = 1/T b/s. The individual
information rates are small compared with the available bandwidth;
thus, TW >> 1. There are M subscribers or potential users of the
system and M may be large compared with # + 1, the maximum
number of simultaneous users allowed. Each potential user is perma-
nently assigned a coded carrier (or code vector). The ith subscriber’s
carrier c;(t) is written as

ci(t) = Y xk'yn(t), (1)

k=1
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where i (¢) are orthonormal basis functions in the n = 2WT dimen-
sional space of functions approximately limited to W Hz in bandwidth
and to T s in duration.

The entire system operates synchronously and every T seconds the
ith user square-wave modulates his carrier by +1, the independent,
identically distributed (i-i-d) binary data that he wishes to transmit.

We may consider the n real number x{’, 2 = 1, ..., n forming a
vector x'¥) in real n space and the collection of vectors {x “}# belonging
to the different subscribers is sometimes called a code. We only
consider equal energy codes and set

k=1

T n
E= f ) dt= 3 (=) @)
0

In the analysis, we distinguish the user whose performance we will
be interested in by the subscript i = 1; the other users are designated
byi=2, ..., u + 1. Thus, in a typical T-second interval the received
signal will be a time translate of

u+1

biei(t) + Y bici(2), (3)
i=2
the b; being the binary data, i-i-d for each user and also between
users.f We assume correlation detection of (3), and thus the receiver
bases its decision of b, on the sign of

T u+l T u+l
blf cit)dt+ ¥ at)ei(t)di=Eb + E Y, bipy. (4)
0

i=2 0 =2

In (4) we have introduced the normalized cross-correlation,

T
] ci(t)c;(t) dt
0

_d s e
i 7 Ex xfxf. (5)

This equals the cosine of the angle between x'*’ and x’ in n-space.
Thus, when | p;;| is small, the vectors x; and x; are almost orthogonal.
Assume that b; = 1 in (4). Then the probability of error, Pe, is

u+l1
Pe = Pr[l + E b;'pu < Ojl (6)

i=2

T Such a system where the “spreading” function is modulated by the data is usually
termed a direct-sequence system. Frequency hopping is another spread-spectrum tech-
nique. The relative practicality of the two techniques depends on particular -circum-

stances.
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This depends on the distribution of the noise-like quantity

u+l

qg=Y bipy, ' (7)

=2
where (assuming unit energy)

pi = i‘, P xfh. (8)

k=1
First let us consider not a specific code, but rather an average over all
possible codes assuming all the unit vectors x are uniformly and

independently distributed over the unit sphere.t In this case, note
(letting () denote an average)

1 ..
(P:ﬁ‘)=; L# ], 9)

which follows from noting that, for a unit vector, the sum of the
squares of its n direction cosines add to 1, while each must have the
same average.

Using the random coding assumption, the moment-generating func-
tion M, (s) of ¢ may be shown to be

M, (s) = (e*)

= (eEU)u _

1 1 v — 5, 2yn—-3/2 “
[3(1/2, (n — 1)/2) L"’ (1=v7) dv], (10)

where, in (10), B(1/2, (n — 1)/2) is the beta function and

1
— 1 — p2)n—3r2 11
PO =B m=nm ) 1
is the probability density of any direction cosine v of a vector uniformly
distributed over a sphere in n-dimensions. A saddle point evaluation
of (10) yields, for n > 3 and s/n small,

M, (s) = e*/>". (12)
Since the Chernoff bound* states that, for any random variable g,
Prlg<A]l=<e*M,(s) forany s<0, (13)
then
Pe = Pr{g < —1] < e*M, (s) = e‘“"/2M+9), (14)

+ We could also assume that x}’ = +1, i-i.d, and obtain similar numbers.
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Optimizing the inequality in (12) over s yields' s, = —n/u, and thus
Pe(u) < e~ /20, (15)

where Pe(u) is the error rate for (z + 1) simultaneous users.

We begin our discussion of (15) by reconsidering the performance
question from a different point of view. Assume that the interfering
power resulting from users 2 through u« + 1 is uniformly distributed
over the band W. If each user has power P, then the one-sided power
spectral density N, thus obtained is

uP uE
No = W TW (16)
Further assume this noise is Gaussian. As is well known, the error rate
for antipodal signals, each of energy E (this is what our transmitters
are using), is, in white noise of spectral-density N, given by

re- oY) <o

1 .
Qx)=—— | e>dy.
2'.'T x

(17)

The bound in (17) is exponentially correct. Using (16), the Gaussian
approximation yields

Pe(u) = e (TW/u) - e-—(n/zu)’ (18)

where we have introduced the dimension n = 2WT. This is precisely
the same as the random coding bound (15). We use the random coding
argument to interpret the result of the standard Gaussian approxima-
tion. The first interpretation is that there must be a code of (uz + 1)
vectors so that each of the (u + 1) users has error rate Pe(u).* A second
interpretation is that, to achieve Pe(u), no limit need be placed on the
number M of subscribers. They can, in fact, be assigned codes at
random. The average error rate a user sees with u other users present
is (15). But (15) clearly then refers to a Pe(u) averaged over all possible
combinations of u users; it is not an error rate that can be met for any
set of u other users. Some combinations of u + 1 users will give very
bad error rates.

To see what the guaranteed level of performance can be for any
u + 1 users selected out of a subscriber population of size M, reconsider

T The fact that s, = —n/u justifies treating s/n small in (10).
* More precisely, one can guarantee that a code exists so that a fraction (1 — (1/a))
of the users has an error rate no larger than a-Pe(u).
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(6) with the p,; fixed. Then the standard Chernoff bound yields

1 u+1 -1
Pe < exp[— 5 (Z pff) j| (19)
i=

Suppose we have designed our code so that, out of the entire population
of M subscribers,

max |py| = pmax.

LI i)

Then from (19),

Pe < e "/24L.), (20)

If p2ax = 1/n, the Gaussian approximation again results. In random
coding (p¥) =1/n, but nothing was said about pmax and thus nothing
could be said about a guaranteed error rate.

Given M unit vectors in n space, how small can pmax be? One result
in this direction is due to Welch.? He states that

2 = 1 -1 (21)
Prx =31 ’
If n is large and M large compared to n, then (21) already states
1
2 2t
pmax = n .

Rephrasing our question, given the dimension n and pmax, how large
can M be? That is, how many vectors u; can we put on the unit sphere
so that

'Pijl = |ui-u;| = pmax? (22)

This sphere-packing problem is different from the conventional one
which requires

P:’; = ui'uj = Pmax- (23)

The number of vectors M will be much smaller under condition (22)
than under condition (23). Luckily, our sphere-packing problem (22)
was one of the packing problems recently considered by Kabatyonskii
and Levenshtein.® Precise values of M are not known, but upper
bounds are.

An extension of their work provides us with the following. For
k=0,1,2 .-,

"1f (n + 1) vectors are the vertices of the regular simplex in n-space, then Dinn =
1/n’ Then (21) is exact for M =nand M =n + L
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(n/2)

+ 2R) ———, 24
(n ) 1/ (24)
provided the denominator in (24) is positive.! In (24), we have used
the notation

(1 = phax)

M= o~ + 2%

(a)p=ala+1) - (a+k—1)
(a)o=1. (25)

It is useful to write pZ.x as
Prax = — . (26)

If we set ¢ = k = integer and use the same £ in (24), and further assume
k? < n, we have approximately

1 nk-i-l

SEFD @ =D

Equation (24) is plotted in Fig. 1 for n = 100 as a function of ¢. The
part of the curve for smallest ¢ uses & = 0, the next set of ¢ values uses
k=1, and so on.

In general, the value of the upper bound at £ = 1 (where the Gaussian
assumption agrees with random coding) is given by n?/2. How closely
this upper bound can be achieved is not clear. If, however, ¢ = 4, a
result of van Lint and interpreted for the present situation by Welch,?
indicates that at least 10* binary (+1) waveforms are available, com-
pared with the bound of 4 X 10°. The point is indicated by the small
circle in Fig. 1.

M (27)

. CONCLUSIONS

Consideration of our simplified model has provided the following
insights. Treating many other users as background Gaussian noise for
a particular user is a good approximation in that a code can be found
which (at least approximately) provides the calculated error rate for
each simultaneous user. This is no bargain, however, for the orthogonal
code would be even better in performance in the present problem,
permitting more simultaneous users.* Evaluated as a pure modulation

" The bound (24) is valid for a real vector space. For a complex space, the following
larger bound applies (p = pmax):

1-p? (n)a+r

Meomoter < .
=Eri-m+hpl H

*More explicitly, (18) states that, for a small error rate, we require 2u <« n = 2WT,
or u < WT = W/R. However, in this model, FoM with double-sideband modulation
allows about W/R users with zero error rate.
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Fig. 1—Upper bound on number of signals M vs t = nprax for n = 100. The point A
is known to be achievable using binary codes.

method for accommodating (z + 1) known and fixed users in a white-
noise channel, spread spectrum has little to offer over ssB-FDM. The
only advantage for spread spectrum on the type of channel that we
have considered would be as a multi-access scheme for M potential
users.” Selecting codes at random for this situation still permits us to
use the Gaussian approximation with u “other” simultaneous users to
calculate an error rate Pe(u), but only in an average sense. Namely, it
is an average over all possible (u + 1) users selected out of the M
subscribers. To guarantee a level of performance for any (z + 1) users,
the departure from strict orthogonality must not be too severe, and
this puts a definite restriction on the number M of potential users.

f The potential absence of channel assignment for spread spectrum is the basis of the
Cooper-Nettleton (Ref. 2) proposal for spread spectrum for mobile radio. Other consid-
erations may make spread spectrum an attractive alternative. For example, it can
provide frequency diversity for a frequency-hopped system when there is fading. Such
a scheme has been proposed by Goodman et al. (Ref. 7) for mobile radio, modifying
Viterbi's (Ref. 8) proposal for satellites. Also in satellite systems, the Doppler shift can
be large compared to data rates for individual users. Viterbi (Ref. 8) has suggested that
spread spectrum would not need the large guard bands between channels that Fpm
would require.
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While upper bounds on M were given in the text, the exact value is not
known, nor, in general, did we discuss explicit construction of subop-
timum codes.
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APPENDIX
Derivation of Eq. (24)

A brief outline is presented to guide the reader who wishes to
rederive (24) from the results of Ref. 6.

We first summarize the relevant results of Ref. 6, given on pages 10
and 11 of that work. We will be concerned with the interval -1 < ¢ <
1 and expansions in Jacobi polynomials P#*(¢), i denoting the degree
of the polynomial. The parameters « and 8 depend on the dimensional-
ity n and type (real or complex) of space that we are considering. For
a real space a = (n — 3)/2, B = — 1/2 (n = 3), while for a complex
spacea =n — 2, 8 =0 (n = 2). Let s be a real number —1 = s <1 and
denote by R (a, B, s) the set of polynomials

!
fi&) =3 fiP#(t) (28)
=0

of degree [ =1, 2, . . . such that
() =0, i=0, ...,k where fo>0. (29a)
(iz) f£)=0 for —-1=t=<s. (29b)
Then the maximum number M of unit vectors u; in n-space such that

|ui-u;|=p
satisfies

M= inf @ (30)

T foeR@B22-1) fo

The evaluation of f(1)/f; for any particular allowed f(¢) further upper
bounds (30). We choose the polynomials

f(t) = (t—s)(t+1)* E=0,1,.... (31)

The verification of (29b) is thus trivial, as is the evaluation of f(1). The
verification of (29a) as well as the evaluation of f;, is a direct calculation.
We evaluate f; using the orthogonality properties of the Jacobi poly-
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nomials P (¢) with respect to the weight function w(t) = (1 — ¢)*(1
+ t)®. The required normalization may be found in Ref. 9, p. 262,
formula 1. If we rewrite (31) as

fl£) = (¢ + 1)*' = (1 + s)(t + 1), (32)

then the integrals needed to evaluate f; may be calculated from Ref. 8,
p. 263, formula 3. One then directly verifies that f; > 0 (i > 0) is positive
whenever f; is, and the indicated evaluation of f; results in (24) for the
real case.

REFERENCES

1. J. P. Costas, “Poisson, Shannon and the Radio Amateur,” Proc. IRE, 47 (December
1959), pp. 2058-2068.

2. G. R. Cooper and R. W. Nettleton, “A Spread-Spectrum Technique for High-
Capacity Mobile Communications,” IEEE Trans. Vech. Tech., VT-27, No. 4
(November 1978), pp. 264-275.

. P. S. Henry, “Spectrum Efficiency of a Frequency-Hopped-DPSK-Mobile Radio
System,” 20th IEEE Vehicular Technology Conference Record, March 1979, pp.
7-12.

. Robert G. Gallager, Information Theory and Reliable Communication, New York:
John Wiley, 1968. See pp. 126-128 for the Chernoff bound.

. L. R. Welch, “Lower Bounds on the Maximum Cross Correlation of Signals,” IEEE
Trans. Info. Theory, IT-20, No. 3 (May 1974), pp. 397-399.

6. G. A. Kabatyanskii and V. L. Levenshtein, “Bounds for Packings on a Sphere and in

Space,” Problems of Information Transmission, 14, No. 1 (January-March 1978),
pp. 1-17.

7. D. J. Goodman, P. S. Henry, and V. K. Prabhu, “Preliminary Assessment of
Multilevel FSK for Mobile Radio,” unpublished work.

. A. J. Viterbi, “A Processing Satellite Transponder for Multiple Access by Low-Rate
Mobile Users,” Proc. Digital Satellite Commun. Conf., Montreal, October 23-25,
1978.

. Peter Beckmann, Orthogonal Polynomials for Engineers and Physicists, Boulder:
Golem Press, 1973.

(]

[2 B

=]

©

SPREAD-SPECTRUM COMMUNICATIONS 2023






