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In this paper, we study various communication networks, such as
concentrators, superconcentrators, generalizers, and rearrangeable
and nonblocking networks. We improve bounds for the number of
edges (which can be viewed as approximations of the cost) in some
networks by combinatorial analysis.

I. INTRODUCTION

A communication network can be viewed as a collection of vertices
and edges which provides connection between input vertices and
output vertices by nonintersecting (vertex-disjoint) paths. Various
types of communication networks, such as concentrators, superconcen-
trators, generalizers, and rearrangeable and nonblocking networks,
have been extensively studied'® and can be used to build efficient
switching networks or to serve as useful tools for complexity theory
for algorithms.®

An (n, m)-concentrator is a graph with n input vertices and m output
vertices, n = m, having the property that, for any set of m or fewer
inputs, a set of vertex-disjoint paths exists that join the given inputs in
a one-to-one fashion to different outputs. If this graph is directed or
acyclic, we call it a directed or acyclic (n, m)-concentrator, respectively.
Pinsker* shows the existence of a directed acyclic (n, m)-concentrator
with 29n edges. We show that there exist (n, m)-concentrators with
15n edges, there exist directed (n, m)-concentrators with about 25n
edges, and there exist directed acyclic (n, m)-concentrators with 27n
edges.

An n-superconcentrator is a graph with n inputs and n outputs
having the property that, for any set of inputs and any equinumerous
set of outputs, a set of vertex-disjoint paths exists that join the given
inputs in a one-to-one fashion to the given outputs. Valiant® shows the
existence of directed acyclic n-superconcentrators with 238n edges.
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Pippenger® improved this bound by showing the existence of directed
acyclic n-superconcentrator with about 39n edges. We show there exist
n-superconcentrators with about 18.5n edges, there exist directed
superconcentrators with about 36n edges, and there exist directed
acyclic superconcentrators with about 38.5n edges.

An n-generalizer is a graph with n inputs and n outputs having the
property that, for any given correspondence between inputs and non-
negative integers that sum to n, a set of vertex-disjoint trees exists
that join each input to the corresponding number of distinct outputs.
Pippenger’ proves that directed acyclic n-generalizers exist with about
120n edges. We show that n-generalizers exist with about 61.5n edges.

An n-nonblocking graph is a graph with n inputs and n outputs
having the property that, for any given sequence of one-to-one corre-
spondences between inputs and outputs, we can establish vertex-dis-
joint paths to join inputs to the corresponding outputs sequentially
without disturbing existing paths. Bassalygo and Pinsker' prove the
existence of directed and acyclic n-nonblocking graphs with 67.26n log.
n edges. Pippenger improved the bound to 56.79n edges. In this paper
we show that directed acyclic n-blocking graphs exist with about 55n
edges.

Il. PRELIMINARIES
We first prove some auxiliary lemmas that mainly follow the lines of
Pinsker* and Pippenger.®

Lemma 1: For integersn, a, b, x,a = b = 2 and a real number a <1,
a bipartite graph exists with an inputs and bn outputs in which every
input has degree bx and every output has degree ax and so that, for
every set of k < aan inputs, a k-matching exists from the given inputs
to some set of k outputs provided

H(a) + (b/a)H(aa/b)
bH(a) — aaH(b/a)

%(_b-'% and xb>4,
where
H(z) = —z logez — (1 — 2)logz(1 — 2)
is the well-known entropy function and n is sufficiently large.

Proof: For a permutation p on {0, 1, -+, abxn — 1}, we consider a
labeled bipartite graph B, with an inputs and bn outputs in which
every input y is adjacent to the outputs {z:z = p(y’)(mod bn) for some
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y’ = y(mod an)}. The total number of such bipartite graphs is (abxn)!

Suppose B, has the property that there are k inputs, 2 < aan, such
that there is no 2-matching between these k inputs and some % outputs.
From Hall’s Theorem,*'® we know that there exist some %’ inputs, ¥’
< k, such that the total number of outputs adjacent to at least one of
the &’ inputs is less than &’. Thus the total number of B, satisfying the
above property does not exceed

_ an\[bn (axk)! _
A"*Em(k)<k)uuk—mmn'm“m bkt

Suppose A < (abxn)! Then a bipartite graph B, exists in which, for
any k inputs, a k-matching exists between these given inputs and some
k outputs. It suffices to show that A < (abxn)! We let

__[an\{bn (axk)!
f(k) = ( k )( k )m(abxn — bxk)!

For k = Ban, we define
_flk+1)
86 ="

It is easily verified that
£ -pp
-7 a-p

where ¢ = a/b and o(1) is arbitrarily small when n is sufficiently large.
Let

gB)=Q10+0(1) -

(t-l - B)Bb—ﬂ

pB) ‘—"(I—_B)—W.

By straightforward calculation, we have the first derivative p'(8) > 0
since
b(b—2)
ab—a—-5b"
Let Bo, 0 < Bo < a, be the real-number solution of
s p() =1
(t _ l)a—b -p =

B<a<

It follows immediately that, for n sufficiently large, we have

fk+1) > fR) i B=%>ﬁo and
. k
M+D<M)ﬁﬁ—a<m
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We consider the following two possibilities.

Case 1: f(1) > f(laan]).
From (1) we have

A =< aanf(1)
< aa’bn’® . __Ex_)'_ (abxn — bx)!
- (ax — bx)!
aa’bn®

< (bn——]_jE . (abxn)!

We have

A < (abxn)!
since bx = 4 and n is large.
Case 2: f(laan]) > f(1).

We use the following inequality for binomial coefficients (see Ref.

11).

((8np(1 = p) /2P < (,;,) = ((2mp(1 — p)) 2",

A = aanf(laan])
an \[ bn \[ aa’xn
aan | van )\ aan )\ aabxn
=
abxn
aabxn

1
<
7V(1 = (aa)/b)(1 — (b/a))

(abxn)!

+ azaan(-g) — abxnH(a)(abxn)!

< (abxn)! for n sufficiently large.

This completes the proof of Lemma 1.

gantta) 4 an(E)

b

The bipartite graphs in Lemma 1 will be denoted by B(n, a, b, a).
We also let B(n, a, b, @) denote the same bipartite graph except that

the set of inputs and outputs are interchanged.

Lemma 2: For any integers n and t and real numbers o, 8, 0 < a <
B < 1, a bipartite graph exists with n inputs and tn outputs in which
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every input has degree tx and every output has degree x and every set
of k inputs, k = afn < an, are adjacent to at least B0in different
outputs provided
S H(a) + tH(B)
t(H(a) — BH(a/B))

and
2+ B/a+ 3aB
P>
x 1B
Proof: For a permutation p on {0, 1, ---, xtn — 1}, we consider a

labeled bipartite graph B, with n inputs and tn outputs in which every
input y is adjacent to outputs {z:z = p(y’) (mod tn) for some y' = y(mod
n)}. The total number of such bipartite graphs is (xtn)!

The number of B, having the property that some &, k£ = afin < an,
inputs are connected to less than Bftn different outputs is bounded

above by
A= Y n tn \ (xB0tn)!(xtn — afxtn)!
; k=afn<an abn Bam (xﬁﬂtn - Jmﬂtn)' ’

By an argument similar to that in the proof of Lemma 1, we can
prove that

A’ < (xtn)!
since
+ 3
xt >E’£1/¥£
and

hd
B

Therefore a bipartite graph B, exists having the property that every
set of k inputs, 2 = afn < an, are adjacent to at least ftn different
outputs.

H(a) + tH(B) + xBH( ) — xtH(a) < 0.

The bipartite graph mentioned in Lemma 2 will be denoted by B'(n,
t, a, B).

Il. SUPERCONCENTRATORS

A one-sided n-superconcentrator is a graph with n terminal vertices
such that, for any two sets of equinumerous terminal vertices, we can
find vertex-disjoint paths connecting vertices of one set to the vertices
of the other.
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Theorem 1. There exist one-sided n-superconcentrators So(n) with
17.5n + O(log n) edges.

Proot: Figure 1 illustrates the recursive construction for Sp(n), where
B is a subgraph of B([n/7], 7, 5, 4) in Lemma 1.

For any two sets of k terminal vertices, say, X and Y, we want to
find vertex disjoint paths connecting vertices in X to vertices in Y. Let
X =X-Y,Y =Y — X It suffices to find vertex-disjoint paths
connecting vertices in X’ to vertices in Y'. We note that the number &’
of vertices in X’ does not exceed n/2. From Lemma 1, we know that a
matching exists between X’ and some set X” of %’ output vertices of B.
Similarly, a matching exists between Y’ and some set Y” of &’ output
vertices of B. Vertices in X” and Y” can be connected by vertex-
disjoint paths in So(5[n/7]). Therefore, Sp(n) is indeed a superconcen-
trator.

The number of edges in B is 5n. The number of edges in So(n) is
bounded above by

5n + 17.5(5 I_;-I ) + 80(log 5 I—fﬂ ) < 17.5n + 80(log n).

Theorem 1 is proved.

Theorem 2: There exists n-superconcentrator S(n) with 18.5n + O (log
n) edges.

Proof: The construction for S(n) is shown in Fig. 2.

lo——o
le "*l\\
| 1 °~
: L \\\
n TERMINAL | | g M ~
VERTICES | | H e
| -
11 -
{ [ >=-50(5:n/711
L=
Spln)

Fig. 1—A recursive construction for Sy(n).

n INPUTS n OUTPUTS

Fig. 2—A construction for S(n).
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Fig. 3—A construction for S(n).
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Fig. 4—A construction for S(n).

It is easily seen that S(n) is a superconcentrator and has 18.5n +
O(log n) edges.

Theorem 3: There exists directed superconcentrators S(n) with 36n
+ O(log n) edges.
Proof: The construction of S(n) is shown in Fig. 3, where S'(n) is a
directed graph obtained by replacing each edge in So(n) by two directed
edges of different directions.

It is easily seen that S(n) has 36n + O(log n) edges.

Theorem 4: There exist directed acyclic superconcentrators S(n) with
38.5n + O(log n) edges.
Proof: S(n) is constructed similar to that in Ref. 4 except that the
parameters are different (see Fig. 4).

It can be easily seen that S(n) has 38.5n + O(log n) edges.

IV. CONCENTRATORS

An (n, m)-concentrator can be constructed as follows:
n
Casel: m< 3

We construct C(n, m) as shown in Fig. 5. For 1 =i < m, input i is
connected to output i by an edge. The connection between the inputs
I, i > m, and the outputs can be viewed as a “composition” of two
bipartite graphs, i.e., the outputs of the first bipartite graph are inputs
of the second bipartite graph. The first bipartite graph is a subgraph
B of B([n/6], 4, 3, 1/3) with n — m inputs and n/2 outputs. From
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Fig. 5—A construction of C(n, m) for m < (n/3).
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Fig. 6—A construction of C(n, m) for (n/3) <m = (2/3)n.

Lemma 1, we know that the first bipartite graph contains at most 4n
edges. The second bipartite graph is a subgraph S of Sy([n/2]) with n/
2 inputs and m outputs.

To show that C(n, m) in Fig. 5 is a concentrator, we let W denote a
set of k inputs.

Suppose input i is in W and i = m. We join input i to output . Let
W' be the set of inputs i, i > m, in W. From Lemma 1, we know that
a matching exists between W’ and some outputs in B, which will then
be joined to specified distinct outputs since S is a subgraph of
So([n/2]). Therefore, C(n, m) in Fig. 5 is a concentrator.

Case2: nf3<m=2/3n.

If we take X(m) in Fig. 6 to be a subgraph of 2/3 n-superconcentrator
with n-m inputs and m outputs, it is easily checked that C(n, m) is a
concentrator.

Case 3: m > 2/3 n.

We choose B in Fig. 7 to be a subgraph of B([n/4], 3, 2, 1/3) if 3/4
n=m > 2/3 n, to be a subgraph of B([n/8],7,4,1/4) if 7/8n=m >
3/4 n, and to be a subgraph of B(n, 2, 1, 1/8) if n = m > 7/8 n. In any
of the three cases, the number of edges in B does not exceed 4n + 7.

To see that C(n, m) is a concentrator, we consider the case 7/8 n
> m = 3/8 n. The other two cases can be verified similarly. Now let A
denote a set of £ < m inputs. We want to show that a set of vertex-
disjoint paths exists connecting vertices in A to some & output vertices.
For any number x, 0 < x < n — m, we consider the set of inputs I, =
{y:y=x(mod n — m)} and the set of outputs O, = {z:z=x(mod n —
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m)}. We note that | I.| = | O« | = | I:| — 1. Suppose | . N A| <| O« |. We
can join vertices in I. N A to O: by a matching. Thus we only have to
consider the case that |I. N A| = |I;| = |O:| + 1. The first | O, |
vertices in | I, N A| can be connected to vertices in 0. by a matching.
Thus at least 3/4 m vertices in A can be connected to output vertices
by vertex-disjoint edges. The remaining [m/4] vertices in A will then
be connected through Sy([n/2]). To see this, we note that B is a
subgraph of B([n/8], 7, 4, 1/4). For any set of m/4 output vertices of
B, a matching exists between the given output vertices and some input
vertices of B. Thus these vertices will be connected to the vertices in
A through So([n/2]).

Theorem 5: There exist (n, m)-concentrators with 14.75n + O(log n)
edges.

Proof: By the construction mentioned above, we note that in Case 2
we have

|C(n,m)| =m + |S([2/3 n]) | = 13n + O(log n).
In Case 1 and 3, we have
|C(n, m)| = n + 5n + |So([n/2]) | + O(log n) = 14.75n + O(log n).

Theorem 6: There exist directed (n, m)-concentrators C(n, m) with
24.67n + O(log n) edges.
Proof: By taking X(n) to be S’(m), we have

C(n, m) < 24.67n + O(log n).

Theorem T7: There exist directed acyclic (n, m)-concentrators C(n, m)
with 27n + O(log n) edges.

Proof: By taking X(m) to be the directed acyclic superconcentrator,
we have | C(n, m) | = 27n + O(log n).

Theorem 8: There exists undirected, directed, acyclic directed
(n, n/2)-concentrators with 9.75n + O(log n), 18.5n + O(log n), 19.75n
+ O(log n) edges, respectively.

; ,.Z / m OUTPUTS
Vi
/ |

n INPUTS /

d
N ¥ =~ s/l
C(n,m)

Fig. 7—A construction for C(n, m) for m > (2/3)n.
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Proof: We can construct undirected, directed, acyclic directed
(n, n/2)-concentrator by taking S” in Fig. 8 to be S([n/2]), $([n/2])
and S([n/2]), respectively. We can then obtain the desired bounds.

V. GENERALIZERS

An n generalizer can be constructed as follows (see Ref. 6 and Fig.
9):

|G(n)| <3/2n +|G(n/2)| +|S(n)| + | S[n/2D) |.
Using Theorems 1 to 4, we have the following:

Theorem 9: There exist n-generalizers with 61.5n + O(log n) edges.

Theorem 10: There exist directed n-generalizers with 111n +
O(log n) edges.

Theorem 11: There exist directed acyclic n-generalizers with

118.5n + O(log n) edges.

Vi. NONBLOCKING GRAPHS

A k-access graph G(n, m, k) is a graph with n inputs, m outputs
having the property that, for any given set S of vertex-disjoint paths
connecting inputs to outputs, an input vertex which is not in S can be

—_— ]
-— .

I
,/’ | | in/21 ouTPUTS
-~

|
-
-
n INPUTS ﬁ R //J
le s -
| -~

-~
-~

|
.
L Cin,n/2)

Fig. 8—A construction for C(n, n/2).

b -
i |
n INPUTS | \\\ I n OUTPUTS
| |
AN I
e _ ___/_l
AN L
A\ 1

Gin)
Fig. 9. A construction for G(n).
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Fig. 10. A construction for M (n).

connected to k different outputs by paths not containing any vertex in
S. If k is greater than or equal to m/2, a k-access graph is also called
a major-access graph. A nonblocking graph with n inputs and n outputs
can be built by combining a major-access graph G(n, m, k) and its
mirror image.

We now construct a major access graph by using the B’'(n, t, a, 8) in
Lemma 2 by a method similar to that in Ref. 6.

Let M(n) denote a major access graph with n inputs, at most f(n)
= 11n + 17 log: n outputs, constructed as shown in Fig. 10.

M (n) will be a 2/3 f(n)-access graph if we take B’ to be B(f([n/4]),
4, 13/33, 25/33). We note that B’ has 20f([n/4]) edges. The total
number of edges in M(n) is

| M(n)| = |4M([n/47) | + 220[n/4] + 340 log, n/4
< 27.4n log; n + O((log n)*).

We will prove by induction on n that M(n) is a 2/3 f(n)-access
graph. For any given set S of vertex-disjoint paths connecting inputs
to outputs in M(n), let x denote an input vertex not in S. Suppose x is
an input of M’ which is a copy of M([n/41). We can connect x to 2/3
f([n/4]) output vertices of M ([n/4]) by paths not containing any vertex
in a path in S, which join a vertex of M’ to some output of M". Thus
x is connected to about 13/33 of the total number of inputs of B’ which
are not in S. Thus x is connected to 25/33 of the number of outputs of
B’ of which at most n vertices can be in S. Therefore x is connected to
2/3 of the number of outputs of B’ by paths not containing vertices in
S. Therefore M(n) is a (2/3) f(n)-access graph and we note that M(n)
is, in fact, a one-sided nonblocking graph. We have the following:

Theorem 12: There exist one-sided nonblocking graphs with 27.5n
log: n + O((log n)*) edges.

Theorem 13: There exist directed acyclic nonblocking graphs N(n)
with 55n log, n + O((log n)*) edges.
Proof: The proof follows immediately from
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|N(n)| < |2M(n)|.

We note that, if we choose the size of M(n) more carefully, say,
M(n) having 10.9n + Of(log n) outputs, we can, in fact, show that
| N(n)| < 54.5n log: n.

VIl. REMARKS

In this paper we prove the existence of various graphs by noncon-
structive combinatorial probabilistic arguments. Margulis® gives an
explicit construction for a sequence of bipartite graphs in which one
bipartite graph satisfies the property required in Lemma 1 for given n,
a, b, a, or in Lemma 2 for given n, «, 8, t. However, he could not
determine which one in the sequence is the bipartite graphs we need.

We remark that the bounds in Theorems 1 to 4 are the best possible
under the conditions proven in Lemma 1 (by choosing a = 7, b = 5).
We also note that all the bounds would be improved if we can improve
the bound on x in Lemma 1 or 2.

In this paper, we deal with various graphs which represent corre-
sponding switching networks. In the graph representation of a switch-
ing network, a point corresponds to a “line” and an edge corresponds
to a “crosspoint.” (The reader is referred to Ref. 2 for detail.) There-
fore, the number of edges in the graph corresponds to the number of
crosspoints which is a major part of the cost for a switching network.
For example, the bounds we proved in Theorem 12 provide an estimate
for the number of crosspoints of a nonblocking network. We summarize
our results in Table 1.

We remark that Ofer Gabber and Zvi Galil have recently found
explicit constructions of linear size concentrators and superconcentra-
tors. They proved the existence of an n-superconcentrator with 273n
edges constructively by a complicated analytical argument. In fact, the
constant 273 can be lowered to 262.

Table |
Undirected Directed Acyclic directed

One-sided supercon- 17.5n + O(log n) 35n + O(log n)

centrator
Superconcentrator 18.5n + Of(log n) 36n + O(log n) 38.5n + O(log n)
Concentrator 14.75n + O(log n)  24.67n + O(log n) 27n + Ollog n)
(n, n/2)-concentrator | 9.75n + O(log n) 18.5n + O(log n) 19.5n + O(log n)
Generalizer 61.5n + O(log n) 111n + O(log n) 118.5n + O(log n)
One-sided nonblock- | 27.25n log, n 54.5n log: n

ing graph
Nonblocking graph 54.5 nlogs n 54.5n log: n 54.5n loga n
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