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Transform Domain Motion Estimation

By J. A. STULLER and A. N. NETRAVALI
(Manuscript received March 21, 1979)

This paper introduces an algorithm for estimating the displace-
ment of moving objects in a television scene from spatial transform
coefficients of successive frames. The algorithm works recursively in
such a way that the displacement estimates are updated from coeffi-
cient to coefficient. A promising application of this algorithm is in
motion-compensated interframe hybrid transform-DPCM image cod-
ing. We give a statistical analysis of the transform domain displace-
ment estimation algorithm and prove its convergence under certain
realistic conditions. An analytical derivation is presented that gives
sufficient conditions for the rate of convergence of the algorithm to be
independent of the transform type. This result is supported by a
number of simulation examples using Hadamard, Haar, and Slant
transforms. We also describe an extension of the algorithm that
adaptively updates displacement estimation according to the local
features of the moving objects. Simulation results demonstrate that
the adaptive displacement estimation algorithm has good conver-
gence properties in estimating displacement even for very noisy im-
ages.

. INTRODUCTION

The coefficient-recursive algorithm described in this paper estimates
the displacement of objects in a television scene. It is a generalization
of a pel-recursive displacement estimation algorithm recently intro-
duced by Netravali and Robbins."* Coefficient-recursive displacement
estimation has potential application in hybrid transform-ppcm® inter-
frame image coders of the type discussed by Reader,” Roese,® and
Jones.” The performance of a hybrid transform-ppcM interframe coder
using coefficient recursive motion compensation is described in a
companion paper.®

Before defining the coefficient-recursive displacement estimation
algorithm, it is useful to first describe pel-recursive displacement
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estimation. Let I(x:, £) denote the intensity of a scene at the kth
sample point x; of a scan line, and let I(x;, ¢ — 7) denote the intensity
at the same spatial location in the previous frame. If the scene consists
of an object that is undergoing pure translation, then, neglecting
background,

I(xx, t) = I(xx — D, ¢t — 1), (1)

where D is the displacement of the object in one frame interval . Pel-
recursive displacement estimation attempts to estimate D by minimiz-
ing the squared value of the displaced frame difference,

DFD(xx, D) = I(x¢, t) — I(xx — D, t — 7), (2)

recursively with k using a steepest descent algorithm of the form:
Dk+1 = Dk —lhe Vﬁk[DFD(xk, Dk)]2, (3a)

where Vy, is the two-dimensional gradient operator with respect to D.
Carrying out this operation in (3a) and using (2) yields

Di+1 = Dy — € DFD (x4, Di) VI(x — Dy, t — 1), (3b)

where V = V., is the two-dimensional spatial gradient operator with
respect to horizontal and vertical coordinates x; and x; in x = (x;, x2)7:

VI(xp — Dit = 1) = I(x, t = 7)}x=x,-B, (4)

Superscript T denotes transpose of a vector or matrix. The pel-domain
interframe coder of Netravali and Robbins predicts intensity I(x;, t)
by the displaced previous frame intensity I(x; — Dy, ¢ — ) using
interpolation for nonintegral D;. If the magnitude of the prediction
error exceeds a predetermined threshold, the coder transmits a quan-
tized version of DFD (x;, D) and address information to the receiver.
Both receiver and transmitter then update D, according to (3b) using
this quantized version. Netravali and Robbins? found that a coder
using this algorithm consistently obtained bit rates that were 30 to 60
percent lower than those obtained by “frame-difference” prediction,
which is commonly used in interframe coders.

In an interframe hybrid transform-ppcM coder,”” individual frames
of video are partitioned into blocks having dimension N, rows by N.
columns, and a two-dimensional transform is performed on each block
to produce a set of coefficients. The transform coefficients of the gth
block of the present frame are predicted by the corresponding coeffi-

1674 THE BELL SYSTEM TECHNICAL JOURNAL, SEPTEMBER 1979



cients of the gth block of the previous (reference) frame and, if the
prediction error is sufficiently high, the quantized prediction errors are
transmitted to the receiver. These quantized errors add as correction
terms to the coefficients predicted by the decoder, which inverse-
transforms the result to obtain the decoded image. This process repeats
with both coder and decoder predicting the transform coefficients of
the next frame by the coefficients of the decoded frame, as illustrated
in Fig. 1. In this type of codec, data compression is achieved both by
the redundancy reduction implicit in the prediction process and by the
fact that some coefficients can be reproduced with low precision (or
totally omitted) without visibly degrading the reconstructed image. An
advantage of interframe hybrid transform-ppcM coding over conven-
tional (3-dimensional block) interframe transform coding® is the fact
that the hybrid coder requires only a single frame of storage while the
conventional transform coder requires many.

In a motion-compensated hybrid transform-pPcM coder of the type
envisioned (Fig. 2), the nth coefficient of the gth present-frame block
would be predicted by the nth coefficient of the displaced gth block of
the previous frame where the displacement is a recursively updated
estimate of frame-to-frame translation of the moving object. In this
paper, we introduce and analyze a displacement estimation technique
that operates recursively on coefficients in a manner analogous to the
way (3) operates on pels.

Section II of this paper defines the coefficient-recursive displace-
ment estimation algorithm for any real linear transform and gives
illustrative simulation results using a separable 2-row by 8-column (2
x 8) transform block. A statistical analysis of the algorithm is given in
Section III. In the analysis of Section III, a single frame is modeled as
an image drawn at random from a stationary and ergodic ensemble of
images. This random sample is assumed to be undergoing pure trans-
lation from frame to frame. An important result of this analysis is
stated in Assertion 3 of Section 3.2, which says that, under certain
conditions, the convergence properties of the coefficient-recursive dis-
placement estimation are independent of the transform used. Section
ITI presents simulation results that support this claim using Hadamard,
Haar, and Slant transforms. Section IV describes an adaptive version
of the coefficient-recursive algorithm and presents simulation results
that indicate that this version can be used to some advantage in
displacement estimation for noisy images. Ilustrative simulation re-
sults are shown here using a 2 X 4 cosine transform block.

The algorithms discussed in this paper are local in nature and, as
such, can estimate the individual frame-to-frame displacements of
several objects that may be present in the television scene. However,
we emphasize that all results presented here apply to objects undergo-
ing pure translation; other types of motion are applicable to this study
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to the extent that these can be approximated by pure translation over
the spatial dimensions of a transform block. Background uncovered by
moving objects is also ignored throughout this paper. In spite of the
approximations involved, simulation results to be described in Ref. 8
show that the coefficient-recursive displacement algorithm studied
here can be substantially beneficial when used in an interframe hybrid-
pPCM codec operating on real-life scenes.

Il. COEFFICIENT-RECURSIVE DISPLACEMENT ESTIMATION

Let a field of video be partitioned into rectangular blocks of pels,
each having dimension N, rows and N. columns (N, X N.). Let x, =
(%14, X24)" denote the coordinates of the upper left-hand pel of the gth
block, where the blocks in each row of blocks are numbered from left
to right with ¢ =0, 1, 2, - - .. We number the N = N, N. pel intensities
of block g in a column-scanning fashion and denote them by a column
vector I(x,, t). Let the N component vector ¢, be the nth basis vector
of a nonzero but otherwise arbitrary real linear transform, and denote
the nth coefficient of the gth block of this transform in the present
frame by c.(q), where

Cn(q) = IT(qu t)d’n (5)
and n is numbered from 0 to N — 1. The displaced previous frame
value of this coefficient is

én(g, D) =1"(xq — D, t — 7)n, (6)

where I(x, — D, t — 7) is the column vector of intensities of the
displaced gth block of the previous frame and D is the estimated
dlsplacernent of the moving object. Computation of the elements in
I(x, — D, ¢t — 7) generally requires an interpolation among the given
previous- frame pel intensities. Prediction of c.(q) of (5) by ¢. (g, D) of
(6) results in coefficient prediction error

en(g, D) = [I(x,, t) = I(xq — D, t — 7)]¢n. (7)

The algorithm defined in this section attempts to decrease the squared-
prediction errors e(q, D)? in a coefficient-recursive manner by steepest
descent iteration of the form

ﬁn+1(q) = Dn(q) - % vf)"(q)e?;(q: r)n(q))

= D.(g) — eenlq, Dalq)) Gnlq) (8a)
forn=0,1,..., M2, M=N,andg=0, 1,2, ---, with
Dy(q) = Dy 1(g —1)
— eem1(g — 1, Du-i(g — 1))Gu-a(g — 1). (8h)
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In (8), G.(q) is the coefficient gradient vector
Gn(q) = VIT(xq - Dn(q); t— T)¢n- (9)

Note that (8) operates upon coefficients 0 through M — 1, where for
generality we assume M < N. Iteration in (8) progresses as follows.
The initial displacement estimate of the gth block (g > 1), Do(g) is
formed by updating the final displacement estimate Dy-1(g — 1) of
the previous block as in (8b). The next displacement estimate of the
gth block D, (g) is formed from (8a) with n = 0. Iteration progresses in
the gth block by (8a) withn =1, 2, ..., M — 2, resulting finally in
displacement estimate Dy-,(g) which, when updated in (8b) (with
g — q + 1), forms the initial displacement estimate Do(q + 1) of block
g + 1. This iteration procedure continues along all horizontal blocks of
raster. The procedure is started in the ¢ = 0 block with an arbitrarily
chosen initial displacement estimate Do(0) followed by iterations of
(8a) forn=20,1, ---, M — 2 and g = 0. In the sequel we assume that
Do(0) is zero.

The envisioned motion-compensated interframe hybrid transform-
DPCM coder transmits a quantized version of coefficient prediction
error e,(g, D(g)) to the receiver whenever the magnitude | enlq, D(q) |
exceeds a threshold, thereby enabling the decoder to update its dis-
placement estimate D.(g) as in (8) as well as correcting its prediction
éa(g, Da(g)) of coefficient c,(q). Both encoder and decoder use the
updated displacement estimate in predicting the next coefficient, and
the process continues. A simplified block diagram of the system that
omits the thresholding operations is given in Fig. 2.

In the sequel, it is convenient to rewrite (8) in a form that explicitly
describes the iteration convention. This can be done by defining a
single index i,

i=gM + n; i=012 --- (10a)

that equals the total nur_nber of iterations of (8) that have occurred in
iterating from Do(0) to D.(q). Quantities ¢ and n are related to i by

n=((z)) (10b)
q = [[]], (10c)

where we use the notation ((i{)) to denote i modulo M and [[i{]] to
denote the integer part of i/ M.

Using (10), we set D; & D, (q) and rewrite (8) as

Divi = Di — eeay([[1]), D) Gan([[i1]) (11)
with = 0, 1, 2, ... Note that the Netravali-Robbins pel-recursive
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displacement estimation algorithm (3b) is a special case of (10) that
results for a transform “block” having dimension 1 pel by 1 pel and
single “basis vector” ¢o = 1.

We emphasize that recursions (8) and (11) were derived with the
objective of decreasing the squared coefficient prediction errors of a
hybrid transform-ppcM codec. As shown in Section III, coefficient
prediction error is related to displacement estimation error (approxi-
mately) by a dot product between the displacement estimation error
vector and vector Gn(g) that describes the spatial rates of change of
the coefficient estimate é.(g, D.(g)) with respect to small displace-
ments of the block. Therefore, only the component of displacement
estimation error in the direction of G,(g) contributes to coefficient
prediction error, and it is this component that is relevant in evaluating
the performance of (8) or (11). For this reason, experimental results
given in this paper refer to the component of displacement estimation
error measured in the direction of its corresponding coefficient gradient
G (q).

Experimental illustrations of the behavior of (11) are given in Figs.
3 through 5 where the moving object was the synthetically generated
pattern of Fig. 6, displaced 2 pels in the horizontal direction each frame
interval 7. This is a radial cosine function having a radius of 60 pels,
and peak-to-peak amplitude 220 (out of an intensity range 0 to 255) at
its center, decreasing to 130 at the circumference. The period P
decreases with radial distance R starting with a period of 20 pels at
center to 10 pels at the circumference. The pattern is described
mathematically by the intensity function

f(R) = 100 exp(—0.01 R)cos(27R/P) + 128; 0=R =60, (12a)

ERROR IN PELS

0 1 1 1 1 1 1 1
0 10 20 30 40 50 60 70 80

ITERATION NUMBER

Fig. 3—Si§ng1e-line convergence results using 2 X 8 separable Hadamard transform
with e = 107",
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Fig. 4—Si‘ngle-line convergence results using 2 X 8 separable Hadamard transform
with e = 107",

ERROR IN PELS
I
- o
T

-5 | | 1 1 1u 1 0 &)

0 10 20 30 40 50 60 70 80
ITERATION NUMBER

Fig. 5—Single-line convergence results using 2 X 8 separable Hadamard transform
with e = 107"
where
P=(1- R/60.) 10 + 10. (12b)

This function is displayed on a 256 X 256 element raster in two
interlaced fields of 128 lines each. In applying (11), the spatial trans-
forms were taken over a single field with coefficient prediction per-
formed from the corresponding field separated in time by a frame
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Fig. 6—Synthetic image used in simulations. This image is described by eq. (11) of
Section II.

interval 7. Figures 3 through 5 show displacement estimation error in
the direction of the spatial gradient of the corresponding coefficient
versus iteration for a sequence of 2 X 8 blocks located 10 field lines
above the center of the figure. Iteration was initiated with a zero
displacement estimate approximately 7 pels within the pattern for
each horizontal sequence. In these examples and all others presented
in this paper, the two-dimensional transforms concerned were sepa-
rable transforms of the form"

C=VI[I]H, (13)

where C is the N, X N. coefficient matrix, [[] is the N, X N, matrix of
pels, and V and H are unitary matrices having dimensions N, X N,
and N. X N., respectively. Coefficient c.(g) of (5) is the nth column
scanned coefficient of matrix C, with [I] taken to be the gth pixel block
of the present frame. In Figs. 3 through 5, V and H were the normalized
sequency-ordered 2 X 2 and 8 X 8 Hadamard matrices of Fig. 7, and
iteration of (11) progressed through all M = 16 coefficients in a block
(i.e., M = N). Figure 3 illustrates the behavior of (11) for e = 107°, It
can be seen by inspection of this figure that displacement estimation
error tends to decrease roughly in a series of steps of 16 iterations.
Iterations 1 to 6, 17 to 22, etc., corresponding to the first few (low
sequency) vectors in {¢} tend to affect error significantly, while the
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iterations corresponding to the higher sequency basis vectors do not.
This type of behavior is scene-dependent and is investigated in the
analysis of Section III. Figures 4 and 5 illustrate convergence for
increased values of e. In general, convergence rate increases gradually
with increasing € up to a point after which oscillations occur. Conver-
gence to within 0.5-pel error was achieved for this particular example
in two or three iterations for € = 10~ while the recursion became
oscillatory (and eventually unstable as in Fig. 5) at values exceeding
this. All these results are scene-dependent and, to some extent, de-
pendent upon the row position of the sequence of blocks. Because of
this, the behavior of (11) will be examined from a statistical viewpoint
in Section IIL

lll. PROPERTIES OF COEFFICIENT-RECURSIVE DISPLACEMENT
ESTIMATION

The displacement estimation procedure defined by (8) is a nonlinear
recursion relation whose dynamic behavior is complicated by the fact
that the error e,(g, D.(g))? is generally a multimodal function of
D..(¢), having global minimum at D,(g) = D and local minima else-
where. Convergent solutions to eq. (8) can, therefore, exist at displace-
ment estimates other than the true displacement D. Subsequent anal-
ysis will restrict consideration to the case in which the displacement
estimate is sufficiently close to the true displacement that e*(g, D) can
be approximated as a quadratic function of D — D. Under this restric-
tion, the anomalous solutions can be ignored, and (8) reduces to an
approximately linear stochastic recurrence relation.

Section 3.1 derives the linearized approximation to (8) and the
associated quadratic error expression. The dynamic behavior of the
coefficient-recursive displacement estimator is analyzed in Section 3.2.
An important result of this section is that, for € sufficiently small, the
block-to-block convergence rate of mean displacement estimation error
resulting from (8) is independent of the transform used for any unitary
transform.

0353 0353 0353 0353 0353 0353 0353 0353
0353 0353 0353 0353 — 0353 — 0,353 — 0.353 — 0.353
0707  0.707 0353 0.353 — 0.353 — 0.353 — 0,353 — 0.353 0.353 0.353
0353 0353 — 0353 — 0353 0353 0.353 — 0.353 — 0.353
0.353 — 0.353 — 0353 0.353 0353 — 0.353 — 0.353 0,353
0.353 — 0.363 — 0353 0.353 — 0353 0353 0353 — 0.353
0353 — 0353 0353 — 0353 — 0.353 0.353 — 0.353  0.353

(a) (b)

Fig. 7—Sequency-ordered Hadamard matrices. (a) 2 X 2. (b) 8 X 8.

0.707 — 0.707

TRANSFORM DOMAIN MOTION ESTIMATION 1683



3.1 Linear analysis

Assume that the pel intensities are samples of an object that is
undergoing pure translation D from frame to frame as in (1) so that,
neglecting background,

For Euclidean norm | D,(g) — D || sufficiently small, eq. (7) becomes,
by Taylor’s expansion about D — D(q), to a linear approximation

€n (q; Dn (Q)) = [I(xq - D: t— T) - I(xq - Dn(Q), t— T)]T¢n
= Gr(g) Au(q), (15)

where G (q) is given by (9) and A,(q) is the displacement estimation
error A,(q) = D.(g) — D. Using the approximation in (15), we can
approximate the squared coefficient estimate error by

ex(g, Dn(g)) = Al(q) [Gx(q) G7 (g)]Ax(g), (16)
which is a quadratic function of the horizontal and vertical components
of A.(q).

In terms of approximation (15), (8) assumes the form
Anii(g) = [U — € Gn(gq)Gr(g)]An(g) (17a)
with

Ao(g) = [U — € Gu-1(g — 1)Gir-1 (¢ — 1)]JAm-1(g — 1), (17b)
where U is the 2 X 2 identity matrix. Similarly, (11) becomes

Aivr = [U — € Gn([EIDGTn([[1D]A;, i=0,1,---, (18)

where A; A A, (q).

Considering the image as a random process, (18) is a stochastic
recurrence relation. Equations similar to, but somewhat simpler than,
(18) have appeared in the problem of adaptive tap gain adjustment of
automatic channel equalizers. Unfortunately, a complete statistical
description of the behavior of these simpler equations has not yet been
obtained. The difficulty in analyzing these equations is that their
solution depends upon products of matrices that are statistically de-
pendent. It has been found, however, that useful approximate results
can be obtained by treating the dependent matrices as if they were
actually independent.” We use this method in Section 3.2 to analyze
(18). As shown in Section 3.2 and Appendix A, there is some analytical
justification for this approach because of certain properties of the
transforms conventionally used in image coding. Further justification
is given in the asymptotic analysis of Appendix B.
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3.2 Statistical analysis

This section studies the behavior of mean displacement estimation
error under the assumption that the sequence of gradient vectors
Gy ([[{]]) entering (18) are statistically independent (“independence
assumption”). Note that, if the sequence of G, ([[{]]) in (18) are
independent, then A; will be independent of the matrix premultiplying
it. This follows from the fact that A; is determined by the G, ([[/1]),
J < i, which, by assumption, are independent of Gy([[i]]). The
ensemble mean of (18) (denoted by the overhead bar) then becomes

A =[U - eGiGlin)Ai, i=0,1,2,---. (19)

In writing (19), we have used (9) and assumed a stationary ergodic
image ensemble. The matrix G, (c;-)Gr,,l (g) in this case will not depend
upon x, — D,(g) and is written simply as G,Gis). The matrix
GGl is periodic in { with period M, having values sEeciﬁed by
G.G, are

G,,G,.i, n=20,1, ... M — 1. Alternative expressions for
G,GI = VIT(x) iV TI(x) (20a)
and
G.GT = | ;K10 o: i (20b)
e ¢:Rl.2¢n ¢IR2¢H. ’

where R, R> and R,: are auto- and cross-correlation matrices of I/dx,

and I/dx2, and
vr=| 2 9
a0x, ’ dx2 ’

Equation (19) can be interpreted in terms of an optimum (Wiener)
displacement estimator. Consider the mean square nth coefficient
prediction error resulting from a given displacement error A,(g) = 8.
To the linear approximation of (15), this is

F.(8) = 8"G.G/38, (21)

which is a quadratic function of the components of 8. A steepest
descent algorithm for arriving at the minimum of the F,(§) for
n=01---, M—1is

85+1 = [U - EG(tHiGHfH]air 1= 0; 19 2, et (22)

Comparing (19) and (22), we see that, under the assumption of mu-
tually independent G ([[¢]]), the mean displacement estimation error
A, satisfies a recursion (22) that minimizes mean-square prediction
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error of coefficients n =0, 1, --., M — 1. The convergence of (19) and
(22) is established below in Assertion 1.

We emphasize that recursion (19) describes the progression of mean
displacement estimation error under the assumption of independent
G:»([[£]]). The conventional approach to transform image coding is
to choose basis vectors {¢,} so that the transmitted coefficients (or
the prediction errors of these coefficients) are as mutually “indepen-
dent as possible.”'? This is best achieved by choosing the basis vectors
{¢n} of the transform to be the eigenvectors of the covariance matrix
(i.e., the Karhunen-Loeve basis) of the block of pels. This basis results
in transform coefficients that are linearly independent (uncorrelated)
within the transform block, although dependency among coefficients
from block to block may persist. Other transforms, such as the cosine
or Hadamard transforms can be viewed as practical approximations to
the Karhunen-Loeve transform. Assuming that the Karhunen-Loeve-
basis vectors result in coefficient gradients that are linearly indepen-
dent as well, this would help justify the application of independence
theory in describing the behavior of (18). In Appendix A we show that
this assumption in indeed correct for the stochastic image model most
widely applied in image processing analyses. Some insight into the
behavior of (18) for dependent Gy ([[Z]]) is given by the analysis in
Appendix B.

Assertion 1: Under the independence assumption, mean displace-
ment estimation error in (19) converges to zero if and only if the
eigenvalues of ¥ are inside the unit circle, where

M-1

¥ = n[E[0 [U - €G.GI]. (23)

In our product notation (23), matrix U — €GoGy is premultiplied by
U — eG\GY, etc.

Proof: This can easily be shown by iterating (19) fromi=0toi=qgM
+n-—-1

_ qgM+n—1
Ajrin = [ l];[0 [U- EGufnGam]leo

= [U - GGn_lG:_ll e [U— GGoGg]‘I'qao (24)

Therefore, the behavior of A .. as g increases depends upon the
matrix ¥ as ¥7 and Assertion 1 follows. QED

A useful sufficient condition for convergence of (19) is given in the
following.
Assertion 2: Under the independence assumption and for any nor-
malized set of basis vectors, mean displacement estimation error in
(19) is bounded by
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1&greenll < k7| Aol (25)

where k, (0 < k < 1) is the maximum eigenvalue of matrices U —
eG.GI,n=0,1,--- M—1, and
2
I0<e< . (26)
N[ (al/3x1)® + (aI/ax2)]

Proof: Using the Schwartz inequality on (24):

1 Bortn| SN U = €GarsGIa | -+ | U — €GaGE [l ¥ (1% Aofl,  (27)

where || (-) || for a symmetric matrix is the magnitude of the maximum
magnitude eigenvalue. Similarly,

M-1

1< [I |U - eG.G1I]| . (28)
n=0

The eigenvalues of U — €G,G have the form 1 — e\’ where the A",
i = 1, 2, are the (nonnegative) eigenvalues of G,GT. Let k be the
largest of the norms in (28) and let A .« be the largest of the A\ for
0 <n < M — 1. Then excluding trivial cases, each matrix norm in (27)
and (28) will be less than unity for 0 < € < 2/Amax, and at least g of the
norms in (27) is k. Therefore,

|| A garen |l < 7| Ao || (29)

for 0 < € < 2/A max-

Assume that Amax corresponds to G.GT for n = k. Then using (20)
and the fact that the eigenvalues of a nonnegative-definite matrix are
bounded by the trace of the matrix gives the chain of inequalities

Amax < Tr[GkGZ]
< ¢piRidr + dFRocr

< N[(aI/ax))® + (aI/ax2)?] . (30)

Therefore € in the range (26) guarantees 0 < € < 2/A nax Which, in turn,
guarantees (29). QED

Allowing for variations in scene statistics, a conservative choice of
€ would be somewhat less than 2/An.x. In this event, the following
assertion applies.
Assertion 3: If iteration is taken over all coefficients (i.e., M = N) of
any complete orthonormal basis {¢.}, and if € is small compa. red to
2/A max Where Amax is the maximum eigenvalue of matrices { G,
= 0. , N — 1}, then the block-to-block convergence of A
independent of the particular basis set used. Furthermore, the con-
vergence rate is independent of block dimensions N, and N..
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Proof: The block-to-block dynamics of A; is determined by the matrix
¥ of (23). For 0 < € << 2/A nax, and for M = N, ¥ can be approximated

by

N-1
Y=U-¢€Y G.GI. (31)
n=0
From (20a),
N-1 N-1
Y G.GI = VI"(x) [ ¥ ¢n¢3’J V7I(x). (32)
n=0 n=0

But since {¢,} is a complete orthonormal set, Ya=o ¢a¢1 = U, the N-
by-N identity matrix, and

¥=U-eVI"x)VTI(x), (33)

which is independent of {¢,}.
The expectation in (33) is given by

Y (@I/ax:)(8I/axs) ¥ (al/axs)®

where the summations are over the N pels of a block. By stationarity,
the expectation of each term in (34) is a constant and (33) becomes

¥ =U— eNT
~ (U - el)V, (35)
where
o | @/’ (21/0x:) (3l /ax2) (36)
(8l /ax,) (8l foxz) (I /axz)* :

Therefore g block-to-block iterations of (19) premultiplies A, by (U
— €")?", which is a function only of the total number of iterations gN
and is independent of basis and block dimension. QED
Experimental evidence of Assertion 3 is shown in Figs. 8a to 8d.
Figure 8a shows the relevant component of displacement estimation
error versus iteration number averaged over the interior of the moving
cosine pattern of Fig. 6 for a pel-recursive (unity) 1 X 1 transform and
a 1 X 8 Hadamard transform of the type in Fig. 7b using € = 5 X 107°.
For each scan line entering the average, iteration of (11) was initiated
with displacement estimate D = 0 just inside the circumference of the
pattern. In spite of the disparity between block size and transform
type, the block-to-block convergence rate (measured over spans of
eight iterations) of the Hadamard estimator closely matches that of
the pel-recursive estimator. Although Assertion 2 concerns average
displacement error, we found that it often applied as well to individual
scan lines as shown in Figs. 8b to 8d. These figures show the relevant
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Fig. 8—Convergence results for various transforms with e = 5 X 107, (a) Pel-recursive
and Hadamard 1 x 8 transform average relevant displacement estimation errors vs
iteration number. (b) Pel-recursive and Hadamard 1 X 8 transform relevant displacement
estimation errors for scan line through middle of moving cosine pattern. (¢) Hadamard
1 X 4 and 1 X 2 transform relevant displacement estimation errors for scan line through
middle of moving cosine pattern (continued).
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Fig. 8—(continued) (d) Haar 1 x 8 and Slant 1 x 4 transform relevant displacement
estimation errors for scan line through middle of moving cosine pattern.

component of displacement estimation error versus iteration number
for the scan line running through the middle of the moving cosine
pattern. Hadamard 1 X 2, 1 X 4, 1 X 8, Slant 1 X 4, Haar 1 X 8, and
pel-recursive estimators are all seen to have similar convergence rates
with € = 5 X 10™° when measured over the appropriate span of
iterations. This also applies to the cosine transform (not shown), which
was found to behave similarly to the Hadamard transform.

Figures 9a to 9c compare convergence of the 1 X 8 Hadamard block
and pel-recursive displacement estimators as € increases. The image
data in this case was also the middle scan line of the moving cosine
pattern. It can be seen that the convergence rates of the Hadamard
and pel-recursive estimators are in rough agreement for increasing €
up to the point where oscillations occur (Fig. 9¢). Note that oscillations
occur in the Hadamard estimator before occurring in the pel-recursive
estimator. This behavior was found to be the case for other transform
types as well.

Although the block-to-block convergence rate of transform domain
displacement estimators is substantially independent of the transform
type, this is clearly not the case for within block convergence rate, as
evidenced by Figs. 8 and 9. An explanation of this is given from the
form of ¥ in (23), in which particular basis vector ¢, contributes a
matrix factor of the form [U — €G,GZI]. This contribution of ¢n to
reducing average displacement estimation error depends upon the
eigenvalues of .G, which are a measure of the statistical “match”
between ¢, and the spatial rates of change of the scene.

It is possible to vary € with n (e = €,) to partially compensate for
differences among the eigenvalues of matrices G,G!. However, this
technique can also make the algorithm move sensitive to noise that
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may be present in the image data. Section IV gives another approach
that appears to have particularly good noise rejection properties.

IV. ADAPTATION

This section shows how the coefficient displacement estimation
algorithm of Sections II and III can be improved by adaptively updat-
ing the displacement estimate according to the local features of the
image. This is a technique that is not possible for the pel-recursive
estimation. Adaptation in displacement estimation is motivated by the
recognition that single frames of video are neither noiseless nor best
described as stationary processes. Simulation results using noise-cor-
rupted versions of the radial cosine object of Fig. 6 demonstrate that
an adaptive algorithm of the type described here can have better
convergence properties than either pel-recursive or nonadaptive coef-
ficient recursive displacement estimation.

4.1 Preliminaries

The potential advantage of adaptation in (8) can be seen by consid-
ering the simple example of the moving edge scene of Fig. 10. This
edge has constant slope g = 3.8 intensity increments per pel-to-pel
distance over a width of 50 horizontal pel intervals, and velocity 2.7

Fig. 10—Synthetic moving edge pattern.
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pels horizontal per frame. Within the width of the edge, G.(q) of (9)
is given by

Guta) =558 & o @

For a sequency-ordered basis set {¢.}, Gx(g) will be zero for all ac-
basis vectors with the result that the corresponding displacement
estimate updates will be determined solely by noise that may be
present on the edge. Updating displacement estimate by iterating over
these basis vectors can only increase estimation error. The dc-basis
vector (1/ vN ), however, results in

Gnlq) = (g '{)ﬁ) , (38)

which provides signal-dependent terms in (18) proportional to VN.
This suggests that, for this example, it may be better to iterate
repeatedly (say M times) over the dc-basis vector than to sequence
through the M-basis vectors. We have not been able to analyze
rigorously the performance of such dc-basis iteration on the moving
edge in the presence of additive noise. In Appendix C we assume that
the additive noise is white with power o2, and invoke certain assump-
tions regarding the independence of noise terms entering the recur-
rence relation. The result is the following approximate expressions for
the horizontal component of displacement estimation error mean 5a(i)
and steady-state variance o%.

7a(i) ~ A1 = B); i=0,1,2, .- (39a)

2
0} ~ 2a(l + a)B’ {2B L T i ;Ea} : (39b)
where 8 = eNg? and « = o5/Ng*.

Not too surprisingly, expressions (39) indicate that, for constant rate
of convergence (i.e., constant f), the steady-state displacement esti-
mate error variance decreases inversely with block size N. This points
out a possible advantage of transform domain displacement estimation
compared to pel-recursive displacement estimation where the dc-basis
block size is constrained to have dimension N = 1. Figures 11 through
13 show experimental and theoretical behavior of the horizontal com-
ponent of displacement estimation error for pel-recursive and 2 X 8
dc-basis iteration on the moving edge. In obtaining the sample mean
7a(Z) and sample variance 64, averages were taken over 128 field lines.

Experimental and theoretical results are seen to compare favorably
in the pel-recursive estimator case (Fig. 11) at a signal-to-noise ratio
(sNR) = 45 dB. In Fig. 12, which describes displacement errors in the
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Fig. 11—Horizontal component of displacement estimation error for noisy moving
edge (SNR = 45 dB) using pel-recursive displacement estimation. e = 0.02.
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Fig. 12—Horizontal component of displacement estimation error for noisy moving
edge (SNR = 35 dB) using pel-recursive displacement estimation. € = 0.02.
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pel-recursive estimator at 35 dB, there is approximate agreement
between theory and experimental data. This is also the case for the 2
X 8 dc-basis results of Fig. 13. From the experimental data in Figs. 12
and 13, it can be seen that the “dc-iteration” is more effective than
pel-recursive estimation in combating the effects of noise in the dis-
placement estimation of a moving edge.

The theoretical and experimental behavior of steady-state displace-
ment error variance oi(®) versus f8 is plotted in Fig. 14 for pel-recursive
displacement estimate for the moving edge pattern with sNr = 35 dB.
The range 1 < B < 2 represents oscillatory convergence with o4(c)
increasing rapidly as B approaches 2. Note the trade-off between
convergence rate and accuracy evidenced by Fig. 14 and eq. (39a).

4.2 Adaptation algorithm

The adaptive displacement estimation algorithm proposed here
updates the displacement estimate (8) using that basis vector ¢mo
whose projection onto the computed coefficient gradient of the refer-
ence frame has maximum amplitude. At each iteration step (n, g), the
magnitude of the coefficient gradient vector | Ga(g) || is computed from

3.0

SNR =35 dB

2.0
, M (i) (THEORETICAL)

7/
/" 9 (i) IMEASURED)
Y4

- @ A (i) (MEASURED)
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HORIZONTAL COMPONENT OF DISPLACEMENT
ESTIMATION ERROR IN PELS
5
T

5 (i) (SINGLE SAMPLE}—="

| | 1 1
0 5 10 15 20 25
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-1.0

Fig. 13—Horizontal component of displacement estimation error for noisy moving
edge (SNR = 35 dB) using 2 X 8 dc basis iteration. € = 0.00125. The factor € was adjusted
in this experiment to result in an identical average convergence rate as that of Figs. 11
and 12.
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the noisy previous frame data for each vector in the given basis set
{¢m; m =0, 1, --- M — 1}. The particular basis ¢~ maximizing this

quantity is then used for the displacement update.

Figure 15 compares the performance of adaptive and nonadaptive
displacement estimation using a separable 2 X 4 cosine transform and
= 107" for the test image of Fig. 16. This image consists of the moving
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Fig. 14—Estimation error standard deviation vs rate parameter B: pel-recursive at

SNR = 45.
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Fig. 15—Displacement estimation errors for noisy synthetic image of Fig. 16.
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object of Fig. 6 corrupted by additive white Gaussian noise at 20-dB
SNR. Also shown are results for pel-recursive displacement estimation
at e = 10~° and a convergence-rate-optimized € = 4 X 107°. The pel-
recursive scanning pattern was chosen according to Fig. 17 to match
the rate of progression of the pel-recursive algorithm along individual
scan lines to that of the 2 X 4 transform algorithm. (For example, after

\
\
ITERATION __ _INTERLACED
PATH LIIN ES

Fig. 17—Pel-recursive scanning pattern applicable to test results of Fig. 15.
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40 iterations, both pel-recursive and coefficient-recursive displacement
estimators will have traversed 20 columns of a given scan line.) All
results of Fig. 15 are averages of relevant displacement error over the
interior of the moving object. It can be seen from Fig. 15 that the
adaptive 2 X 4 cosine displacement estimator has clearly superior
average error convergence rate than either the pel-recursive or non-
adaptive cosine displacement estimators. No choice of € was found
that could improve the convergence rate of the pel-recursive estimator
beyond that shown for € = 4 X 107°. We also computed the experimen-
tal standard deviations of relevant displacement estimation error.
Nonadaptive cosine and pel-recursive estimators had experimental
error standard deviations of 0.50 and 0.51, respectively, at € = 107",
The error standard deviation of the adaptive coefficient-recursive
displacement estimator was 0.54, while that for the rate-optimized pel-
recursive estimator was an inferior 0.67.

The above results demonstrate a potential advantage of adaptive
coefficient-recursive displacement estimation over both pel-recursive
and nonadaptive coefficient-recursive displacement estimation. It re-
mains to be established, however, whether the adaptive scheme of this
section will improve the performance of a motion-compensated hybrid
transform-DPCM coder.

V. SUMMARY

This paper has introduced a coefficient-recursive displacement es-
timator having potential application in motion-compensated inter-
frame hybrid transform-pPcM image coders. The convergence of the
mean displacement estimate to the true displacement was established
in Assertions 1 and 2 using assumptions that are supported by the
analyses of Appendices A and B. Assertion C described conditions
under which the rate of convergence of mean displacement estimation
error is independent of the transform block size and type. An extension
of the coefficient recursive algorithm was given in Section IV and
shown by simulation to have improved convergence properties in the
displacement estimation of noisy objects.

APPENDIX A

This appendix verifies a statement in Section III concerning the
orthogonality of coefficient vectors G.(q) n =0,1, --- M — 1 for a
separable Markov image model. This model is described as follows.
Let I.... denote the intensity of the pel located in the mth row and nth
column of the raster. Then for the Markov image model treated here:
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Im.nIi,j = Gzp;m‘ilan7j|: (40)

with 0 < |p,| < 1,0 <|pc| < 1.In (40), 0” is the intensity variance, and
p-and p. are the correlation coefficients of adjacent pels between rows
and columns, respectively. If the pel intensities in a N, row by N.
column block are indexed in column scan fashion and denoted by a
column vector I, then it can be shown that

I.I" = oM, x M., (41)

where X denotes the Kronecker product,'” and M, and M. are, respec-
tively, N, X N, and N. X N, Toeplitz matrices having {jth entries

[M.); = F'!"i-ﬂ
and

[Mc]; = pt™". (42)

Covariance models of this form have been widely applied in image
processing studies.""®* Expressions for the eigenvalues and eigenvec-
tors of M, (or M.) are given in Ref. 18.

We now apply this model to a study of the covariance properties of
G.(g),n=0,1, --- M — 1. From (9) we have

AT O Ridm SR 124m
Grl@)Gnle) = [d:IR,zd»m dnR2bm } ' “3

As described in Section III, matrices R,, R, and R,, are auto- and
cross-correlation matrices of the spatial derivatives of I. For the
discrete image model specified by (40), we compute these spatial
derivatives as the corresponding spatial differences. For example,
derivatives in the row direction of the raster are given by
(Imn = Imn—1)(Iij — I ;—). Expanding this product and using (40) gives

(Im.n - Im.n—l)(Ii.j - Ii,j*i) = UZPIrm—iI [acplcn_jl + Bcsnj]s (44)

where a. = 2 — p:' — pe, B = pz' — pc, and 8, is the Kronecker delta
function. By comparing (40) and (41) with (44), we have

R| = UZM,- X [aCMC + ﬁc U], (45)

where U is an identity matrix.
Similarly, with a, = 2 — p;' — p, and B, = pr' — p:

R; = o*[a;M, + B, U] X M. (46)
and

Rz = oM, + B U] X [ac M. + B.U]. (47)
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As shown in Ref. 13, the eigenvectors of a Kronecker product A X
B have the form

where x4, k= 1,2, - - -, N, denotes the components of the eigenvector
x' of A and y’ denotes an eigenvector of B. Since any vector is an
eigenvector of an identity matrix, it follows that the eigenvectors of
R,, R,, and R, above are in fact identical to the eigenvectors of the
image covariance matrix (41). The normalized eigenvectors form a
complete orthonormal set and are considered to be the optimum bases
for transform coding image blocks modeled by (41). Selecting {¢.} to
be this set of eigenvectors, it follows that all terms in the matrix of
(43) will be identically zero for n # m, which establishes the statistical
orthogonality of the G.(q).

APPENDIX B

This appendix shows that mean displacement estimation error for
dependent G.y([[{]]) is approximately given by recursion (19) for
small €.

Iterating (18) yields

Ay = (I:[o [U - eGin(LFIDG T, n([[j]])])AO- (48)

The matrix product premultiplying A, in (48) is a function of . Taylor’s
expansion of this function about € = 0 yields (for fixed i):

A= (U— €[] Gtu))([[J']])G:T(‘jn([[j]]))An +0(%)  (49)
J=0
so that

EH] = (U— € i G((j))G?(‘jn)Ao + (_)(62). (50)

Jj=0

On the other hand, repeating the steps of (48) and (49) on (19) gives
(for the independent Gy, ([[Z]]) case):

A= (I— €Y G((;‘)JG(T;jn)En + O'(eY). (51)

J=0

Comparing (50) and (51) we have the result that mean estimation
errors for the dependent and independent cases are equal to an
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approximation O(e?) — O’ (€?), which can be neglected for sufficiently
small e.

APPENDIX C

This appendix briefly sketches the steps leading to (39).
We consider the successive frames of video to consist of a moving
edge contaminated by independent noise:

I(x,7) = g(x— D) + w(x, )
Ix, t—7) =g+ wx, t—1), (52)

where the noise w(., -) is white with respect to both pel-to-pel and
frame-to-frame dimensions. An analysis similar to that leading to (18)
then yields

A1 = Ai — €[Ga(q) + VW (xqin — Di.e — Tl
(GI(q)A: + WT(xin, 8)n — WT(xgipy — Dy, t = 1)¢a].  (53)

We consider iterating (53) repeatedly, using dc-basis vector ¢ =
1/ VN and G.(q) given by (38). Let A(i) denote the displacement error
in the horizontal direction at iteration i; Z,(i) denote the difference of
the two noise terms in the final term of (53); and Z:(i) denote the
horizontal component of the noise gradient term in (53). Then the
horizontal component of (53) becomes

Al + 1) = A(i) — eNg*[A(i) + Z:(i)/VNgl[1 + Z:(i)/VNg]. (54)
Defining 8 = eNg®, y =1/ VNg and rearranging terms yield
Ai + 1) =[1 - B+ yZ:()]A(D) = By(1 + yZ2(1))Z:(i).  (35)

Note that each noise term in (55) is multiplied by a factor y which,
for given B, decreases as 1/VN. Neglecting dependencies between
{Z2(i)}, and {Z\(i)}, this equation is linear with respect to input Z;
and output A. The solution has the form

-1 i

A(D) = A0) [T [1 = B0+ yZ())] + kE h(i, k)Z:(k),  (56)
j=1 =0

where h(i, k) is the response of (55) for A(0) = 0 and input Z,(i) = 8:.
By assuming that {Z,(i)} and {Z:(i)} are mutually independent white
sequences, the mean and variance of A(Z) can now be derived by a
tedious but conventional analysis, resulting in (39).
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