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Three different receiver arrangements are studied, all of which
incorporate provision for joint adaptive echo cancellation and gain
adjustment to provide two-wire full-duplex data communication. In
each case, the canceler consists of a data-driven transversal filter,
but the architectures differ in the way the gain adjustment is provided.
For all architectures, we investigate the properties of a joint adaptive
LMS algorithm based on the receiver’s decisions on far-end data
symbols and present appropriate computer simulations. We show
that an arrangement where the gain control adjusts the reference
level after the decision detector output performs significantly better
than AGc schemes attempting to adjust the level of the analog signal.

. INTRODUCTION

High-speed full-duplex data communication on a single channel is of
immense practical interest. Data transmission via the DpD telephone
network and the possibility of future digital subscriber lines are two of
the most challenging applications. Techniques for achieving this goal
fall in essentially three categories: Frequency Division Multiplexing
(FpMm), Time Division Multiplexing (TpM), and echo cancellation. Only
echo cancellation allows full-bandwidth continuous use of the channel
in each direction. This scheme therefore offers the highest potential
bit rates.

The transmitter and receiver are jointly coupled to a two-wire line
via a hybrid. In an environment of changing channel characteristics
(e.g., switched network), the hybrid balancing, if fixed, will at best
provide a compromise match to the channel. In this mode, a vestige of
the local transmitted signal, leaking through the hybrid, can be ex-
pected to interfere with the incoming signal from the far-end simulta-
neously operating transmitter. Figure 1 shows the system under dis-
cussion, and Fig. 2 models the signals entering and leaving a two-wire
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Fig. 2—System model (without canceler).

full-duplex modem. The local transmitter transmits a sequence of data
symbols {b(n)} at T-second intervals as a PAM data waveform. The
received waveform r(f) consists of a PAM data waveform with data
symbols {a(n)} transmitted also at T-second intervals from the distant
end, plus noise, plus the interfering vestige of the locally transmitted
signal. This interfering signal (which we shall refer to as the echo
signal or echo component) may have power comparable to or even
greater than that of the desired far-end signal component.

Decisions on the {a(n)} are made by quantizing the sampled re-
ceiver output to %1 in the case of binary data, or to one of M values in
the case of M-level data. A typically encountered echo component
arising in a system with a conventional compromise balanced hybrid
will cause an unacceptably high error rate.

To remove the interfering echo component, the local receiver must
perform echo cancellation; that is, estimate the echo signal and sub-
tract it from the incoming signal prior to making decisions, as shown
in Figs. 1 and 3a. The estimate is a transversally filtered version of the
local data symbols {b(n)}* as proposed in Ref. 1. If the {b(n)} are

* The {b(n)) may be different from the user data since they are defined to include
such operations as differential encoding or scrambling.
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binary, the implementation is simple, requiring only additions and
subtractions. The transversal filter tap coefficients {pn} should ap-
proximate the samples of the impulse response of the combination of
the local transmitter and the echo path.

Equivalently,' the tap coefficients should be chosen to minimize, in
a mean-square sense, the measured receiver error signal which is the
difference between the actual receiver output y(n) and the ideal
output. This error is available at each sampling instant of the received
data. The subtraction of the (decision-directed) reference {d(n)} is, of
course, what makes it possible to adapt quickly even in the presence
of doubletalk. Such adaptation allows tracking time-varying compo-
nents of the echo channel or coping with larger call-to-call variations
in a switched system. However, since the level of the received signal is
likely to vary significantly under those conditions, it is essential that
proper scaling be done when the error signal is computed. Such scaling
involves a gain adjust device which must operate jointly and adaptively
with the echo canceler. This paper deals with this joint adaptation
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Fig. 3—Receiver structure with echo canceler and automatic gain control. (a) Overall
system showing various locations for AGc function. (b) Basic acc functions in one of
above marked locations A, B, C, or D.
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problem. Although we perform our study for a system operating at
baseband, our results can be applied to passband structure via appro-
priate redefinitions.

As shown in Fig. 3a, the error e(n) is the difference between the
receiver’s decision d(n) (assumed correct) and the receiver’s output
y(n). But if the end-to-end channel gain is &, y(n) consists of a a(n)
plus possibly noise and uncanceled echo. Intersymbol interference is
not treated in this study. It is expected to be of secondary concern in
typical subscriber cable systems, but we realize that it cannot be
neglected for high-speed ppD applications. The error e(n) in the
absence of gain control would contain the term (o — 1)a(n), which is
relatively large if « differs significantly from unity. Therefore, a small
steady-state mean-squared error, with consequent minimal fluctuation
of the canceler tap coefficients {p.} and low error rate, is possible only
if the nonunity gain « is compensated for by an AGC adjusted to
provide a gain approximating 1/a. The gain of the Acc, denoted w,
will be considered to be adjusted jointly with the echo canceler tap
coefficients to minimize the mean squared error.

Shown in Fig. 3a are four possible locations, A, B, C, and D, for
placement of the aAcc whose functional form is depicted in Fig. 3b.
Since D is identical to B as long as the signal is binary and the
quantizer is ideal, only three variations need to be examined. The
corresponding three receiver architectures, labeled naturally A, B, and
C, may differ significantly in their adaption speeds. The main theme
of this paper is the convergence of each of the three receiver arrange-
ments, and how it is influenced by channel parameters, such as the
relative powers of echo and far-end components.

The study concludes that arrangement C which features an auto-
matic reference control (ARc) at the quantizer output offers the fastest
convergence rate, together with the simplest implementation. Arrange-
ments A and B may suffer slower rates of convergence due to coupling
interaction between the Agc and echo canceler tap coefficient adap-
tation. However, for arrangement B, a simple step-size modification is
proposed, which on the average decouples the AGc and echo canceler
adaptations, thus improving its convergence rate. Readers interested
in C, the “best” arrangement, may skip Sections III to V, which deal
with A and B.

Mention of earlier related work is in order at this point. Adaptive
echo cancellation without a jointly adapting Acc or equalizer for two-
wire full duplex data communication has been treated in Refs. 1 to 4.
References 1 and 4 treat essentially the echo-cancellation system
proposed here, assuming « is known, and thus omit the Agc. This type
of scheme, in which the echo canceler’s input consists only of local
data symbols, offers obvious simplicity of implementation. In Ref. 2, a

1596 THE BELL SYSTEM TECHNICAL JOURNAL, SEPTEMBER 1979



voice-type canceler is investigated, and Ref. 3 discusses an external
data-driven structure which cancels the entire waveform by computing
compensation samples at a high enough rate.* Reference 5 summarizes
work reported in Ref. 1 and 3, and discusses a further receiver arrange-
ment comprising an adaptive echo canceler and adaptive equalizer for
mitigating end-to-end linear distortion. Arrangement A considered
here, the so-called “convex canceler,” is a special case of this, since an
AGC can be considered a one-tap linear equalizer. Reference 6 describes
an echo-cancelling receiver structure incorporating decision feedback
equalization. Finally, our arrangement C combined with decision feed-
back equalization has recently been proposed in Ref. 7.

Il. SYSTEM MODELING

We shall examine the convergence properties of several adaptation
strategies for the three receiver arrangements. Each follows a decision-
directed approach; AGc and echo canceler parameters are adjusted
once per symbol interval, based on the observed error between the
unquantized receiver output and the decision d(n) (for arrangements
A and B) or wd (n) (for arrangement C). For purposes of analysis, the
decisions d (n) are assumed equal to the actual data symbols a (n). The
convergence of decision-directed adaptive receivers making small ad-
justments at each iteration has been found to be negligibly affected by
occasional decision errors.

The analysis is based on a simple linear model of the end-to-end
channel and leakage paths: the signal r(¢) entering the receiver from
the hybrid will be written as

r(t) =Y a(n)ga(t = nT) + Y b(n)gs(t — nT) + v(2). (1)

The first summation represents the signal from the far end, and ga (¢)
is the end-to-end channel impulse response, including receiver front-
end filtering. The second summation is the echo signal, and gs(¢) is
the impulse response of the echo path. The symbol »(¢) is a waveform
of additive white noise. The symbol interval T is equal in both
summations. This is tantamount to assuming that the near- and far-
end transmitters are synchronized in clock frequency.’

Decisions d(n) are made by quantizing samples of the receiver’s
output to =1 in the case of binary data. The end-to-end channel
impulse response and the phase of the receiver’s sampling clock are
assumed ideal, so that no intersymbol interference is present in the
samples of r(t); i.e. the nth sample is of the form

* In Ref. 2, the canceler input is the sampled transmitted waveform. In Ref. 3, it is
the {b(n)}.
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r(nT) =a(n) a + ¥ b(k)Bn-r + v(nT), (2)
*

where a = g4(0), ga(nT) =0forn#0, and B8, = gg(nT'). In subsequent
notation, we write r(nT) and v(nT) as r(n) and v(n), respectively. The
binary (x+1) data symbols {a(n)} and {b(n)} are statistically inde-
pendent. The noise samples »(n) are assumed to be independent with
zero mean and variance o°.

. ARRANGEMENT A

We recall from Fig. 3a that arrangement A forms the receiver output
as the sum of the echo canceler and Acc outputs. The receiver output
is a linear function of the echo cariceler tap coefficients and AGc gain.
Thus the mean-squared error at the receiver’s output is a convex
quadratic function of the receiver parameters, and a simple gradient
algorithm can be used with confidence to adjust the parameters jointly.
As mentioned before, if the AGc is replaced by an adaptive linear
equalizer, the arrangement A generalizes to the jointly adaptive echo
canceler equalizer structure discussed in Ref. 5.

Given an AGc gain w and a set of N echo canceler tap coefficients
{ pr}i=1, the receiver’s unquantized output sample y(n) is

y(n)=wr(n) + ’i prb(n — k). 3)
Define the N-dimensional vectors
P b(n — 1)
p= - and b(n) = ,
p.N b(n - N)

and the (N + 1)-dimensional vectors in partitioned form as

w r(n)
c= _ij and z(n) = b |

Then (3) is written more compactly as
y(n) = c'z(n), (4)

where 1 denotes transpose. The vector c is the set of receiver param-
eters to be adaptively adjusted, and z(n) is the current set of inputs
stored by the receiver.

The ideal output at time nT would be a (n), and the error is
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e(n) = y(n) — a(n). (5)

The expression for the mean-squared error is

(e(n)?) =c’ Ac — 2¢'x + 1, (6)
where A is a (N + 1) by (N + 1) covariance matrix
A = (z(n)z(n)’, (7
and x is an (N + 1)-dimensional vector
x = (a(n)z(n)). (8)

By rewriting (6) as
(e(n)?) =(c—A'x)A(c—A7'x) + 1 —x'A'x, 9

and recognizing that A by definition is positive semidefinite, it is clear
that the mean-squared error has its minimum value

elm=1-x'47x, (10)
when
c=Cop=AT'x. (11)

Using the independence assumptions for the data symbols and noise,
and the expression (2) for r(n), we readily find that A can be written
as

Aoo:’ﬁ*
A= |-, (12)
B I
where
Aw = (r(n)’) =+ ¥ Bi + o, (13)
k
B
B= (14)
Bn

denotes the sampled echo impulse response truncated to N samples,
and I is the N-dimensional identity matrix. Note that, because of the
truncation involved in defining 8, | 8|* < Y B%. Similarly, the vector

X is
Q.
x=1|0]|, (15)
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where 0 is an N-dimensional all-zero vector.

Adaptive adjustment of the receiver parameter vector ¢ can be
accomplished by employing the Widrow-Hoff LMs algorithm® just as
in adaptive mean-square equalization.” The current value of ¢ at time
nT, e¢(n), is then updated according to

c(n + 1) = e(n) — y e(n)z(n), (16)

where y is a constant step size. The average value of the correction
term —ye(n)z(n) is proportional to the negative of the gradient of the
mean-squared error with respect to c¢. Expression (16) portrays the
joint updating of the AGc gain and echo canceler taps:

wn+1) = w(n) — ye(n)r(n). (17a)
p(n + 1) = p(n) — ye(n)b(n). (17b)

Adaptation of the echo canceler alone, according to (17b) with w
fixed at 1, has been analyzed by Mueller." The rate of convergence of
p(n) to B for an optimum choice of y was shown to be determined only
by the number of taps, rather than by the detailed characteristics of
the echo path.

The joint updating algorithm (16) resembles equalizer adaptation
algorithms, whose convergence behavior has been extensively stud-
ied.” ' The convergence of the more general version of (16), for joint
echo cancellation and equalization, was discussed in Ref. 5. These
theoretical studies have rested on an untrue assumption of indepen-
dence of successive equalizer or canceler contents. However, a more
rigorous analysis in Ref. 16, in addition to experimental results, sug-
gests that the independence assumption does not cause serious error.
The aforementioned studies have revealed that, for a fixed step size
coefficient y, the speed of convergence is largely governed by the
spread of the eigenvalues of the matrix A defined by (12). Without
elaborating on the details, we can say that a ratio of maximum-to-
minimum eigenvalues which is close to unity leads to relatively fast
convergence, while slow convergence is associated with a maximum-
to-minimum eigenvalue ratio which is much greater than unity. If the
step size coefficient y is chosen to effect a judicious compromise
between speed of convergence and noise due to random tap fluctua-
tions, then a system with a small eigenvalue spread would typically
converge in a number of iterations equal to a small multiple of the
number of adjustable tap coefficients.

The N + 1 eigenvalues of matrix A defined by (12), (13), and (14)
are readily found to consist of N — 1 unit eigenvalues plus Amax and
Amin, given by
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Amax =21+ + "+ ¥ Bi
min k

Vi+o*+ 0+ 380 — 4"+ + 3 Bi—|B|D], (18)
k k

where the plus is associated with Amax and the minus with Amin. It is
straightforward to show that

Amin < 1 < Amax.

It is interesting to point out that expression (18) for Amax and Amin
coincides with the expressions for bounds on the maximum and mini-
mum eigenvalues found in Ref. 5 for the more general canceler/
equalizer combination. Table I shows values of Amax and Amin for various
values of (a” + ¢°) (the power of the far-end signal component plus
noise) and ¥ B (the power of the echo component), assuming ) Bi
= | 8% so that perfect echo cancellation is possible.

The ratio Amax/Amin increases rapidly as o + o decreases. Thus a
system with a far-end signal component which is much weaker than
the near-end echo component would be expected to converge much
more slowly than one with a relatively strong far-end component. This
sensitivity of the convergence behavior to the relative strengths of far-
end and near-end signal components was also noted in Ref. 5 for the
canceler/equalizer system.

IV. ARRANGEMENT B

In this arrangement, combining the received signal and echo canceler
output is done ahead of the aAcc. This may appear as a more natural
arrangement, since the intent is to cancel the echo component at the
sampling instants before they enter the portion of the receiver devoted
to estimating @ (n). The local data symbols are processed by the echo
canceler and AGc in tandem; the output is not a linear function of the
canceler tap coefficients and AGc gain, and the mean-squared error is
not a convex function of these receiver parameters. We can thus call
this second arrangement a “nonconvex canceler.”

The receiver output is

Table |
Far-End Signal Power Eigenvalue

Plus Noise Power Echo Power ——— Ratio
o + o |81* Amin Amax Az/A

0.1 1.0 0.0487 2015 414

0.35 1.0 0.1598 2.190 13.7

0.50 1.0 0.2187 2.281 104
1.0 1.0 0.3820 2.618 6.85
2.0 1.0 0.5858 3.414 5.83

1.0 2.0 0.2680 3.732 13.9
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y(n) = wlr(n) + p'b(n)]. (19)

With r(n) modeled as in eq. (2), the mean-squared error for given
values of w and p is

(e(n)®) = ((y(n) = a(n))®)
= wz[a"'+§kjﬁ?, +d +|p|*+2p'B]
—2wa+ 1, (20)
which can be written as
(e(n)?) = (wa—1)+|p + Bl'w
+w2[oz+);b’i—|ﬂlz]. (21)

The final term in brackets represents the effect of additive noise and
uncancellable echo, if any. Expression (21) can also be written as

(e(n)®) = (a® + &) (w — wop)® + W?|P — Popt|* + a%:—sg (22)
where
62502+)k:ﬁ£—|p|2 (23a)
and
Wopt = ?%? (23b)
Popt = =8 (23c)

are the parameter values which minimize (e (n)?). In practical systems,
&8 is small and wop ~ 1/a.

It is instructive to plot contours of constant mean-squared error in
the plane whose coordinates are the AGc error

ewEW— wnpt (24)
and canceler error magnitude
{ep|=|p_popt|» (25)

respectively; i.e., curves satisfying
1
a’el + (ew + —)2 lep|* = MsE (26)
(44

(assuming § is negligible), for various positive values of MSE. Such
contour plots are shown in Figs. 4 and 5 for values of the end-to-end
gain a of 0.5 and 1. Each plot shows 10 contours for MSE ranging from
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0.2 to 2.0 in steps of 0.2. In each case, there is a unique minimum
(e = | €| = 0), but the MsE surface is not convex. Moreover, it exhibits
a kind of trough running along the line e, = —1/a. The floor of this
trough slopes very gradually toward the origin for large values of | e, | .
The shape of the contours for this system differs radically from the
ellipsoidal contours that are characteristic of the convex system. Those
contours are plotted in Figs. 6 and 7 for the same values of MSE and of
«a and | B| = 1, as for the nonconvex system. The ellipses are plotted
for convenience for error values mapped onto the two eigenvectors p,
and ps of the matrix A. The eccentricity of the ellipse is the ratio Amax/
Amin. Similarly, the convex system would converge slowly, starting from
zero-valued parameters if « is small (implying Amax/Amin => 1).

A gradient procedure (LMs algorithm) for jointly adjusting w and p
should, with proper choice of step size, converge to the optimum
parameters. It would, on the average, follow a path perpendicular to
the contours that it crosses. Thus very slow convergence of the
nonconvex system would be expected if the initial value of all param-
eters is zero; i.e., starting at e, = —(1/a), |e,| = | B].

An LMs algorithm for the nonconvex system is obtained by making
the correction terms proportional to the negative gradients of the

:
\\\“

-3 | 1 1 1
-3 -2 =1 0 1 2 3
AGC ERROR

Fig. 6—Contours of constant mean-squared error for arrangement A (a = 0.5, | 8| = 1).
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Fig. 7—Contours of constant mean-squared error for arrangement A (a =1, || = 1).

squared error. The resulting joint Acc/canceler updating algorithm
would then be

w(n + 1) = w(n) — ye(n)(r(n) + b(n)'p(n)) (27a)
p(n + 1) = p(n) — ye(n)w(n)b(n), (27b)

where
e(n) = w(n)(r(n) + b(n)'p(n)) — a(n). (27¢)

V. REDUCING COUPLING EFFECTS ON THE NONCONVEX SYSTEM'S
ADAPTATION

Combining (27b) and (27c) results in the following algorithm for
updating p(n):

p(n + 1) = p(n) — yw(n)*b(n)[r(n) + b(n)'p(n)]
+ yw(n)a(n)b(n). (28)
It would be desirable to reduce or eliminate the coupling effect of w(n)

in this algorithm. Consider modifying the algorithm by replacing the
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constant step size y with y/w(n)?, where the second y is a constant.
Then (28) becomes

Y
w(n)

p(n + 1) = p(n) — yb(n)[r(n) + b(n)'p(n)] + a(n)b(n). (29)
The average value of the correction term for fixed p(n) is then
— vy[B + p(n)], which is the same as the average correction term for
an adaptive echo canceler with no Acc. Thus by the simple choice of
step size y/w(n)?, we can on the average remove the influence of Acc
adaptation on echo canceler adaptation. The only remaining coupling
stems from the term [y/w (n)]a(n)b(n), whose mean value is zero. The
mean of the correction term in (27a) for updating the Acc gain is

—y(e(n)(r(n) + b(n)'p(n)))
= —ya(w(n)a — 1) — yw(n) | p(n) + B|*
—yw(n)(o® + 3 Bi — | B|?), (30)
k

in which coupling from the echo canceler adaptation is evident in the
middle term yw(n) | p(n) + 8| There is no simple way to eliminate
this coupling, apart from observing that p(n) + B is the error in the
echo canceler’s tap coefficients, which eventually dies away.

In summary, we propose the following algorithm for jointly updating
the Acc gain w(n) and the echo canceler tap coefficient vector p(n):

w(n + 1) = w(n) — yie(n)(r(n) + b(n)'p(n)) (31a)
= _ 2
p(n + 1) = p(n) ) e(n)b(n), (31b)

where y; and y, may be different constants. Algorithm (31b) is, on the
average, uncoupled from (31a) and equivalent to the echo canceler
algorithm operating in solitude with step size y.. The latter algorithm
has been examined by Mueller,' who determined an optimum step size
y equal to the reciprocal of the number of taps, and demonstrated
favorable convergence characteristics, independent of echo path char-
acteristics. The choice of y; would best be made by experiment. While
the above decoupling modification was cnly heuristically motivated,
the simulations reported in Section VI confirm its usefulness.

VI. ARRANGEMENT C

Arrangement C, shown in Figs. 3a and 8a, simply omits the Acc for
purposes of making a decision on the binary symbol a(n); the quantizer
input, which is the algebraic sum of the channel output sample and
the echo cancel :r output, is hardlimited to +1. Note that, if the {a(n))}
are binary symmetric (a(n) = £1) data symbols, then the attenuation
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of the end-to-end channel is irrelevant and no explicit AGC is necessary
for making a decision. This comment also applies to other baseband
data symbol formats such as diphase, and also to phase-modulated
signals, in which case the data symbols a(n) are numbers lying on the
unit circle in the complex plane.

To enable adaptive adjustment of the echo canceler in arrangement
C, the receiver’s decision d(n) is scaled by an adjustable coefficient w
before being subtracted from the unquantized output to form the error
which is used to update the tap coefficients. The coefficient w thus has
the role of an automatic reference control (ARc), rather than an AGc,
since it adjusts the receiver’s reference signal to a level commensurate
with the attenuation of the end-to-end channel. It is adjusted jointly
with the echo canceler tap coefficients. Moreover, it multiplies a
discrete-valued data symbol, not a continuous-valued channel output,
and so digital implementation of the receiver is simplified.

This receiver arrangement can also be applied to multiamplitude
data formats as shown in Fig. 8b. In the multiamplitude case, the
quantizer compares the analog signal with reference levels which
require proper scaling in relation to its amplitude. The quantity w
provides this information and can thus directly serve as a reference
input to the quantizer as shown in Fig. 8b. A less attractive alternative

(3 o

yin) HARD
LIMITER

2(n}

(a)

e(n)

(?}
yin) MULTI-LEVEL : 3(n)

QUANTIZER

(b)

Fig. 8—Decision-making and automatic reference control in arrangement C. (a) Case
of binary data symbols. (b) Case of multilevel data symbols.
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would be to multiply the input signal by 1/w to bring it to a constant
level (as with the Acc schemes) and then apply it to a quantizer with
a fixed reference.

Given a set of N echo canceler tap coefficients {p:} ", the receiver’s
output sample y (n), which will subsequently be quantized to form the
output data symbol d(n), is

N
y(n) =r(n) + ¥ pib(n — k). (32)
k=1

Ideally, the coefficients {px} i1 should approximate the negatives of
the echo channel’s impulse response samples { 8} i1, so that the echo
is canceled and y(n) consists of aa(n) plus noise.

The desired value of y(n) is wa(n), where w is an estimate of the
end-to-end channel gain a. The error between the actual and desired
receiver outputs, measured at the nth symbol intervals, is then

N
e(n) =r(n) + ¥ peb(n — k) — wa(n). (33)
k=1

The ARc parameter w implicitly assumes the role of an Acc, multiplying
the desired receiver output data symbol rather than the receiver
input.* The parameters {p;} and w are to be jointly adjusted with the
aim of minimizing the mean-squared value of e(n).

For notational compactness, define the N-dimensional vectors

P=[pyps -, pnl' (34a)
and
b(n) = [b(n — 1), b(n — 2), -+, b(n — N)T, (34b)
and the (N + 1)-dimensional partitioned vectors
c=[p:-w] (35a)
and
u(n) = [b(n) : a(n)]". (35b)
Then the unquantized receiver output is written
y(n) = r(n) + p'b(n), (36)
and the error is
e(n) = r(n) — cu(n). (37)

Squaring both sides of (37) and taking the expectation, we find that
the mean-squared error is

* In arrangements A and B, the ideal value of w equals 1/a; in arrangement C, this
value equals a.
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(e(n)?) = o” + |€[’, (38)

where e = ¢ — s and

s = (r(nu(n)) = (B—) (39)
o

The minimum mean-squared error is ¢, and the excess mean-squared
error at time nT is defined as | e(n)|*, where

€(n) =c(n) —s (40)
is the difference between the tap coefficient vector ¢(n) at time nT
and its optimum value s.

A simple gradient algorithm for updating c(n) is
c(n + 1) = e(n) + ye(n)u(n), (41)

where y is a constant. (Note from expression (37) that e(r)u(n) is
proportional to the gradient of e(n)® with respect to c.) We shall
examine the convergence of the excess mean-squared error (| e(n)*),
as in earlier studies, assuming that successive input vectors u(n) are
statistically independent. Subtracting s from both sides of (41), we
have

e(n + 1) = e(n) + ye(n)u(n). (42)
Since the N + 1 components of u(n) are %1,
|u(n)]* =N+ 1. (43)
Also the average of the inner product
(e(n)"u(n)e(n)) = (e(n)u(n)(r(n) — u(n)'e(n)))
= (e(n)'(s — c(n)))
= — (le(m)™), (44)
where we have used the assumption that u(n) is independent of
u(n — 1), and therefore of ¢(n). Using (38), (43), and (44), after squaring
and averaging both sides of (42) we get an equation describing the
evolution of the excess mean-squared error
(letn + D) = (|em))H[1 -2y + Yy (N+ 1]+ viN + 1)o®.  (45)
This expression is readily iterated to yield
(|le@)®) =[1—2y+ YN + 1)]"(] €(0))*)
+ y(N+1)e’[1-(1-2y+ YAN + 1)1
2—-y(N+1) )

(46)
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To guarantee convergence, the constant y must be such that

0<7<

N+1°

Then the first term in (46) is a transient, which eventually decays to
zero and the steady-state value im (| e(n)|*) is

n—o

v(N + 1)o?
s N+ 1) (47)
The steady-state total mean-squared error is this plus ¢? or
20°
li e, 48
Jm e = s N D 48)

Expressions (46) and (47), describing the evolution of the excess
mean-squared error of arrangement C, are of the same form as those
derived in Ref. 1 for the echo canceler alone, with no acc. The only
difference is that (N + 1) replaces N (as a result of the extra Acc
coefficient w). Note that the convergence rate of (e(n)®) is independent
of all channel parameters, in contrast to the dependence of the con-

0}

15

20 -

DECIBEL REDUCTION IN MEAN SQUARED ERROR

25 -

30 I | 1 |
0 100 200 300 400 500

TIME INSYMBOL INTERVALS

Fig. 9—Reduction of mean-squared error. Arrangement A: wo = 1, y = 0.01, 16 taps.
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Fig. 10—Reduction of mean-squared error. Arrangement A: a = 0.316, y = 0.01, 16 taps.

vergence raies of arrangements A and B on the relative echo and far-
end signal powers.

The choice of the adaptation coefficient y reflects a compromise
between fast adaptation and small steady-state mean-squared error. A
suitable choice, proposed in Refs. 1 and 11, is

_ 1
T"N+1’

which yields a steady-state mean-squared error of twice the minimum
mean-squared error o>. With this choice of y substituted in (46), we
find that the excess mean-squared error decreases toward its minimum
value (47) at a rate of 4.34/(N + 1) dB per adjustment.

Vil. SIMULATION

Computer simulations afforded a comparison of the actual conver-
gence behavior of the three arrangements. Results of these simulations
are shown in Figs. 9 through 15. In each case, the same echo channel
is used in combination with a 16-tap canceler and y = 0.01. The echo
power is normalized to unity, and the sampled echo response is
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Fig. 11—Reduction of mean-squared error. Arrangement A:

Da=0Lw =10
@ a = 0.316,wo = 3.16 ¢ Initial value of AGc is 1/a; y = 0.01, 16 taps.
@ a = 1, wo = 1

truncated after 16 samples, so that perfect cancellation could be
obtained via a set of proper coefficients. For the nonconvex arrange-
ment B, only the decoupled updating algorithm (31) has been used
since some initial runs without this modification showed convergence
problems for a variety of parameter choices.

In both arrangements A and B, a uniform, nice exponential conver-
gence seems to be the exception rather than the rule. For weak received
signals, the mean-squared error often initially reduces rapidly up to a
certain point, after which convergence can become very slow. This
problem appears to exist even in the case where the Acc is preset to
the reciprocal of the received signal. One explanation for this behavior
is that, in those cases where the initial mean-squared error is domi-
nantly caused by a misadjustment in only one loop, the overall behav-
ior at first approximates that of a system where either only w or p is
the only parameter to be adjusted. This provides a relatively fast
reduction of the initial error to the point where a joint improvement
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Fig. 12—Reduction of mean-squared error. Arrangement B: wo =1, a = 0.01, 16 taps.
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Fig. 13-Reduction of mean-squared error. Arrangement B: a = 0.316, y = 0.01, 16
taps.
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Fig. 14—Reduction of mean-squared error. Arrangement B:

Da = 0l,we = 10
® a = 0316, ws = 3.16 ; Initial value of AGc is 1/a; y = 0.01, 16 taps.
@a = 1w =1

of w and p is required. Once this situation is realized, a much slower
convergence rate is expected (as we have pointed out in earlier sec-
tions), in particular with weak received signals. In the latter case, the
value of w must become large and any inaccuracies in p are magnified.

Although we do not fully understand the dynamics of these systems,
we feel it is worthwhile to present these results to point out the
inherent problems to communication system designers. Further work
would be required to provide a more thorough insight into these
systems, but it is our feeling that this may be of more academic interest
since our analysis has already shown that arrangement C provides as
attractive a solution to the problem as one could possibly wish. This
is demonstrated in Fig. 15. Only a single curve is presented, but actual
simulations have shown that channel attenuation and initial ARC value
can be varied by orders of magnitude and all such resulting curves
would be essentially identical to the one shown in Fig. 15. The fact
that simulations tend to deliver more rapid convergence than theoret-
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Fig. 15—Reduction of mean-squared error. Arrangement C: 16 taps, y = 1/(N + 1).

ically predicted is, of course, due to the programmed “ideal random-
ness” of the data sequence used in these simulations, whereas the
analytic result is an average which includes many sequences that will
not provide convergence at all (e.g., constant zeros, ones, or a dotting
pattern).

VIil. DISCUSSION AND SUMMARY

Three arrangements of joint adaptive echo cancellation and gain
control for full duplex data transmission have been examined. Each
corresponds to a different Acc location. The third, arrangement C, has
proven superior in two respects:

(i) Its convergence rate depends only on the adaptation coefficient
and on the number of adjustable tap coefficients. On the other hand,
arrangement A suffers slower convergence as the ratio of echo power
to distant signal power increases. Arrangement B’s echo canceler can,
by proper choice of adaptation coefficient, on the average be made to

ADAPTIVE ECHO CANCELLATION/AGC STRUCTURES 1615



converge at a rate independent of channel parameters, but the conver-
gence of its gain control still depends on the gain of the forward
channel.

(¢7) Arrangement C offers simpler digital implementation; the gain
w multiplies a data symbol, instead of a finely quantized channel
output or receiver output. Multiplication in arrangement C becomes
addition or subtraction in the case of binary symbols.

Although the foregoing analyses presuppose binary data symbols,
each receiver arrangement accommodates multilevel symbols.

Severe intersymbol interference may necessitate forward equaliza-
tion. If so, arrangement A with the single coefficient w(n) replaced by
an adaptive transversal filter is necessary. This case is discussed in
Ref. 5. The favorable convergence properties and hardware simplicity
of arrangement C may be retained if adaptive decision feedback
equalization with a fixed forward equalizer is used.®’
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