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The outputs of a discrete time source with memory are to be encoded
(“quantized” or “compressed”) into a sequence of discrete variables.
From this latter sequence, a receiver must attempt to approximate
some features of the source sequence. Operation is in real time, and
the distortion measure does not tolerate delays. Such a situation has
been investigated over infinite time spans by B. McMillan. In the
present work, only finite time spans are considered. The main result
is the following. If the source is kth-order Markov, one may, without
loss, assume that the encoder forms each output using only the last k
source symbols and the present state of the receiver’s memory. An
example is constructed, which shows that the Markov property is
essential. The case of delay is also considered.

I. INTRODUCTION

The outputs of a discrete time source with memory are to be encoded
(“quantized” or “compressed”) into a sequence of discrete variables.
From this latter sequence, a receiver must attempt to approximate
some features of the source sequence. Operation is in real time, and
the distortion measure does not tolerate delays. Such a situation has
been investigated over infinite time spans in Ref. 1. In the present
work, only finite time spans are considered.

The main result is the following. If the source is kth-order Markov,
one may, without loss, assume that the encoder forms each output
using only the last & source symbols and the present state of the
receiver’s memory.

An example is constructed, which shows that the Markov property
is essential.

Il. THE MODEL
2.1 The causal structure

A source produces a random sequence X, X, - - -, X7 where for each
te(l, ..., T}, X, is a vector in n,-dimensional real space. The source
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is characterized by the sequence distribution: A given probability
measure on the Borel sets of the product space of dimension Y7, n,.

For each ¢, there is an opportunity for noiseless transmission of a
signal Y, taking g, possible values. This signal is produced from the X
sequence by an encoder. As we consider the problem in real time,
causality allows the encoder at ¢ to see only the values X, - - -, X;. The
encoders are thus characterized by functions fi: R™* ™™ — (1, ...,
q:}, Borel measurable, t =1, ..., T.

At the receiving end, the most that could be accessible at stage ¢ is
the subsequence Y, ---, Y,. However, we also want to consider the
case of limited memory, as the receiver might not be able to store this
whole sequence for large £. The model will be the following.

At t = 1, only Y, is available, and a discrete variable Z; = ri(Y))
taking m, values is stored in memory. For each ¢ > 1, the memory is
updated by

Zf=r-f(Z!—l, Yf)a t=2:"'vT_1)
where Z, takes values in {1, ---, m,;} and
re {1= . ',\”l-tﬁl} X {1) ] qt] - {1’ ] mt}

is the memory update function.
The purpose of the receiver is to generate a variable V, in R* by

Vi=g(Y),
where gi: {1, --+, g1} = R,
and for ¢ > 1
V= glZi, Y)),
where

8t {1: tr ml-l} X {ll e ql'} — R™

The interpretation of V, is that it represents an approximation to
something we wish to know at the receiving end about X,. In particular,
one may have s, = n, and consider V, as approximating X, itself.

The functional relationships described above are symbolized in
Fig. 1.

The case of full receiver memory is included in this model. One need
only identify Z, with (Y, ---, Y:) and r. with the concatenation
function “append.”

Furthermore, in this case,

t
m: =[] q-.
k=1
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2.2 The criteria

The performance of the system is defined by way of a sequence of
distortion functions. For each ¢, a Borel measurable function

Y. R™ X R — [0, o)
is given. Then
Ji = E{‘I'r(Xr, Vr)}

measures the distortion at stage ¢. It is possible that </, be infinite, but
it is always well defined, as the composition of Borel functions is Borel
and ¥, = 0.

2.3 The optimization problem

The problem to be considered is the following:

Given: The integers: T, ny, «++, n; g1, *++, gr; M1, +++, M7} 81, = * =, ST
The distribution of the X sequence.

The distortion measures ¥,, ..., ¥r.

Choose: The functions fi, - -, fr; &, -+, &1, N, - - -, rr (the latter are
redundant in the full memory case, i.e., when m; = ¢:q- - - - g, for all
#). A choice of a system of such functions will be called a “design.”
In order to:

Minimize (exactly or within €) the sum

T
J= z Jr.
=1

Fig. 1—General system.
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Remark that nothing would be gained by having </ as a nonnegative
linear combination Y c.J; (for instance, with ¢, =e™, a discount
factor) because such c¢; = 0 can simply be absorbed into the definition
of ¥,

It should be said that the freedom of having n,, q., m., s, {: depend
upon ¢ is not a matter of extra generality, but is essential to the proof
techniques used in the sequel.

A design producing the values (J1, - -+, J7) is at least as good as a

design producing (J7, -, Jr) when J, = J/ for all t € {1, --., T}.
This, of course, implies the much weaker statement that J =} oJ; < J’
= Z J}’.

A design may exist which is at least as good as any other; it is called
a dominant design. In general, however, no dominant design exists
because the set in R” of achievable vectors (), - - -, J7) does not have
a corner (J¥, .-+, J¥) such that all other points of this set lie in the
shifted orthant J, = J#, £t = 1, ..., T. Instead, the set may have a
Pareto frontier of “admissible” vectors, i.e., vectors (3, - - -, J7) such
that no vector (<, -- -, J7) is achievable that hasJ{ < J, for all £ with
strict inequality for some ¢.

2.4 Special encoder structures

The encoder f; at a specific stage ¢ > % is said to have memory structure
of order k, if there is a Borel function

Fi (1, - oo, muy) X RMwertbm {1, -+, q)
such that
fr(Xh e, X)) = ﬁ(Z:—l, Xl—k+h ey X)) a.s.

This is equivalent to the assertion that Y, is measurable on the o-field
generated by Z, 1, X;_4+1, - -, X;. In other words, the encoder elaborates
Y, using only the 2 most recent source outputs X,—+1, - - -, X; and the
receiver’s current memory Z,_,.

Ill. THE MAIN THEOREM

The sequence X, X3, - - -, X7 is said to be kth-order Markov, when,
given any block of k consecutive X, the parts of the sequence preceding
and following this block are conditionally independent. For & = 1, this
is the ordinary Markov property. Note that the kth-order Markov
property holds in a vacuous way if T'< & + 2.

Most sequences can be approximated by kth-order Markov se-
quences for sufficiently large k. If this % is small compared to T, then
the following main theorem provides a substantial simplification of the
encoder optimization problem.

Theorem 1: Suppose the source is kth-order Markov. Then, given any
design, there ts another design with the following properties:
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(i) The new design differs from the given one only in the choice of
encoders.

(it) All encoders of the new design have memory structure of order
k. (The last encoder fr can even be made to have memory structure of
order 1.)

(iii) The performance index <J of the new design does not exceed
the index of the old design.

Postponing the proof of Theorem 1 to Section V, we comment here
on its significance. It says, in particular, that for a Markov source and
a receiver with perfect memory, one need only consider encoders which
generate each code symbol Y, using only the current source symbol X,
and the past code sequence Y, Y5, - -+, Y,-1. This result is essentially
dependent on the Markov property of the source as can be seen from
the following example.

Take T=3and, fort=1,2,3,letn,=s =1, g = 2, Yu(X,, Vi) = (Xs
— V.)% Suppose the receiver has perfect memory. Suppose that the
source sequence (X, Xz, Xs) takes just eight equally probable values,
namely (13, 1, 3), (12, 1, 2), (11, 1, 1), (10, 1, 0), (—10, —1, 0), (=11, -1,
1), (-12, —1, 2), (—13, -1, 3).

At the first stage, if one considers only the minimization of <, one
has a classical quantization problem for X,. As X, takes its values in
two separate equiprobable clusters, the minimum of /, is attained by
letting Y, signal the sign of X, to identify the cluster. Then V; = £11.5
and ¢/, = 1.25. Any other choice of the first encoder yields a strictly
larger value for ;. Furthermore, Y, is already sufficient for the
attainment of «J; = 0, the second-stage receiver need not even look at
Y.. However, Y, can be used to help the third-stage receiver. If one
lets Y- signal the parity of X,, then JJ; = 0 is attainable by letting Ys
signal whether | X3| < 1 or not.

The design so obtained minimizes J, for each £ (it is “dominant”); a
fortiori, it minimizes JJ = ¥} ¢J,, giving J = 1.25. However, the second-
stage encoder does not have memory structure of order one.

Is it possible to achieve o = 1.25 with memory structure of order one
although the source is not Markov? The answer is no for, if one
changes the first-stage encoder, this alone will drive ¢/, and, a fortiori,
J above 1.25. But if the first encoder signals the sign of X; and the
second encoder must have first-order structure, then the second en-
coder is useless. Indeed, X, contains no information not already con-
tained in Y, and the receiver remembers Y. Now Y, is useless to the
third-stage receiver,i and a single binary signal Y; is insufficient to
distinguish among the four possible values of Xs. The best that can be

1 Y, = sgn X, and X; are independent.
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done is to form Y3 as in the previous design, giving /s = 0.25; hence,

J = 1.5.
The optimum design requires encoder f; to “signal ahead” features

of X, for the later benefit of receiver gis. This phenomenon is ruled out
for sources with the Markov property.

IV. TWO BASIC LEMMATA

All the results in this paper will be derived from two basic lemmata:
a “two-stage lemma” and a more complex “three-stage lemma.” Once
these are obtained, the use of induction and of the technique of
“repackaging” random variables will suffice.

4.1 The two-stage lemma

This lemma uses what is, in fact, the basic line of reasoning in Ref.
1. Consider a system with T'= 2 and any joint distribution of the pair
of random vectors (X;, X5). Observe that the content Z, of the receiver’s
memory at the beginning of stage 2 is a certain function of X;; that is,

Zl = ‘I’(-Xl),

where ¢ is a Borel function (in fact, it is the composition of f; and ry).
The second (and last) stage is characterized by the functions f; and g.
with (Fig. 2)

Y. = fo(X), X5),
Vo = ga(Z,, Yo).

Lemma 1: Given a two-stage system with a design in which f, does
not have memory structure of order 1, one can change f; (and only f)
so that it has this structure and the new design is at least as good as
the given design.

Proof: If only f is changed, then oJ;, ¢, and g» remain as given. We
have to show that, for a suitable change in f;, J> can only decrease.
Consider the function

F((Z,, X»), Y2) = u(Xs, g2(Z), Y2)).

As Y, is discrete and F is measurable (by its construction), a measur-
able function f; exists (see the appendix) such that

F((Zy, X2), [2(Z1, X2)) < F((Z, X2), Y2)
for all values of Z,, X, Y,. Hence, by the substitution
Z = ¢(X3)
Y: = fo(Xi, X)
Y2(Xz, £2(6(X1), L((X1), X2))) = ¢2(Xe, £2(6(X1), (X, Xz))
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Fig. 2—Two-stage lemma.

holds for all X,, X.. As the functions ¢, f> and f, are measurable, both
sides of the inequality are measurable. Since they are also nonnegative,
the inequality persists when taking the expectation of both sides,
whether finite or not. This establishes that /> can only decrease as

claimed.

X, X3
fa
Y
% Y
¢ 2 3
A
z z
1 ; 2 %
97
Va Vi

Fig. 3—Three-stage lemma.
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4.2 The three-stage lemma

Consider a three-stage system (T = 3) with a Markov source. Assume
that the last encoder f, already has first-order memory structure, while
f2 does not (Fig. 3).

Lemma 2: Under the above assumptions, one can replace f> by an
encoder f, having memory structure of order one, without increasing
the total cost J = J, + Jo + oJa.

Proof: The first-stage cost o/, is unaffected by changes in f; and the
effect of the first-stage design is to generate the receiver memory Z, as
a certain measurable function Z; = ¢(X;), where ¢ is the composition
ri-fi. By assumption, f; can be written in the form

Ys = fa(Z,, Xa)
where Zo = ra(Z,, Ys).
The cost incurred in the last two stages can thus be written

Yo(Xa, g2(2,, Y2))
+ (X, ga(re(Zy, Yo), fa(ra(Z,, Y2), X3)))
= F(Z,, Xz, Xs, Yz).

defining the measurable function F.
Consider now the conditional expectation

E{F(Z\, X5, X5, Y2)| X3, Xo}.

Because Xj is a finite dimensional random vector, a regular condi-
tional distribution of X; exists for any condition. In view of the Markov
property, conditioning on the pair (X, X>) is equivalent to conditioning
on X; only. Let P(dX;|X:) be a regular version of this conditional
distribution.

Then the conditional expectation under consideration can be written

f P(dXs | Xo)F(Zy, Xa, Xs, Y2),

where Z; and Y5, which depend only on the conditioning variables Xj,
X, can be treated as fixed. This integral defines a measurable function
(nonnegative and possibly extended real-valued)

G(Z,, X, Y5).

For any choice of f;, the sum /> + <J3 will be given by the expectation
of G. Note that X, enters G only by way of Z, and Y.

As in Lemma 1, a measurable function f; exists such that, for all Z,,
.Xz and Yz,

G(Zy, X3, 22, X3)) = G(Zy, X, o).
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Substituting Z; = ¢(X1), Y. = fo(X,, X5) and taking the expectations of
both sides of this inequality, implies, by the chain rule, that J> + /3
cannot increase when f; is replaced by fo.

V. PROOF OF THE MAIN THEOREM

To begin with, the situation of the last stage is always a special one,
as the following lemma shows.

Lemma 3: For any source statistics and any design, one can replace
the last encoder by one having memory structure of order one, without
performance loss.

Proof: The given T-stage system can be considered as a two-stage
system, by setting

Xl = (Xl: XQ! Y XT—l)

Xz = XT
Zy = Zr = (X))
Y.=Yr

R(X, Xs) = fr(X, Xo, -+, Xp1, X7)
g-z(ZJ, ?2) = gr(Zr, Y7)
Vi=(Vy ---, Vi)

V2 = VT
o -1
IPI(Xl, Vi) = Z lPr(Xt, Vr)

t=1
\ﬁz(xz, Vi) = IPT(XT. VT):

which amounts to a change in notation. Of course,
) T-1
ﬁ] = Z Ny,
t=1

a substantial increase in dimension. i
By Lemma 1, there exists an encoder f; which has the structure

Yo =f (20, %)

and whose use does not increase -J.. Reverting to the original notation,
this corresponds to an encoder fr with the structure

Yr= fT(ZTfl. XT)

whose use does not increase /7. As the other ./, are unchanged, the
lemma is proved.
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The above fact is the starting point for the proof of the main theorem
with & = 1.

Lemma 4: The main theorem holds for k = 1. That is, for ¢ Markov
source and any design, one can replace the encoders by appropriate
encoders having first-order memory structure without increase in the
expected cost <J.

Proof: Using backward induction, one can first replace fr by fr, as in
Lemma 3. Now suppose the encoders for stages t + 1, ¢t + 2, ..., T
already have memory structure of order one. It must be shown that f;
can be replaced by f, with such structure, without increase in expected
total cost. To this effect, the T-stage system can be considered as a
three-stage system, in which the third stage has first-order memory
structure and the source is Markov, as follows. Set

t—1
X] = (Xl, .. ',Xf—],) (thus, ﬁ] = E n,-)
i=1

Z-l =Zia= ¢‘(Xl)
Xz = Xt
Y’z = Y.n

Zo=2Z,=rsZ:, Ys) = riZ-1, Y1)
Vz =V= é’."z(Z—], ?2) = gi(Zi-1, Y)
%(Xz, ‘72) = lPr(Xr. V:)

T
X~3 = (X£+h Yy XT): (n.‘ﬂ = E n:')
_ T
Y;:= (Yr+1, sy, YT), (é'} = H q,)

T
Va = (Viyr, ---, Vi) =g-3(Z~2, Ya), (53 = E S;).

i=t+1

The latter relation follows from the fact that each Vy, § > ¢, is given by
£0(Zg-1, Yy) and the variables Z;—,, Y, are known functions of Z,, Y,,,,
Yi42, - -+, Y7 using the memory update functions. Then

T
Ja3(Xs, Vi) = HFE Yo(Xs, Vo).

As the encoders for stages ¢t + 1, ..., T already have first-order

1446 THE BELL SYSTEM TECHNICAL JOURNAL, JULY-AUGUST 1979



memory structure, their effect is to define an encoder
Y’a = fa(Z2, X’l)

because each of the Yy, 6 > ¢, included in Y; is given by a function
fi(Zs1, X¢) and the variables Z,-,, X, are known functions of Zy, Xs; ie.,
of Z,, Xi41, - -+, Xr using the memory update functions and recursion.
The given encoder at stage ¢ has the general form Y, = filXh, Xs, -+,
X,_,, X;) which translates to

¥s = (X, Xe).
The new source (X, X, Xs) is Markov since X; = (X, - ++, Xi1) and
X, = (X,s1, -+ - Xr) are conditionally independent given X: = X,, by the
assumed Markov property of the original source.
Thus, the three-stage system satisfies the assumptions of Lemma 2,

and f; can be replaced without loss of total expected cost by f2, which
has the structure

}-’2 = ;‘Z(Z_l, Xz)-
This translates to an encoder
Y. = ft(zr—l, X))

for the original problem. Since the notational changes do not influence
total cost, the inductive step, and therefore the lemma, is proved.

Note that the above induction is carried out down to ¢ = 2 because
fi cannot help but have the desired structure, albeit trivially so.

Turning to the case of general &, observe that the encoders for the
first k stages have memory structure of order k in a trivial way,
whatever their design, and for the last stage, Lemma 3 applies. Thus
the conclusion of the main theorem holds for T' < k + 1 trivially, as
does the assumption on the source. Hence, assume T=Fk+ 2.

The essence of the proof is a “sliding block” repackaging of the
source variables.

Let X, = (Xy, Xev1, +++, Xewn-1)
for t=1,...,7 where T=T-k+1=3.
Then the sequence (X, Xs, - - ., X7) is Markov. For the variables, let
Y= (Y, ---, Y4,
Y, = Yiusy, fort=2 ..., T
Zy=Zyp, fort=1,...,T
Vi=(Vy ---, Vi),
and Vi=Virs, fort=2 ..., T.
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The functions relating these variables are written as follows:
Y, =AX)
summarizes the action of the first 2 encoders, which will remain

unchanged as they already (trivially) have memory structure of order
k. Fort>1,

Yi=FfX, Xz o+, X)) = frna(Xs, ++ o, Xewamr)

where f; is not uniquely defined by this relation. It can be made unique
and measurable by requiring (for example) that for § = 2, ..., t, the
function f, depends on the argument X, = (Xj, - « -, Xp+4-1) only through
its last component Xj.+—1. However, any measurable f; satisfying the
identity is acceptable.

The receivers are characterized by their memory updating functions:

Zl =F l(Yl)
summarizes the recursive buildup of Z, from (Y, ---, Y,) using
ry, +++, re. For t > 2, F, is defined by

Zr = F;(Z;_l, Y’r) = I"r+k71(Zr+k72, Yivr-1).
Likewise,
Vl = él(Yl)

summarizes the action of the first £ decoders (including their memory
updating). For ¢ > 2, g, is defined by

Ve =gZ1-1, Y) = 8rer-1Zrsn-2, Yirn-1).
Finally, y1(X;, V1) = Y1 (X, V) and for ¢ > 2
47:(}?:, V:) = Yrr-1(Xesr-1, Visr),

where y, depends on argument X, only through the component X4 1.
Now Lemma 4 can be applied to this T stage system with Markov
source. Without increase in total cost, the encoders f;, -- -, fr can be
replaced by encoders f; with first-order memory structure, i.e.,

Y; = ﬁ(z-;_l, Xr), for t = 2, LN T

Expressing this in terms of the original variables, the functions f; for
t=Fk+1, ..., Tare replaced by functions f, satisfying

Yier = ff+k—l(zf+k—2, Xy, Xewry o+ Xpwr) fort=2,.-., T—k+1
or equivalently

Y. = ﬁ(zr—l, Xiks1, 0, Xp) fort=FkF+ 1, ..., T.

1448 THE BELL SYSTEM TECHNICAL JOURNAL, JULY-AUGUST 1979



These f; exhibit memory structure of order k, so that the main theorem
is proved.

VI. THE CASE OF DELAYED DISTORTION MEASURES

The basic model of Section II can be modified as follows for the case
in which a delay of § > 0 steps is included in the definition of distortion.
The first change is that the variables V), ..., V; are simply not
generated, the receiver spends its first § periods just accumulating
observations of Y3, -- ., Y; and updating its memory accordingly.

The second change is that, for ¢ > 8, distortion is measured by a
function ¥,(X;—s, V;) whose expectation defines ¢J;. The design objective
is to minimize

T
J = 2 J(.
=5+1
For this situation, the following structure simplifying result holds.

Delay Theorem: Suppose that the source is kth order Markov and
that the distortion is defined with delay 8. Then any given design can
be replaced, without loss, by one in which the encoders have memory
structure of order max(k, § + 1).

Proof: In case £ = § + 1, one can perform the same transformation of
the point of view as in the proof of the main theorem. Indeed, this
transformation gives cost functions of the form

WX, V), t=1,--.,T—k+1,
where
t =Xy -, Xewwr), Vi= (Vi o oo, Vi), Vi = Vi
This is compatible with the delay criterion, as follows:

k-8

‘[:l(Xl, VI) = E lr’/r(Xf, V;‘+5)
=1
andfort=2, ..., T—k+1

IP-:(X.r, vl) = ¢r+k—1(Xr+k—a~1, V;+k-|),

where it happens that ; depends upon X, only through the component
Xivh—s-1-

Therefore the argument of the main theorem applies: One can use
encoders with memory structure of order k. In fact, the above shows
that this conclusion is valid for any criteria of the form

Z RL’r(Xf, X:+1, ey, Xl+k—l. Vr+k—|)-
t
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As for the case & < 8 + 1, observe that the source is then, a fortiori,
Markov of order § + 1. Hence, the first case applies to yield memory
structure of order § + 1, as claimed.

VIl. CONCLUDING REMARKS

A few extensions of the results are of interest.

({) The proof of the three-stage lemma goes through under the
weaker assumption that f; depends upon Z,, X5, and Xa.

(i) All the results in this paper remain true for V; restricted to given
subsets of R™. This would correspond to quantization levels fixed in
advance, as opposed to their selection as part of the design.

(itZ) Suppose 8 = 0, & = 1, and the encoder is restricted a priori to
be a finite state machine of the type

W = h(W,, X)),
Y! = ﬁ(Wl*h Xf)n

where W, is a discrete variable representing the contents of the
encoder’s memory. Then the main theorem implies that it is optimal
to take Z, = W, and h; = r; since this simulation of the receiver’s
memory produces the argument required for the generation of Y. This
result was obtained independently by N. T. Gaarder.
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APPENDIX

Let X be a set and 4 a o-algebra of subsets of X. Let Y be a finite set
{1, ---, g}. A function F: X X Y — R is called measurable if for each
yin Y, the function F'(-, y): X - R is #-measurable.

Then it follows that a function f: X — Y exists such that

F(x, f(x)) = F(x, y)

holds for all x € X and y € Y and the function fis #-measurable (which
means that {x|f(x) = y} is in £ for each y).

Since y takes only finitely many values, it is evident that, for each x,
one can select an f(x) to satisfy the inequality. However, there may be
many x for which the minimizing y is not unique. This creates the need
for a choice of values in defining f, and if such a choice were made in
a totally arbitrary manner, it is possible that the resulting f not be %-
measurable. What is needed is the (elementary) proof that, for a
reasonable way to resolve ambiguous choices, the resulting f is auto-

matically #-measurable.
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Given y € Y, consider the set A, of all x for which y is among the
minimizing values, this set is measurable because it is defined by a
finite number of inequalities among measurable functions, namely, for
eachy €Y,

F(x,y) = F(x, y').

The sets A, cover X but with overlaps. To remove the overlaps, use
the numerical indexing of Y to define

B1 =A1

and, fory > 1,
y-1
B,=A,— U A.
=1

This construction preserves measurability and removes overlap. Thus,
if fis defined to take value y on B,, the desired result is attained. This
amounts to stipulating that, when the minimum is attained for more
than one element of Y, f(x) is defined as the element with the smallest
label.
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