Copyright © 1979 American Telephone and Telegraph Company
THE BELL SYSTEM TECHNICAL JOURNAL
Vol. 58, No. 6, July-August 1979
Printed in US.A.

Traffic Service Position System No. 1:

Software Development Tools

By J. J. STANAWAY, Jr., J. J. VICTOR, and R. J. WELSCH
(Manuscript received December 28, 1978)

This paper is concerned with the development tools, strategies, and
methodologies employed by Traffic Service Position System (TsPs)
application programmers for the creation and testing of TSPs soft-
ware. Two environments are described: (i) The support environment
provided by an IBM 370/168 and related Tsps support software
packages for the production of testable TSPs software. (ii) The support
environment provided by the Tsps system laboratory, utility system,
and specialized hardware for testing the TSPs software.

I. INTRODUCTION

This paper describes the tools of TSPs software generation and
testing in the following environments:
(f) The facilities provided via a general-purpose IBM processor for
the production of testable TSPs software.
(i1) The facilities provided by the TsPs system laboratory for testing
new and changed TsPs software in an operational environment.
Section II is concerned with the IBM support environment utilized
by TsPs application programmers. The major tools and strategies are
described. More important, the methodologies that make use of these
tools are explained. Section III is concerned with the testing environ-
ment provided by the TspPs system laboratory. This environment
combines an actual TsPs machine, a utility system and related software,
and special hardware for debugging Tsps software.

Il. SOURCE CODE DEVELOPMENT AND GENERATION OF SPC-
LOADABLE OBJECT CODE

This section concerns itself with the general environment of TSPS
source code creation, modification, and preparation for testing using
the Tsps system laboratory and associated utility systems.

1307

2.1 General software support environment of TSPS

The software required to operate a particular Tsps installation is
comprised of approximately 300 programs (PIDENTs) totaling over 200
thousand 40-bit Stored Program Control (spc) 1A machine instruc-
tions. The combination of these 300 PIDENTs into an issuable (via
Western Electric) software package is referred to as a generic release.
There are currently four active TSPs generic releases, each having
implemented a major new TsPs feature.

The implementation of new minor enhancements are normally pro-
vided by a new release of an existing active generic. All capabilities
provided by the software of a lower numbered generic are also provided
by the higher numbered generic in addition to the new major feature.
The starting point for software development of a new generic will be
the current state of the source modules comprising the previous
generic. Many of these modules remain unchanged in the new generic.
Others are modified to produce a new version of the PIDENT that adds
the new capabilities for the new generic. In addition, new PIDENTs are
created for the new generic. It is therefore possible to have to maintain
as many versions of a PIDENT as there are active generics.

2.1.1 Featuring and a single source environment

Four active generics with 300 PIDENTs per generic could imply that
1200 PIDENT source modules would have to be maintained. This is not
the case. Tsps employs the use of “featuring” to maintain a single
source module for a PIDENT regardless of the number of distinct
versions of that PIDENT. Featuring basically means the following:

Any addition to a PIDENT source module must be bracketed by
feature control directives which, during the assembly of the source
module, direct the assembler to either assemble or ignore the
bracketed source code. Any existing source lines to be replaced/
deleted are likewise bracketed.

This implies that a single source for a PIDENT can be maintained
which is capable of generating multiple versions of the PIDENT’s object
module (ie., the output of the assembler). By appropriate feature
control directives to the assembler, different versions of a PIDENT can
be assembled. In speaking of multiple versions of a PIDENT due to four
active generics, what actually is meant is that multiple versions of a
PIDENT’s object module are producible from a single PIDENT source
module.

The feature control directives employed by TSPS are:

INFOR feature expression

1308 THE BELL SYSTEM TECHNICAL JOURNAL, JULY-AUGUST 1979

OUTFOR feature expression
ENDFOR feature expression.

The term “feature expression” in all three is a Boolean expression
which is evaluated as “true” or “false” by the assembler. INFOR implies
“assemble” the following source lines if the feature expression is true.
OUTFOR implies “ignore” the following source lines if the feature
expression is true. ENDFOR is the terminating bracket for source lines
to be assembled/ignored. INFOR with a true feature expression is the
same as OUTFOR with a false feature expression. “Feature expressions”
may be combined with Boolean “and,” “or,” and “not” operations.

Each generic has associated with it sets of feature expressions that
always evaluate as true. Every assembly of a PIDENT source module is
initiated by the processing of a special control statement which speci-
fies the generic for which the PIDENT is being assembled and therefore
the feature expressions which are to be “true” for this particular
assembly.

2.1.2 Software development support environment

Software to be executed on the Tsps spc 1A is generated by means
of the computing facilities of an IBM processor located at the Colum-
bus, Ohio branch laboratory of Bell Laboratories. This facility operates
the OS/370 operating system with the IBM Time Sharing Option
(Tso). The latter point is significant because the Tsps development
organization resides at the Indian Hill laboratory in Naperville, Illinois.
All accesses to the Tsps software data base are through Tso via dial-
up terminal access from Indian Hill. The high-speed data network
(VIPERDAE) connecting Columbus and Indian Hill allows hard copy
and tape output to be returned to Indian Hill.

TS0 provides the needed interactive facilities to both Tsps application
programmers and TSPs program administration personnel for data base
administration, PIDENT creation and modification, and submission of
0S/370 batch jobs for assemblies, loads, etc. It should be mentioned
that this interactive environment was new for Tsps with the develop-
ment of Generic 8. Before Generic 8, the software development envi-
ronment was punched-card-oriented, with all functions to be per-
formed being initiated via over-the-counter submission of card decks.

2.1.2.1 Creation and modification of PIDENT source modules.
The major Tso-provided tool utilized by TsPs application programmers
for the creation or modification of PIDENT source is the QED text editor.
QED is a powerful, flexible, and general-purpose text editing facility
capable of either line number or context editing on a range of various
0S5/370 file organization types. It should be mentioned at this time
that Tsps application programmers do not directly modify existing

SOFTWARE DEVELOPMENT TOOLS 1309

PIDENT source modules. Since a single-source module is used to gen-
erate (via assembly) the object modules for more than one active
generic, it is felt that direct modification of the PIDENT source for any
particular generic is too dangerous. Instead, TSPS employs the use of
two editors for PIDENT source modification. Via QED, the application
programmer is actually creating the editor statements to be processed
by the Advanced Processor Editor (APE). APE is a very simple, line-
number-oriented editor. It provides only the basic “insert,” “replace,”
and “modify” functions and is specifically designed to operate in
conjunction with the Tsps assembler. In almost all cases, APE and the
rsps assembler are executed in sequence in the batch environment of
the 0S/370. APE applies the edits created via QED to the official PIDENT
source and outputs a temporary edited copy of the PIDENT source,
which is then assembled. The actual PIDENT source module is not
altered during this sequence, although the mechanism does exist in
APE to permanently apply the edits to the PIDENT source module,
renumber all lines sequentially, and regenerate the PIDENT source
module. From this point on, any reference to a PIDENT source module
is actually a reference to a PIDENT source module in combination with
the official module of APE edits for that PIDENT.

2.1.2.2 The TSPS assembler. The creation/modification of TsSPs
PIDENT source (source + APE edits) is only the first step in a sequence.
This sequence of functions will eventually produce an output from the
IBM support machine which is capable of being executed and tested
on the TSPS system.

The second step in this sequence is the conversion of the PIDENT
source module into an assembled object module suitable for input to
the load step. This conversion process combines the execution of the
APE editor to produce a temporary modified source module, followed
by the assembly of this modified source module by the sSPCc-SWAP
(Switching Assembly Program) assembler. Primary outputs of the spc-
swAP assembler are an object module and an assembly listing corre-
sponding to a particular version of the PIDENT. SPC-SWAP is an excel-
lent, high-powered assembler which possesses an assortment of
pseudo-operations for controlling listing format, symbol definitions,
etc. sPc-SWAP also includes powerful MACRO definition and usage
facilities.

Another facility of the spc-swAP assembler which is heavily used by
TsPs in its multigeneric environment is the capability to create a
special file (referred to as a library) of symbol or macro definitions
which can then be accessed by subsequent PIDENT assemblies for the
purpose of symbol or macro resolution. It is the library and macro
facilities of spc-swAP which allow the single-source, multiple-generic
environment of TSPS to be viable. The feature control directives
described in Section 2.1.1 are actually macros available through the

1310 THE BELL SYSTEM TECHNICAL JOURNAL, JULY-AUGUST 1979

library facility to each TSPs PIDENT assembly. The control statement
which initiates each PIDENT assembly is again a macro (the PACKAGE
macro). Execution of the PACKAGE macro, which basically takes a
generic name as a parameter, establishes the generic environment of
the assembly (i.e., what feature expressions evaluate as “true”; what
generic-dependent libraries of symbol, macro, and data definitions will
be available during the assembly; what “name” should be given to the
produced object module; etc.). Simply by “inserting” via APE a different
specification for the PACKAGE macro and reassembling, a single-source
module is capable of producing many different generic-dependent
versions of its object module.

2.1.2.3 The TSPS loading process. Object modules produced by
the spc-swaP assembler are not suitable as input to the Tsps. The final
step in the sequence of operations which produces spc-compatible
output is the execution of the spc loader on the IBM support machine.
Primary inputs to the spc loader are the object modules for all PIDENTs
comprising a particular generic software release and control directives
specifying such things as (i) what areas of sPC memory are available
for loading PIDENTS, (if) what PIDENTSs are to be loaded and, if neces-
sary, at what addresses, and (iif) what types of maps and cross
references are to be generated. In these respects, the spc loader is very
similar to most relocatable linking loaders. Primary output of the spc
loader is an 800-bits-per-inch, 9-track tape representing the relocated,
fully linked generic load module which is capable of being read into
spCc memory and executed. Corresponding to the tape output is a
printed load map showing memory assignments, available space, etc.,
and optionally cross-reference listings showing entry point definition
and PIDENTS referencing.

An additional capability of the spc loader is somewhat unique to
Ess-type loaders and is heavily used during TsPs software development.
When creating a full generic software load of all 300 or so PIDENTS, the
SPC loader can be directed to create a special file, called a HISTORY,
into which detailed information concerning the generated load is
written. The information includes the names of all PIDENTs loaded;
the addresses at which they were loaded; how much space each
consumed; what entry points each defined; where each entry point was
referenced; where and how much free SPc memory remains; what spc
memory was originally available to be loaded; and a complete copy of
the relocated, linked, and loaded spc memory. On a subsequent exe-
cution of the spc loader, the HISTORY file can be reinput to provide the
capability for what is known as a partial load. On a partial load, the
sPc loader need only be informed of changes to be made to the previous
full load represented by the HIsTORY. Previously loaded PIDENTs can
be unloaded or replaced by new versions, new PIDENTs can be added,
additional sPC memory can be made available for loading into, and a

SOFTWARE DEVELOPMENT TOOLS 1311

new HISTORY reflecting all changes can be generated. Of particular
importance is that, on a partial load, the tape that is generated reflects
only the difference between the updated load image and the previous
load image that had been saved on the input HISTORY file. This partial
load facility of the spc loader provides spc application programmers
with an incremental load capability that is the basis for one of TSPS’s
primary software development methodologies to be described.

2.1.2.4 The Interactive Program Administration System. 1PAs
(Interactive Program Administration System) is a tool developed for
use by Tsps and other spc 1A based systems. IPAS executes in the
interactive TSO environment and primarily serves to shield the appli-
cation programmers and program administration personnel from the
complexities of the 0S/370 operating system, specifically the nontrivial
Job Control Language (JcL) required for batch execution of spc-related
support tools. IPAS is based on the concept of PIDENTs and versions of
PIDENTs and utilizes the Bell Laboratories Data Management System
(pMs), a hierarchical data base system. IPAS provides the TSPS user
with access to QED for line edit file creation and a simple command
language for initiating the execution of the SPC-SWAP assembler, the
spc loader, and other minor support tools. IPAs was developed for use
with all TsPs generics but to date has been most extensively used on
the Generic 8 development.

2.2 TSPS software generation methodologies

The discussion to this point has centered on the support tools and
basic implementation strategies available for generating and preparing
for execution the TSPS PIDENT source modules. The discussion now
turns to the methodologies which make use of these tools and strate-
gies. Two methodologies will be covered, one which applies to software
generation in a relatively free administrative atmosphere, and another
which applies to software generation in a very tightly controlled change
environment. Both have been applicable to the recent Generic 8
development, and in fact both were formulated for the Generic 8
development. Both are equally applicable to the other generics. The
two methodologies correspond to the two administrative modes under
which Tsps application programmers work. The “development” mode
implies the free atmosphere; the “frozen” mode, the tightly controlled
atmosphere.

2.2.1 Development mode methodology

The “development” mode primarily applies to the generation of a
major new feature, and therefore to a new generic. In this mode, the
object is to provide the application programmers with as much freedom
as possible in generating the new feature. For this reason, there is little
restriction on how the programmers modify existing PIDENTSs or create

1312 THE BELL SYSTEM TECHNICAL JOURNAL, JULY-AUGUST 1979

new PIDENTs. The methodology formulated for this “development”
environment is heavily based on the team programming concept and
the partial load capabilities of the spc loader.

The overall software development of the Automated Coin Toll
Service (acTs) feature was divided basically along functional lines.
TSPS application programmers were organized in programming teams
based on these functions. The implementation of a given function
required the modification of some subset of the 300 or so TSPS PIDENTS
and the creation of new PIDENTs. The functional subsets of PIDENTs
were not necessarily mutually exclusive. Many times multiple functions
required modification to the same PIDENT. The startup point for the
software development of Generic 8 was the stable state of the Tsps
software as it existed for Generic 7 in the second quarter of 1976. Tsps
program administration personnel set up the proper PACKAGE macro
for Generic 8 and established the Generic 8 dependent macro and
symbol libraries which the PACKAGE macro would make available to
the spc-swap assembler when performing Generic 8 assemblies. All
Generic 7 PIDENTs were then reassembled to produce relocatable
Generic 8 versions of the PIDENT object modules. Recall that a PIDENT
source is actually the combination of the official (i.e., Program Admin-
istration Group [PAG] controlled) PIDENT source module and the
official file of APE line edits for that PIDENT. All relocatable Generic 8
object modules were then input to the spc loader to produce a full
Generic 8 load module. This load module was designated the “Base 0”
Generic 8 load, capability-wise identical to the Generic 7 state from
which it was generated, and loadable and executable in the TSPs system
laboratory. The foundation upon which to build Generic 8 was estab-
lished.

The programming teams were now capable of incrementally modify-
ing this “Base 0” load and testing their function implementation. To
illustrate the methodology, assume programming teams 1 and 2. The
function of team 1 requires modification of PIDENTs A, B, and C, and
the creation of a new PIDENT D. The function of team 2 requires
modification of PIDENTs A, E, F, and G. Team 1 would proceed as
follows:

(i) Exact copies of the official line edit files for PIDENTs A, B, and
C would be created using QED. Each would be modified as
needed for team 1 function implementation.

(it) The source for new PIDENT D is created using QED.

(iti) An sPc-swWAP assembly is initiated via IPAS or other Tso facili-
ties utilizing the copied and modified team 1 line edit files for
PIDENTs A, B, and C and the created source file for PIDENT D.
The object modules produced by sPc-swAP are saved as team
1 object modules.

(tv) Using the spc loader, initiated via 1PAs, a partial load is gen-

SOFTWARE DEVELOPMENT TOOLS 1313

erated based on the HISTORY file corresponding to the “Base 0”
Generic 8 load. PIDENTs A, B, and C are replaced by team 1
versions, and PIDENT D is added. The partial load tape pro-
duced reflects only the differences between the team 1 load and
the “Base 0” load.

(v) Team 1 is now capable of overlaying their partial load image
on top of a known-to-be-stable “Base 0” load image in the TsPs
system laboratory and testing their function unencumbered by
new code from other teams.

(vi) The cycle can be reiterated as problems are discovered during
testing, except that modifications are made to team 1 line edit
files.

Team 2 has concurrently been developing their function following
the same procedures as outlined for team 1. This approach allows very
extensive testing of individual functions, comprising large amounts of
new and modified software, to be accomplished prior to a large-scale
integration of functions.

The pAG personnel again became involved with the Generic 8
development at periodic intervals (usually 6 to 8 weeks) to produce an
updated base load. In preparation for performing the official reassem-
blies for all PIDENTs modified by the programming teams, a merging of
official and team line edit files must take place.

Recalling that both teams 1 and 2 copied the official line edit file for
PIDENT A, the PAG personnel would first merge the team line edit files
for PIDENT A, and the result would then be merged with the official
line edit file for PIDENT A to produce an updated official line edit file.
PIDENTs modified by a single team required only a single merge. The
final merge with the official line edit file guaranteed that no original
official line edits had been inadvertently deleted or modified in such a
way as to adversely affect generics. Having completed the merging
process, PAG could then make any required modifications to Generic 8
macro or symbol libraries, and then reassemble all modified PIDENTs
to produce updated official Generic 8 object modules. These object
modules now would contain all the function code tested by the indi-
vidual teams up to the time the new base was created. PAG then
reexecutes the spc loader to produce a “base n + 1” load module and
corresponding HISTORY file. The base load image in the TSPs system
laboratory is then updated to “base n + 1,” and the new base can be
system-tested to ensure stability.

Although a large amount of new and modified software is introduced
with a new base load, the interval between the start of the merging
process and the completion of the system testing of a new base
averages about 2 weeks. During this interval, the programming teams
are able to continue working against “base n,” with the stipulation
that any additional team line-edit changes must be incorporated with

1314 THE BELL SYSTEM TECHNICAL JOURNAL, JULY-AUGUST 1979

the updated official line-edit files reflecting “base n + 1.” Due to heavy
testing of individual team functions, a minimum amount of system
testing is required to stabilize the new base load, even though the
functions had not previously been integrated.

Prior to Generic 8, the “development” mode methodology was based
on manually overwriting a load image in the Tsps system laboratory to
test new functions or including untested software in new load images.
System testing of new load images was an enormous, time-consuming
task. Function testing via manual overwrites was more of a hindrance
to software development than a help.

2.2.2 Frozen mode methodology

The “frozen” mode of software generation applies primarily to active
generics which have been issued through the Western Electric Com-
pany, and to the latter stages of the development of a new generic.
The objective of the “frozen” mode is to maintain the maximum
amount of stability in the generic software by providing a highly
controlled and documented change environment through which appli-
cation programmers must make software corrections.

For a generic in the “frozen” mode, software change is initiated in
response to a written Trouble Report (TR) documenting a suspected
problem or a needed improvement. The “frozen” mode imposes a
number of restrictions on the application programmers and PAG as to
the manner of software change:

(i) No change to a PIDENT can cause the size of the PIDENT’s object
module to either increase or decrease.

(ii) The primary method for testing is not the partial load, but
incrementally applied changes to the frozen generic’s load
image in the TSPs system laboratory.

(izi) Line edit changes corresponding to a laboratory change must
produce a bit-for-bit match between the pPaG-generated (via
PIDENT reassembly) next release of the frozen generic and the
overwritten old release in the Tsps system laboratory.

(iv) All programmer-generated cha.nges must be independently
tested and approved by a generic test team.

(v) The application programmer must generate a written Correc-
tion Report (cR) documenting any changes made in response
to a TR.

(vi) Not only must the change be independently tested, but the TR,
CR, overwrite, and line edits must be approved by a generic
software change review committee prior to the line edits being
included in the next release of the frozen generic.

To alleviate some of the problems associated with (i), (it), and (iii),
above, a functionally identical set of “patching” directives exists,

SOFTWARE DEVELOPMENT TOOLS 1315

available to both the spc-swaPp assembler and the test laboratory
utility system overwrite assembler. In the case of sPc-sWAP, these are
TSPS system macros available to any PIDENT assembly. They are
merely control directives to the utility system overwrite assembler.
These “patching” directives allow the application programmers to add
new software, replace existing software, or delete existing software
within a PIDENT without altering the assembled size of the PIDENT.

Primary input to utility system overwrite assembler is a deck of
punched cards, composed of symbolic SPC source to be assembled, and
utility system control directives. A few major restrictions on the change
to be assembled are:

(i) There is no macro capability. Any macro to be assembled must
be manually expanded prior to input.

(i) There is no LIBRARY facility as with the sPc-swAP assembler.
The utility system overwrite assembler must be explicitly in-
formed of the value of any and all symbols referenced by the
overwrite but not defined within the overwrite.

(iii) No arithmetic beyond addition and subtraction is allowed.

(iv) Many data defining pseudo-ops of the spc-swaP assembler are
not recognized by the overwrite assembler.

Given these restrictions of the overwrite assembler and the previ-
ously stated restrictions of the “frozen” mode environment, the change
implementation flow prior to Generic 8 (and therefore prior to general
TS0 usage by Tsps) went as follows:

(i) 'The TR would be received by the application programmer who
would be making the software change.

(if) The application programmer would generate an overwrite deck
to fix the stated problem and test the fix by temporarily
overwriting the generic load image in the system laboratory.

(iii) Satisfied with the results, the application programmer would
generate the corresponding cr and a deck of line edits for the
PIDENT source which produced results identical to the over-
write.

(iv) The TR, CR, overwrite deck, and line edit deck would then be
submitted to the generic software change review committee for

_approval. If rejected, back to step (iZ).

(v) If approved, the TR, CR, overwrite deck, and line edit deck are
submitted to the generic system test team for independent
overwrite testing. If rejected, back to step (ii).

(vi) If approved, the TR, CR, overwrite deck, and line edit deck are
submitted to PAG. The line edit deck is included in the official
line edit deck for the PIDENT(s) involved, the TR and CR are
filed, and the overwrite deck is saved.

This procedure was followed for each TR requiring a software change.

When a new release of the frozen generic was required, PAG would

1316 THE BELL SYSTEM TECHNICAL JOURNAL, JULY-AUGUST 1979

reassemble all modified PIDENTs and regenerate the generic load,
maintaining the starting address and size of each PIDENT. This new
load was required to exactly match the overwritten load image in the
TSPS system laboratory before it would be released to Western Electric
for distribution. The methodology outlined above was successful but
possessed inherent and painful shortcomings when it was time to
generate and match the next release of the frozen generic. The short-
comings were primarily due to the overwrite assembler and the need
to create a separate line edit deck producing identical results. The
areas most susceptible to error were the manual symbol resolution and
manual expansion of macros required by the overwrite assembler, but
not required in the line edits.

For Generic 8, the basic theory of this overwrite methodology, with
its checks and approvals, was not substantially altered. There was,
however, the development of a new tool, an Overwrite Generation
(OVGEN) program, which eliminated the need for separate manual
generation of overwrite and line edit decks. ovGEN allowed application
programmers to continue to create line edits as files via QED. OVGEN
requires the application programmer to include in the line edit file
special control directives, identified by the programmer I.D. and a
trouble report number, which informed ovGEN of which line edits to
extract for overwrite generation. OVGEN, actually a combination of
three pre-processors, an SPC-SWAP assembly, and a post-processor,
outputs a symbolic overwrite deck for input to the utility system
overwrite assembler. The overwrite deck contains all information
needed for external symbol resolution. Due to the fact that sPc-swaP
is used to assemble the line edits, the application programmer can
utilize macros, libraries for symbol resolution, the swap data defining
pseudo-ops, etc. In other words, for the application programmer, the
environment is quite similar to the partial load environment, with final
output being an overwrite deck instead of a partial load tape.

The advantages of the OvGEN procedures in the frozen mode are
many.

(i) The application programmer need only create the line edits in
response to a TR.

(if) The macro facilities of SPC-SWAP are available for use.

(iif) Symbols used which are external to the line edit are resolved
via pre-processing and SWAP LIBRARY facilities.

(iv) Line edits are individually assembled. This leads to far less
assembly problems by PaG when the full reassembly of the
PIDENT is performed for the next release of the frozen generic.

(v) The final match between the new release of the frozen generic
and the old release plus overwrites is considerably cleaner due
to the overwrites having been generated directly from the line
edits.

SOFTWARE DEVELOPMENT TOOLS 1317

lll. LABORATORY TESTING ENVIRONMENT

TSPS programmers use the TSPs system laboratory complex to test
and debug new or changed PIDENTs. One or more programmers work-
ing on similar program areas will schedule time in the lab. Thus, this
complex has been designed to provide a working environment condu-
cive to high programmer productivity.

Two TsPs laboratories are available to programmers. Both consist of
the Stored Program Control (spc) No. 1A/TsPs complex, the nonresi-
dent utility system, and call-oriented simulators. The spc/Tsps com-
plex allows programmers to test in an environment much like a typical
1sPs office. The utility system and simulators provide debugging aids
not found in a typical office. This section describes the hardware and
software facilities which make up the laboratory complex.

3.1 Hardware configuration

The Tsps laboratory configuration is shown in Fig. 1. This section
discusses each component in the configuration except the simulators,
which are discussed in Section 3.3.

3.1.1 Stored program control (SPC) 1A

The TSPs is controlled by the spc 1A."' The spc consists of a processor,
memory system, central pulse distributor, signal distributor, master
scanner, and a maintenance control center for the man-machine inter-
face. Each of these parts is duplicated for reliability except the main-
tenance control center.

The spc processor provides the control for the TSPs by executing the
instructions in the memory. The processor cycle is 6.3 us. The registers
available in the processor include a 20-bit Program Address Register
(PAR), 20-bit Address Image Register (AIR) which contains the address
of the most recent store access, 47-bit Memory Access Register (MAR)
for storing the information read from or written into the memory, and
seven 20-bit index registers. The index registers are general purpose
and may be used for any function.

The word length of the SPc memory is 47 bits (40 bits of information
and 7 for error correction). There are 20 bits of addressing. Nineteen
bits select the memory word. The remaining bit determines which half
of the word is used.

The processor communicates to the peripherals and Tsps by three
units: the Central Pulse Distributor (cpD) which allows the spc to send
pulses to points in the system where fast response to an instruction is
needed, the signal distributor which allows the sPc to operate or
release magnetic latching relays which are connected to output points,
and the master scanner which provides status and supervisory inputs
to the spc from the various units in the spc complex.

1318 THE BELL SYSTEM TECHNICAL JOURNAL, JULY-AUGUST 1979

SPC/TSPS

SUPPORT l
es0 K—— pRocessoR |

COMPLEX |, !
{ DATA{‘_':—.
| LINKS .
|
@ L umurvswrew N
SIMULATORS

Fig. 1—Tsps system laboratory.

The Maintenance Control Center (Mcc) consists of a control and
display panel, a teletypewriter, and a program tape unit for loading
the spc 1A memory.

3.1.2 Nonresident utility system

The utility system provides a means for easily loading and reading
the spc memory, for debugging real-time programs in a noninterfering
fashion, for controlling devices in the laboratory, and for transmitting
or storing files. The advantage of this utility system over the earlier
rsps utilities is that the programs are nonresident to the spc and that
debugging of programs can be done without interfering with the
execution of the system’s real-time programs.

The utility system is a combination of hardware and software. This
section discusses the hardware aspects of the system, and other sec-
tions discuss how the utility system is used for software change
administration and program testing. The utility hardware consists of
a support processor, a support processor interface, a noninteracting
utility program interface console, an electronic signal distributor, and
serial data links.

3.1.2.1 Support processor. The support processor used in the
utility system is a commercial minicomputer. The minicomputer uses
the XvMDOS operating system and its peripherals include a 9-track
magnetic tape unit, fixed head disk, 3-disk-pack bulk memories, tele-
typewriter, high-speed printer, card reader, and paper tape reader and
punch. .

User files and TSPS generic programs are stored on the disk memory.
These files can be updated and additional files added by means of the

SOFTWARE DEVELOPMENT TOOLS 1319

magnetic tape unit, card reader, or paper tape reader. The user input
is via the teletypewriter and card reader. The output is usually over
the high-speed printer.

3.1.2.2 Noninterfering utility program interface console/ sup-
port processor interface (NUPIC/ SPI). The interface between the
spc and the support processor is the Noninterfering Utility Program
Interface Console (NUPIC) and the Support Processor Interface (spI).
The NuUPIC and SPI are two separate circuits but are discussed together
because they are so closely related.

The NuPIC interfaces directly with the spc processors to allow the
user to monitor and control the system programs. It provides access to
the PAR, AIR, MAR, and the index registers in each spc processor. It
also provides processor clock control and interrupt interfaces. The
circuitry in the NUPIC allows the user to load the sPc, read the spPc
memory, set program matchers, and have the contents of the spc
registers read and stored. The NUPIC has a man-machine interface
consisting of spc register displays and manual controls. These manual
controls are particularly useful if the support processor should fail.
The section on program testing will discuss the debugging aids avail-
able with the NuPIC.

The NUPIC is controlled by the support processor via the sp1 circuit,
which provides a 2-way, high-speed data communications channel.
Since the support processor and the SPc processors have different word
lengths and different cycle times, buffering (core memory) is provided
in the sp1. The spPI is used in conjunction with the NUPIC and the
support processor for loading the sSpc memory, reading the spc mem-
ory, and collecting data during program debugging.

3.1.2.3 Electronic signal distributor (ESD). In testing programs, it
is often necessary to have Tsps configured differently due to multiple
generics. This means that specified circuits can be connected to or
removed from the TSPs buses, equipment can be removed from service,
or equipment can be put into service. The ESD provides a means to do
this automatically. Up to 2048 distributor points can be individually
set or reset by the support processor. These points can be used to
control relays, lamps, and logic inputs.

Each user can have a file on the support processor which specifies
the generic program and how the EsSD points should be set. Section
3.2.1.2 discusses the creation and execution of the user files.

Another use of the EsD is for physical fault insertion. This applica-
tion is discussed in a later section on trouble location manual genera-
tion.

3.1.2.4 Serial data channels. Several serial data channels are
available on the support processor. The channels are full duplex, with
data rates up to 10K baud. The channels are used for transmitting

1320 THE BELL SYSTEM TECHNICAL JOURNAL, JULY-AUGUST 1979

files or receiving files for storage. Presently, one of these channels is
used for transferring user call load files to and from the microprocessor
controlled call simulator (Section 3.3.3.2) and another is used for
loading the writable storage unit (used in program development) of
the Programmable Controller in the Station Signaling and Announce-
ment Subsystem for the Automated Coin Toll Service® (AcTs) feature.

3.2 Laboratory software change administration

The desire to add new features, as well as the need to correct
software errors, make it necessary to be able to easily change programs
in the Tsps laboratory. This is done differently, depending on the state
of the software base being changed. If the code is being developed into
a new major generic issue, programmers are free to perform large-scale
code modifications and additions. This is termed the development
mode. If the base is already an official generic issue, only minor
changes and additions can be made in response to specific troubles.
This is done to minimize the need for extensive retesting after applying
the change. This mode is termed the frozen mode.

This section deals with the tools available for changing the TspPs
program in the lab in both of the above modes.

3.2.1 Development mode

As mentioned in Section 2.2.1, the partial load is the primary means
of changing code in the development mode. A partial load tape con-
taining all new and changed object code is brought into the TsPs lab
by the programmer for debugging. The programmer then uses two
support processor programs to load the base load plus the partial load
into the spc. These programs are DzZLOAD and ALCFG (Automatic
Laboratory Configuration). Once the desired load is in the spc, the
Nova (Noninteracting Overwrite Assembler) program is used to make
minor code revisions until a new partial load tape can be generated.

3.2.1.1 The DZLOAD program. DZLOAD is the interchange and
comparator program for sPC code and data residing on magnetic tape,
disk, or spc memory. It allows the user to easily load and verify spc
programs as well as create duplicate copies of sSPc memory on disk or
tape. The user may choose to store a partial load tape on disk in the
support processor, which eliminates the need to carry the magnetic
tape into the lab for subsequent debugging sessions.

pzLOAD deals with only one file at a time; however, the support
processor can also load multiple files and control the Tsps lab’s
hardware configuration. The program that does this is called ALCFG.

3.2.1.2 The ALCFG program. The Tsps system laboratories are
used to develop and test hardware and software for use at Tsps
installations in the field. The laboratory is used to simulate configu-

SOFTWARE DEVELOPMENT TOOLS 1321

rations existing in the field and new hardware configurations under
development.

The ALCFG program allows the user to easily and quickly change the
laboratory’s program and hardware configuration. The result is in-
creased lab availability, brought about by a decrease in the manual
action required to establish a particular configuration. The user can
predefine a configuration and store it on a support processor disk.
Thus, calling in the configuration definition under ALcFG will cause
the quick reestablishment of the desired lab environment—both soft-
ware and hardware. The lab hardware is controlled by the Electronic
Signal Distributor (EsD). The EsD is explained in Section 3.1.2.3. ALCFG
allows the user to easily define a particular ESD state.

During a lab testing and debugging session, the user will probably
uncover minor coding errors or oversights. These errors can be tem-
porarily corrected in SPC memory using the NOVA program.

3.2.1.3 The NOVA program. NOVA is a utility program that allows
the lab user to overwrite sPc memory. The input to Nova is symbolic
spc source code residing on punched cards or disk, or typed directly on
the user terminal. Since the program being changed resides at a fixed
spc memory location and occupies a fixed amount of storage space,
code additions must be incorporated in a “patched” fashion. Nova is
therefore designed to manage a series of patch buffers. These buffers
are the actual start and end addresses of spare program memory in the
spc. Definitions of these buffers are covered in Section 3.2.2.2.

Nova allows the user to specify program changes in either relocatable
or absolute fashion. NovA reads the overwrite statements, assembles
them into SPc object code, prints a listing, and stores a binary image
of this code on a support processor disk. This binary file is then loaded
into sPc memory. Another binary file is also kept by Nova, namely,
the contents of the addresses specified in the overwrite prior to loading
the overwrite. This file is identified by a temporary overwrite number.
The user can therefore instruct Nova to flush a specific overwrite out
of sPc memory by restoring all addresses to their contents prior to the
change.

Many options are available to the Nova user. Some commonly used
ones are (I) assemble and produce a listing, (if) assemble, produce a
listing, and create a binary file, (iif) load the last binary file created,
and (iv) print the old data along with the overwrite listing. Another
option has to do with permanent overwrites. This is covered in the
next section.

3.2.2 Frozen mode

The Nova-assembled overwrite is the primary means of changing
spc code in the frozen mode (see Section 2.2.2). The main emphasis in

1322 THE BELL SYSTEM TECHNICAL JOURNAL, JULY-AUGUST 1979

this mode is placed on incremental change documentation and testing,
and administration of the updated generic base load. The Nova pro-
gram is used extensively during this process. A programmer submits,
in addition to TR/CR (trouble report/correction report) forms and line
edits, a symbolic overwrite to a system test team. This overwrite is
designed to fix a particular trouble existing in the base generic. The
test team tests the change as a temporary NOVA overwrite and, if
accepted, prepares to permanently incorporate it in the base generic.

3.2.2.1 NOVA— Permanent overwrites. The mechanics involved
in establishing a permanent NOVA overwrite are very similar to those
for temporary overwrites. The main differences are

1. No old data file is kept (permanent overwrites cannot be flushed
from SPC memory).

2. The pointers into the patch buffers are permanently changed to
indicate that patch used in the overwrite is no longer spare
program memory.

In addition, a permanent record of the start and end address of
individual patches is kept on disk. This information is extremely useful
to PAG when generating a patched load (see Section 2.2.2) correspond-
ing to the updated lab base load. Each patch origin must be defined to
allow the swaP assembler to correctly assemble the patched code into
the changed program. The NovA permanent overwrite listing is used
to document the change in the lab until the new PAG load and listings
are produced.

3.2.2.2 NOVA— Generic administration. Up to this point in the
lab software change section, only one base load is mentioned. However,
as stated in Section 2.1, more than one TSPs generic issue is usually
active at one time. Consequently, Nova must be able to properly
change and patch programs for each active generic. This generic is
identified by the user each time the NOvA program gets called in. Nova
uses this identification to access a set of PIDENT and PATCH files unique
to that generic. The administration of these PIDENT and PATCH files is
handled by a portion of Nova, called PIDAM. The system test group
usually takes care of this administration. PIDaM allows the user to
define and update the PIDENT and patch files for each generic. These
files contain a list of all PIDENTs that make up the generic issue along
with their start and end addresses, available patch buffers, a store
patch map (i.e., a map linking sPc programs to a specific patch buffer),
and a list of all permanently loaded patches (see Section 3.2.2.1).

3.3 Laboratory program testing

After the spc has been loaded with a new generic program (devel-
opment mode) or changes made to an existing generic program (frozen
mode), the programmer is ready to begin testing. The following sec-

SOFTWARE DEVELOPMENT TOOLS 1323

tions describe the hardware, software, and simulators available to the
programmers for testing programs.

3.3.1 Hardware for program debugging

The NupIc discussed in Section 3.1.2 gives the user extensive pro-
gram debugging tools. These tools include matchers, visual displays,
and processor controls (Fig. 2).

The matchers available with the NUPIC include:

Address Matchers—There are nine address matchers (one manual)
which can be set to indicate when a specified program address is
executed or when a specified data address is read or written.

Range Trap Matchers—Two range trap matchers are available.
These matchers will indicate when any address within a range of
program is reached or when any address within a range of data is
accessed.

Bit Matchers—Two 20-bit matchers allow the programmer to match
against an address, contents of a memory location, or the contents of
an index register. The bit pattern to be matched against can have an
associated mask. This mask will indicate which bits in the pattern are
“don’t cares.”

Peripheral Matcher—The peripheral matcher is used to indicate
when a particular peripheral order accesses a particular peripheral
unit. The peripheral unit address can have an associated mask.

Each of these matchers can be set manually via keys on the NUPIC.
All but the manual matcher can also be set automatically. When a
matcher “fires,” the contents of the sPc registers can be collected by
the support processor, analyzed, and printed on the high-speed printer.

The matchers can be set up with different options which will be
executed when the matcher fires. These options can be interfering and
noninterfering. The noninterfering options include register snaps and
transfer traces. The transfer trace gives a record of every transfer that
occurs in the program once the matcher fires.

The interfering options cause an interrupt in the sPc program
execution and transfer of control to the spc resident utilities. The
options include doing a write into unprotected memory, dumping
portions of memory, writing to registers, jumping to a different address,
and stopping the spc.

The visual displays on the NUPIC include binary lamp displays for
the major points in each sPc processor such as the index registers and
buses. Octal displays are provided for the registers most often used.
These include the PAR, AIR, MAR, selected matcher address, and
relocatable address (least five significant digits). The PAR, AIR, and
MAR displays are available for each processor.

1324 THE BELL SYSTEM TECHNICAL JOURNAL, JULY-AUGUST 1979

"a[osu0y) sorpIIu] weadord ANy SuuepesiuiuoN—g 81

si335 LARRRRRBRREREEEE ‘11r1 | weswsceseesees ¢
‘io’-‘ / ‘ "” ‘ s 3 TR
% B B BER Il T ER T EE

craellpehil

i .

weklileehi ekl libr

m. _m &im M. ﬂﬁ. .

T ==,

N
NI S
A

SOFTWARE DEVELOPMENT TOOLS 1325

Several manual control functions are provided to allow the user to
selectively control either or both spc processors.
(i) The user can stop or start the processor clock and can step
through instructions one cycle or one phase at a time.
(i) Instructions, data, and scanner answers can be inserted.
(iif) Matchers can be set up.
(iv) Utility interrupts can be generated and flags provided for the
spc resident utility programs.
(v) Transient store errors can be simulated.
(vi) The processors can be split into two independent systems.

3.3.2 Software for program debugging

Facilities exist in both the support processor and the spc to aid in
Tsps program debugging and testing. The most useful of these resides
in the support processor and is called spcpDT (Stored Program Control
Dynamic Debugging Tool). This program activates matchers and
traces via the NUPIC to give the user information about program flow
in the spc. Another useful support processor program is AMADMP
(Automatic Message Accounting Dump). This program aids call proc-
essing programmers by providing formatted AMA information at the
completion of a call. Finally, spc-resident code assembled as a special
set of Feature Assembly Debugging Aids (FADA) allows the program-
mer to selectively control the execution of TSPS programs.

3.3.2.1 The SPCDDT program. spcDDT is used to set address
matchers, range traps, bit matchers, and a peripheral matcher in the
NUPIC circuit (see Section 3.1.2). The user has the ability to control
certain actions before and after a matcher fires. Some of these options
are:

() Jump to a program address when a matcher fires.

(#) Dump the contents of specific SPC memory areas on the line
printer when a matcher fires.

(iii) Write information into an sPc memory location when a matcher
fires.

(iv) Start or end a transfer trace when a matcher fires.

(v) Selectively print trace information on the line printer.

(vi) Continually store trace information in the core memory of the
SPI circuit (see Section 3.1.2.2). If the core fills, overwrite it
with the more recent information (overlay mode). Freeze it and
send the contents to the support processor for printing when
another matcher fires.

Option (vi) is a particularly useful feature. It allows the programmer
to monitor the entire flow of one (or more) program(s), and print out
only the flow prior to an interesting event.

3.3.2.2 The AMADMP program. AMADMP provides formatted aAMaA

1326 THE BELL SYSTEM TECHNICAL JOURNAL, JULY-AUGUST 1979

information on the support processor line printer at the completion of
a Tsps call. This information is very useful to a programmer in
debugging call processing or billing-oriented software.

Normally, the aAMA Data Accumulation Program (AMAC) stores the
billing information in buffers in Tsps memory. When a buffer is full,
AMAC activates another program which records all buffered data on
magnetic tape. This tape must then be processed on an off-line
computer. The delays and logistics involved in this procedure make it
undesirable for debugging purposes. Consequently, AMADMP was writ-
ten during the development stage of the Remote Trunk Arrangement
(RTA) feature of TsPs Generic 7.

AMADMP uses the NUPIC to activate two matchers in the AMAC
program. One matcher fires at the start of AMAC’s recording of the
billing information and the other fires after all information has been
buffered for a call. Using the information appearing in the Spc registers
at the time the matchers fire, AMADMP requests a dump of the buffer
locations used by amac. The data from these locations are then
formatted in the support processor to make it more readable, and then
printed on the line printer.

3.3.2.3 The FADA feature. FADA is a collection of debugging soft-
ware that can be assembled into a development base load. It consists
of special code added to generic TSPs programs as well as a special
PIDENT (ECDB). This code does not get released officially for use in live
TSPS offices.

FADA was developed during the early stages of Generic 7 as an aid
in the recovery of new program loads and a debugging tool. It accom-
plishes this by allowing the user to selectively inhibit execution of
many program functions. This capability makes it possible to simulate
many low probability events, cause race conditions, and exercise
program failure legs.

3.3.3 Simulators

3.3.3.1 Single-call simulators. Many times in testing programs,
the programmer needs the ability to place a single call through the
1sps. Two types of test facilities are available for making single calls.
The first of these facilities is the “single-line” simulator. This simulator
consists of a local (calling) telephone connected to the local office side
of the simulator and the toll (called) phone connected to the toll side
of the simulator. The local and toll sides of the simulator are connected
to a TSPS incoming trunk. This trunk is dedicated to a particular traffic
type. For each traffic type (coin, hotel/motel, RTA), there is a single-
line simulator.

Calls are placed by the programmer in the same way a customer
would make a particular type of call. The simulator performs all

SOFTWARE DEVELOPMENT TOOLS 1327

necessary signaling required by Tsps. The call is recognized by TsPs
and handled appropriately by routing it to an operator’s position or by
connecting the called telephone.

The single-line simulator is used for calls which are to be handled
normally. The simulator generates the correct KP, Start (sT) digit, and
Automatic Number Identification (ANI) digit for the call. However,
there are times when the programmer must have more control over
the call. For instance, the programmer may wish to test a call using an
improper ST digit or ANT digit. In these cases, the manual trunk test set
(also known as the “Burelback Box”) is used.

The manual trunk test set allows the programmer to place a single
call and to have control over the entire call. The programmer selects
the type of TSPS trunk circuit to be used and the call type. By operating
switches, the programmer simulates seizure by the local office and
responds to supervision from Tsps by keying in the kp digit, the call
digits, a st digit, an ANI digit, and the calling digits. When the toll side
of the trunk is seized by TsPs, the programmer generates the toll
supervision signals to Tsps. On AcTs calls, the coin tones can also be
generated.

3.3.3.2 Multiple-call simulators. There are program bugs which do
not show up until there is a substantial traffic load on the system. In
TSPS testing, a simulated load can be generated by the Electronic Load
Box (ELB) and the Microprocessor Controlled Load Box (MICLOB).
Both of these “load boxes” automatically generate calls on multiple
TSPS trunk circuits. Each load box simulates the functions of both the
local and toll offices.

The characteristics of the ELB are:

(i) Generates up to 14 simultaneous calls. All calls must be the
same type and the same length.
(if) Can generate 1800 calls per hour.

(izt) Works with MF (multifrequency) trunks, 2-wire, or 4-wire, loop

or E&M signaling.

To use the ELB, the user selects the number and the type of the calls
desired. If more than one call type is required, another ELB must be
used. To provide the user with more flexibility in setting up a call load
and to provide the capability for coin signaling for acTs, the MicLOB
was developed. MicLOB (Fig. 3) has the following characteristics:

(£) It generates up to 32 simultaneous calls of any call mix the user
wishes.

(it) The call types include coin, noncoin, hotel/motel, and inter-
national.

(iti) All call parameters are under user control.

(iv) It works with either 2-wire or 4-wire trunks with MF or DP (dial

pulsing) signaling and with loop or E&M supervision. Other

1328 THE BELL SYSTEM TECHNICAL JOURNAL, JULY-AUGUST 1979

Fig. 3—Microprocessor Controlled Load Box.

SOFTWARE DEVELOPMENT TOOLS 1329

trunk types can be easily handled by modifying the microcom-
puter program and providing the proper trunk interface.

(v) The call load can be as high as 10,000 calls per hour for short
calls.

The user sets up his call load by entering the call parameters for
each trunk via a teletypewriter or a terminal. Once the load is estab-
lished, the calls can be started or stopped individually or as a group.
The user can save his call load parameters on the support processor’s
disk via a serial data link (Section 3.1.2.4). This call load can be
reloaded at a later time. This save/load capability allows users to set
up a call load without entering the information via the teletypewriter
each time.

Another feature of the MICLOB is the error messages printed on the
TTY or terminal whenever calls do not proceed properly. These mes-
sages can alert the user to a problem with a trunk circuit or a MICLOB
circuit.

In a testing environment where a heavy load is required, the ELB
can be used to generate a background load of a particular call type.
The MICLOB can be used to generate a load of special calls or of call
types not possible with the ELB. In this manner, the TsPs programs
can be exercised in the lab much like a live system.

3.3.3.3 Operator simulators. Operator simulators are used to sim-
ulate operator actions on calls arriving at positions. These simulators
are used when a call load is generated containing calls which require
operator assistance. The simulators recognize the call types arriving at
the position and generate the required keying sequences. There are
two types of operator simulators used in Tsps. The older simulator is
hardwired. It can handle all call types except acTs. Each of these
simulators requires an actual position to operate.

The new Microprocessor Operator Position Simulator (MoPs) can
handle all call types. Each call type can be handled differently, new
call types can easily be added, and existing calls can easily be changed.
This simulator can work with or without an actual position available.
In this way, less positions are required in the laboratory. The advan-
tage of having calls go to an actual position is that one can observe
how the simulator is handling calls or one can manually handle a call
if necessary. These functions can be duplicated via a terminal con-
nected to the simulator.

The lamp and display orders sent to a simulator position by TsPs
during a call can be converted to lamp names and digital displays and
printed on the terminal. By monitoring a particular simulator position,
the programmer can observe calls going to the position. The keys on
the terminal are programmed to act as position keys so that the
programmer can also manually handle a call if desired. The terminal
can be remoted if necessary. This feature is useful when the Tsps

1330 THE BELL SYSTEM TECHNICAL JOURNAL, JULY-AUGUST 1979

operator positions are not at the same location where program testing
is being performed.

3.4 Trouble location manual (TLM) generation

The Trouble Location Manual (TLM) contains Trouble Location
Numbers (TLN) for a circuit or subsystem. Associated with each TLN
is the location of probable failing circuit packs in the circuit. These
numbers which are an output from the diagnostic program are used to
assist craft in fixing a faulty circuit.

The generation of a TLM for each circuit or subsystem requires that
faults be physically inserted in these circuits. The diagnostic program
for the circuit being faulted is run. The results from the diagnostic are
used to generate the TLN. The collection of TLNs and faulted circuit
locations make up the TLM.

Originally, in TsPS, most circuit pack faults could be inserted at the
connector. However, with the introduction of RTA and the IGFET
(Insulated Gate Field Effect Transistor) memory, circuit packs become
much more complex. They contained many integrated circuits in Dual
In-Line Packages (pIp). All necessary faults could not be inserted at
the connector. To insert faults in the newer circuit packs and to speed
up the TLM generation process, a minicomputer-controlled fault inser-
tion technique was developed. This technique, which consists of fault
insertion hardware and software, is discussed in the following sections.

3.4.1 Physical fault insertion

The type of faults inserted in the circuits are opens and shorts to
desired voltage levels on the circuit pack connectors and the pins of
the DIPs on the packs.

The circuit pack which is being faulted is a special version of the
standard circuit pack in that the integrated circuits are socket-
mounted. The circuit pack is mounted in a special extender board
which is plugged into the circuit pack connector. The pIPs on the
circuit pack have “daughterboards” inserted between them and their
sockets. Both the extender board and “daughterboards” have relays
which can be controlled to open or short the circuit pack connector
pins and the DIP pins.

These relays are controlled by the support processor by setting
selected points in the Esp. The fault insertion hardware decodes this
information to operate the selected relays and thus insert the desired
fault.

3.4.2 Diagnostic control and raw data accumulation

The support processor contains software to control automatic phys-
ical fault insertion and the spc diagnostic programs. It also contains
routines to gather the test results, or raw data, from these diagnostics.

SOFTWARE DEVELOPMENT TOOLS 1331

These results are combined into a data base used to produce system
TLMs. The support processor software designed to control these proc-
esses is called McFIT (Minicomputer Controlled Fault Insertion Tech-
nique). The McFIT program, together with special code in the spc to
interface with system diagnostics, make up the automatic physical
fault insertion control software.

3.4.2.1 The MCFIT program. MCFIT was designed to allow rapid
fault insertion and TLM generation. The majority of faults to be
inserted are stored in a data base on the support processor’s disk. This
data base consists of all standard faults that are defined for each type
of DIP used in the circuit being faulted. Thus, the user must only input
the layout of the circuit pack to be faulted and any modifications to
the standard fault list. MCFIT automatically controls the faulting of the
entire pack, requiring manual intervention only to move the fault
insertion hardware to the next pack.

Once the user has specified the pack layout, MCFIT retrieves the
correct list of faults from disk and applies any necessary modifications.
This list, together with the subsystem identification and circuit pack
location, comprise the MCFIT “work file.” MCFIT then executes a fault
insertion program which sequentially inserts all faults appearing in the
work file. This program controls the fault insertion hardware, activates
a special spc program which requests diagnostics on the specified
subsystem unit, and records the failure data on the support processor’s
magnetic tape unit. It also prints summary data on the line printer.
These data point out unexpected diagnostic aATps (All Tests Passed)
and inconsistent failure data for the user to examine.

3.4.2.2 SPC interface software. As mentioned above, the MCFIT
program activates a special SPC program to request diagnostics. This
SPc program is not part of the official generic, but is loaded into
memory at the start of each fault insertion session in the lab. The
diagnostic is requested through the NuPic/sPI interface. An interrupt
is generated in the spc which transfers control to this diagnostic
interface program. This program sets the appropriate bits in the
diagnostic request words and status words corresponding to the sub-
system unit being faulted. The diagnostic sequence proceeds normally
in the spc with one exception. Normally, each diagnostic transfers
control to the spc Diagnostic Output Control Program (pocp) to print
the pass/fail data on the maintenance teletypewriter. This special
program, however, intercepts the data passed to pocp and sends them
to the support processor via the NUPIC/SPI.

IV. CONCLUSION

Effective software development depends very heavily on adequate
development tools and test facilities. The tools and facilities described

1332 THE BELL SYSTEM TECHNICAL JOURNAL, JULY-AUGUST 1979

in this paper came about through an evolutionary process. They
started out in a much more basic form and were improved and
expanded many times before they reached their present state. Thus,
effective support software and hardware requires ongoing develop-
ment. This point must be kept in mind so that programmer productiv-
ity can continue to improve.

V. ACKNOWLEDGMENTS

The support tools discussed in this paper are the combined effort of
many people. Contributions to these tools were made by B. E. Holmes,
J. R. Petty, and E. G. Pflaum in the area of program administration,
by G. M. Jensen in the utility software, by M. R. Harder, P. L.
Shepherd, and G. L. Taylor in the design of the various simulators,
and by R. H. Allen and F. H. Ross in maintaining the utility and
system laboratory hardware.

REFERENCES

1. G. R. Durney, H. W. Kettler, E. M. Prell, G. Riddell, and W. B. Rohn, “Stored
Program Control No. 1A,” B.S.T.J., 49, No. 10 (December 1970).

2. M. Berger, J. C. Dalby, E. M. Prell and V. L. Ransom, “TSPS No. 1: Automated
Coin Toll Service: Overall Description and Operational Characteristics,” B.S.T.J.,
this issue, pp. 1207-1223.

SOFTWARE DEVELOPMENT TOOLS 1333

