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This paper presents some experimental results concerning the pulse
transmission properties of fine line printed conductors (e.g., width =
8 mils, spaces = 9 mils) on various styles of circuit packs (cps). The
pulse transmission properties include the characteristic impedance,
the propagation delay, the rise time, the bandwidth, and the intra-
layer and interlayer pulse crosstalk. A simplified theoretical model
is presented which leads directly to some basic crosstalk equations.
Theoretical results are developed to extend the application of the
experimental crosstalk results to arbitrary pulse signals, periodic
signals, and random signals. Also, theoretical scaling laws are
developed to extend the crosstalk results to conductor spaces in the
range of 7 to 40 mils. The crosstalk results are very important, since
they tend to limit the packaging density of printed conductors on the
cP styles by limiting the coupled length and spacing of parallel
conductors. The results can be incorporated into computer-aided
designs which can analyze routed cps to detect potential crosstalk
problems before the cp routing is finalized for manufacture. Other
applications include cp selection, crosstalk estimation, electrical
characterization of cps and backplanes, estimation of conductor
capacitance and inductance, and effects of various dielectrics. The
results are applicable to general styles of printed wiring boards. In
particular, they apply directly to all styles of cPs in the BELLPAC™
apparatus housing—a modular packaging system for packaging elec-
tronic equipment in the Bell System.

I. INTRODUCTION

In the physical design of large electronic systems, the interconnec-
tion of the integrated circuits and other components at the circuit pack
or printed wiring-board level constitutes a basic and relatively expen-
sive level of interconnection. In addition to supplying power and
ground, the circuit pack (cp) provides the conductor paths for the
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Table |I—Description of the circuit pack styles

Circuit
Pack
Style Description
Wire wrap Wire wrap board for breadboarding
Extender board 6 layer MLB, 2 pad layers, 2 signal layers, power (P) and ground
(G) on inside, dedicated ground conductor between every
pair of signal conductors
Double-sided Double-sided, epoxy PWB
(epoxy) .
Double-sided Double-sided, metal core, PWB
(metal)
Bonded board Flex bonded to epoxy coated steel
(LAMPAC)
4L mLB (EXT P/G) 4 layer MLB, 2 signal layers, P and G on outside
6L mLB (EXT P/G) 6 layer MLB, 4 signal layers, P and G on outside
6L MLB (INT P/G) 6 layer MLB, 2 pad layers, 2 signal layers, P and G on inside
6L MLB (INT P/G, 6 layer MLB, 4 signal layers, P and G on inside
surface routing) )
8L MLB (INT P/G) 8 layer MLB, 2 pad layers, 4 signal layers, P and G on inside

+ This particular bonded board is also known as LAMPAC.

transmission of pulses and other types of signals between the inte-
grated circuits, other components, and the cp connector.

The basic pulse transmission properties, such as characteristic
impedance, propagation delay, rise time, bandwidth, and crosstalk
depend a great deal on the cP configuration or style. Since the costs
associated with the various cp styles differ significantly, it is very
important to develop cp styles which are suitable electrically and
which are relatively inexpensive.

For the past few years, a Bell System packaging effort' (BELLPAC*
packaging system) has been under way to develop a modular packaging
system for packaging electronic equipment. This effort makes use of a
suitable connector (963) and a number of cP styles that have common
features suitable for computer-aided design.

The purpose of this paper is to present some basic transmission
properties of various styles of cps which include those in the
BELLPAC hardware family. The transmission properties are very
important, since they help to determine which cp style is most appro-
priate for a given application.

A listing of the cPp styles along with a short description of each is
presented in Table I. Copper conductors are used on all the cp styles.
The dielectric material for most cPs is a composite of epoxy and glass
fibers. The composite structure has a relative dielectric constant
(effective) of about 4.2. Except for the extender board, all the cp styles
have the common features shown in Fig. 1.

* Trademark of Western Electric.

996 THE BELL SYSTEM TECHNICAL JOURNAL, MAY-JUNE 1979



13.75 INCHES {

['%

L-———*?.S? INCHES

L_.,_._J

| FANOUT \ \ \

' REGION N 200-mil
! "\ maTeD . 100-mil \CHGA_th:EL
\ 963 CONNECTOR \ THROUGH CHANNEL

HOLE

Fig. 1—Some common features applying to all circuit pack styles except the extender
board. The plated-through holes are on either 100-mil or 200-mil centers. The spaces
between the rows of plated-through holes are denoted as 100-mil or 200-mil channels.

The extender board is a very special design. Its primary function is
to extend any cP beyond the apparatus housing so that both sides of
the cp are accessible for debugging or test purposes. Thus, the extender
board is basically an “extension cord” for a cp.

To determine the basic transmission properties of the various cps,
appropriate test boards were designed for each style of cp listed in
Table 1. Except for the double-sided (metal) board, all test boards were
fabricated at the Western Electric printed-circuit manufacturing plant
at Richmond, Virginia. The double-sided metal board was manufac-
tured at the Western Electric plant in Kearny, New Jersey. The test
routing consisted of either 8 + 2 mil conductors with nominal 9-mil
spaces or 12 £ 3 mil conductors with nominal 13-mil spaces. The 8-mil
conductors were on 17-mil centers, and the 12-mil conductors were on
25-mil centers. In general, the length of the conductor paths was about
1 foot.

An experimental approach was necessary for this study because
detailed theoretical models which include all cp styles of interest
become very complicated, and they are not now very useful for
determining many basic pulse transmission properties. The experimen-
tal methods used to determine the transmission properties of the test
boards are described in the next section.
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Il. DESCRIPTION OF THE EXPERIMENTAL METHODS
2.1 Pulse transmission properties

Each cp style containing the test routing was probed with a Hewlett
Packard time domain reflectometer (TDR) system consisting of a 18156A
sampling plug-in, an 1817A sampling head, and an 1106B tunnel diode
pulse generator. The TDR system was used to apply a fast rising step
signal into each cp and display the reflected waveform on a sampling
oscilloscope. In general, the conductor path on the cP was open-
circuited and was free of any parallel branches.

For purposes of detailed analysis, a photograph was taken of each
TDR display of interest. The general form of the TDR display is pre-
sented in Fig. 2. By analyzing the TDR display of the reflected wave-
form, one can determine the basic pulse transmission properties of the
various cP styles. The particular cp properties of interest are the
characteristic impedance, Z;, the propagation delay, T4, the 80-percent
rise time, T, and the bandwidth, B. All these cP properties can be
determined by analyzing each TDR display as indicated in Fig. 2. The
80-percent rise time, T, on the TDR display is a result of the input step
signal traversing the cp twice, as is characteristic of a reflection
method. The one-way rise time is faster by a factor of approximately
1/+2. By applying this factor to the usual relationship between band-
width and rise time, we have

B= 0.35 - 1 . (1)
T,/J5 2T:

Reference 2 presents some additional discussion concerning the TDR
method along with some detailed results concerning the theoretical
TDR display for an ideal cp.

END OF PIN
INPUT TO
CIRCUIT ™~
PACK

ASYMPTOTE = (1—p,?)

\

0.8(1-py ) - -5
~— 80% RISE TIME

REFLECTION
COEFFICIENT

‘Tr
RN
! : ~— OPEN CIRCUIT

COAX CABLE, \".
z, =502 [ PR | R

1
END OF CABLE / — = TIME

Fig. 2—The general form of the TDR display.
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2.2 Pulse crosstalk properties

The pulse crosstalk properties of the cps were determined experi-
mentally by using the method described in Refs. 3, 4, and 5. Briefly,
the method consists of applying a fast pulse (rise time ~ 2 ns) to a
driven conductor and monitoring the resultant waveform at the near-
end or far-end of some idle conductor of interest. In all cases, the
crosstalk results apply when all conductors are properly terminated
with matched loads. The corresponding results for other loads can
yield higher values of crosstalk which can be estimated from the results
for matched loads by determining the reflections and using superpo-
sition. Thus, the crosstalk results for the matched loads are basic
properties of the cp styles. The crosstalk results are very important
since they limit the packaging density of printed conductors on the
cps by limiting the coupled length and spacing of parallel conductors.

We now summarize all the experimental results presented in the
appendix to this paper.

ll. SUMMARY OF THE EXPERIMENTAL RESULTS

Table II presents a summary of the pulse transmission properties of
all the cps considered in this paper. More detailed properties for each
of the cp styles are presented in the appendix, as stated in the last
column of Table II.

The propagation delay per foot, the rise time, and the bandwidth
include the effects of the 963 connector plus fanout (see Fig. 1).
However, an earlier study® has shown that the 963 connector plus
fanout limits all the cp styles to applications having one-way signal
rise times (= 1/v2 of the TDR rise time values) no faster than about
2.0 ns (bandwidths < 175 MHz). This 2.0-ns limit was determined by
considering the crosstalk levels and impedance mismatch associated
with the 963 connector plus fanout. This lower limit on signal rise time
is sufficient to include most applications in the Bell System.

The pulse crosstalk results were measured as a percentage of the
signal step in the driven conductor. The crosstalk results apply when
the printed conductors are terminated with matched loads.

The interlayer crosstalk can be decreased to negligible values by
simply using orthogonal routing on adjacent layers. This technique is
now widely used during the routing of the conductors. Therefore,
intralayer crosstalk is usually more of a concern than is interlayer
crosstalk.

The attenuation of the conductors has not been thoroughly inves-
tigated, but some preliminary results have shown that signal attenua-
tion is about 0.4 dB/ft at 250 MHz.

PRINTED WIRING BOARDS 999



Zy vy V() DRIVEN

4
-
0 X | x+dx 1, W CONDUCTOR
I —
z

G
1
= 4 Ve Ve 1
_L_/\/\/\' - = IDLE
[ NEARZEND v, - 21 Cx 3V (1) Fm CONDUCTOR
- ¢ 2 Ed =
(a)
Zy v Ve

z
1
i LYY DRIVEN
0 x x +dx [ VvV | CONDUCTOR

- Zl VL 7VL Z'l
- — V\/\/—_L IDLE
P AARET CONDUCTOR
L NEaR-END vy, - Lmdx 3V i) FAR—END L
= L Tz, ot =

(b)

Fig. 3—A simplified model of crosstalk for a pair of lossless, uniformly, and loosely
coupled conductors terminated with matched loads. Z,, v, and [. denote characteristic
impedance, propagation velocity, and coupled length, respectively. (a) Capacitive
crosstalk, V,, resulting from the mutual capacitance per unit length, Cy.. (b) Inductive
crosstalk, V,, resulting from the mutual inductance per unit length, L.

Table II shows that the cp styles in the BELLPAC family of cps*
provide a wide variety of pulse transmission properties that can satisfy
the cp needs of most presentday Bell System projects. Many current
projects (e.g., AMARC, PDT2A, PLAID, Triport, Ess Ring and Tone, DIF)
make use of the double-sided (epoxy) style. In fact, this is the most
common cP style. The double-sided metal cP is used in customer
equipment and is now under consideration for power supply applica-
tions. The 4L MLB and 6L MLB (EXT P/G) were used in some switching
applications such as the PRocoN project. The higher capability MLBs,
the 6L MLBs (INT P/G with and without surface routing), were used in
the 1A Ess processor, and are expected to find use in projects such as
the 3B ESs processor and DIF.

IV. THEORETICAL CROSSTALK RESULTS
4.1 Derivation of basic crosstalk equations

Consider the simplified model of crosstalk presented in Fig. 3. The
capacitive crosstalk voltage denoted by V. in Fig. 3a is a suitable
approximation when the conductors are loosely coupled. A more

* At the present time, the bonded board (LAMPAC) and the 8L MLB (INT P/G) are not
members of the BELLPAC family of cp’s.
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accurate expression for V. is obtained by applying circuit theory to the
elemental circuit in Fig. 3a. The result is that V. satisfies

dv, V. =E6V(t— (x/v))

it " ZC, 2 o @)

or

IJ' o aVIE— (x/v) . @
(

Ve==< T

When the conductors are loosely coupled, Cy, is relatively small, and
eq. (3) yields the approximation given in Fig. 3a, since

x/v)

(e=§)
_ZiCn [ € 0 aV(E— (x/v) ,,  ZiCmdV(t— (x/V))
Ve==3 Lv, Z:Cn % %~ a - @

The loose coupling approximation not only allows the simplification
of V. but also allows one to neglect the interaction of the idle conductor
on the driven conductor. When this interaction is considered along
with conductor losses, the analysis becomes extremely difficult (see,
for example, Refs. 7 and 8).

Using this simplified model, the total near-end (backward) crosstalk
waveform, V,..(f), and the total far-end (forward) crosstalk waveform,
Vel(t), can be expressed as two independent differential equations:

1 Ln\ , aV(t— (2x/v))
dvne(t) - 5 (zlcm + Z_],) dx__'aT_ (5)
1 _Lnm dVi(t — (I./v))
dVe(t) = 3 (Z1Cm Zl)dx di . (6)
By integrating the variable x over the coupled length /., we have that
1 L.\ [“aV(t— (2x/v)
ne == m + e -
Vie(t) 3 (Z:C Z ) J; o dx (7
= K..[V(t) — V(t — 2Tp)], (8)
where
[ .
Tp = 2= propagation delay over the coupled length
v Ln
Kne = Z [ZlCm + Z].
Similarly,
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1 Ln\ (“dVit—To)
V{e(t) b -2- (Z]Cm Z]) j __dt_ (9)

dV(t — Tp)
=K 2=t 10
Kfet dt ( )

L
ke (ze-L2).

Equations (8) and (10) agree with the earlier results presented in Refs.
3, 4, 9, 10, 11, and 12. These references also contain some useful
discussions of crosstalk associated with printed wiring interconnec-
tions.

Notice that, if Z,Cn = (Lm/Z)), Kr = 0 and V(¢) = 0. This result
forms the basis of the design of directional couplers and occurs quite
naturally whenever the conductors are surrounded by a homogeneous
medium. See Ref. 13 for a discussion of this interesting point. However,
for all the cps considered in this paper, it turns out that Vg (f) # 0.

The simplified model presented in Fig. 3 can be generalized to
include the case when the driven conductor has characteristic imped-
ance Z; and propagation velocity v, while the idle conductor has
characteristic impedance Z, and propagation velocity v.. For this case,

(5) and (6) become:
aV(c X i)
0 U2

where

Lm
dV,e(t) = (ZzC’ + 7. )dx P (11)
aV[t A
1 Ln U
dVie(t) = 3 (Zsz — Z_;) dx o . (12)

By integrating the variable x over the coupled length [., we have

ne(t) =3 (Z:ZC ;ﬂ’l) (U]Ufi)z)
fro sz} o
1 U2
er(t) = E (22Cm )(Uz — Ul)
(98w
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Equations (13) and (14) agree with the results given in Ref. 11, and
they reduce to (8) and (10) when Z; = Z, and v, = v; = 0.

The corresponding results for the case when the driven conductor
has Z,, v; and the idle conductor has Z,, v; can be obtained from egs.
(13) and (14) merely by interchanging Z; and Z; and also v; and v.. In
this manner, one can determine the following general result:

Vne(ts Z2| 02) _ er(t: ZZ, 02) _ ZZ

= - 15
Vne(t, Zl, U]) Vfg(t, Z], Ul) Z] ( )

where
Vee(t, Zi, v;) = near-end crosstalk waveform when the idle con-
ductor has Z;, v;,
and
Vie(t, Zi, vi) = far-end crosstalk waveform when the idle conduc-
tor has Z,, v..
Notice that eq. (15) is independent of time and the propagation
velocities. Also, it can be shown that (15) satisfies reciprocity.

In cp design, one usually attempts to make the characteristic imped-
ance constant throughout the cp or Z, = Z,. However, if Z, # Z, (as it
can be when dealing with interlayer crosstalk), then eq. (15) shows
that both near-end and far-end crosstalk are reduced when the con-
ductor having the lower characteristic impedance is taken as the idle
conductor.

Although egs. (13) and (14) are more general, experimental work has
shown that eqs. (8) and (10) or, more generally, egs. (13) and (14) with
v1 = ve = v are sufficient for characterizing the crosstalk on all the cp
styles of interest in this paper. Also, in order to help simplify the tables
in the appendix, we shall only report on the average interlayer crosstalk
associated with a given conductor pair. This appears to be sufficient,
since interlayer crosstalk is usually of less concern than intralayer
crosstalk.

The results based on the simplified model given in Fig. 3 turn out to
be good approximations for printed wiring boards when the value of
K, is less than about 25 percent. However, even when K. is somewhat
greater than 25 percent, the results based on the simplified model can
still be applied, although they become less accurate in this region.

On all styles of cps, we have found experimentally that max | Ve.(t) |
< max V() for all signals and coupled lengths of interest* in this
paper. Thus, by controlling V,..(£), one also controls V(¢). Accordingly,
we have directed our experimental work toward estimating the mag-
nitude of the near-end crosstalk and only provide experimental bounds
on the intralayer far-end crosstalk for all the cp styles.

* Because of connector limitations, the signal rise times of interest are 2 ns or more
(i.e., a signal bandwidth of 175 MHz or less). The coupled lengths of interest are all less
than 18 inches.
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4.2 Crosstalk resulting from a pulse signal

Let V(t) represent a ramp type of pulse signal given by:

Vot
—, 0=t=T
Vit) = | Tr f
(16)
Vo, t> Tk.

When V, > 0, V(t) represents a rising step signal having a 100 percent
rise time of Tr. This type of signal is convenient for characterizing the
crosstalk resulting from the leading edge of a pulse signal.

In practice, the total near-end crosstalk, NEXT, is usually defined as
the fraction of the pulse drive signal that appears at the near-end of
the idle conductor. Thus, for the pulse signal, eq. (8) yields:

K., 2Tp > Tr
max V()

Vo K,.,(zTD), 2Tp < Tkr.
Tr

NEXT = (17)

When 2T > T, the near-end waveform, V,..(¢), is a trapezoidal pulse
and when 2Tp < Tg, this waveform is a triangular pulse.

Equation (17) shows that the value of K. represents the maximum
value of near-end pulse crosstalk. In the appendix, the experimental
values of K. and 1/v = Tp/l. for all cPs of interest in this paper are
tabulated in Tables A and B of Figs. 4 through 13. By using these
tabulated values and eq. (17), one can readily estimate the NEXT for an
arbitrary pulse-like signal on any cp style.

As discussed in Section 4.1, only the average values of K, for
interlayer, near-end crosstalk are tabulated. To estimate the two
individual values of K,. for interlayer, near-end crosstalk, it can be
shown that each K, value must be multiplied by vZ,/Z: and
VZ,/Z,. The values of Z,, Z,, the characteristic impedances of the
conductors, are also tabulated in the appendix.

The corresponding result for the total far-end crosstalk, FEXT, can
be obtained from eq. (10):

max| V()| _ | Ke|

1
v T (18)

FEXT =

In this case, the far-end crosstalk waveform, Vi(t), is a rectangular
pulse.

For all the cp styles, we have determined experimentally that | K|
= 0.09 ns/ft for intralayer crosstalk. We shall see that this result can
be used to bound intralayer FEXT on all the cps.

4.3 Crosstalk resulting from a periodic signal
If V(t) represents a periodic signal of period T = 1/f,, then
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V(t)= Y ane™, (19)

where
1 T/2
O = -—f Vi(t)e 't dt
—-T/2
and

wp = n27f,.

For this periodic signal, eq. (8) yields

Vie(t) = Kne Y (2ian sin w, Tp)e =00, (20)

n=-—x

If we now define near-end crosstalk, NEXT, as

_ | ac power of Vy.(t) v
NEXT = [ ac power of V(¢) ] ’ 21
then
- 1/2
Y | an sin w.Tp|?
NEXT = 2K, | 22— = 2K... (22)
5l

Equation (22) shows that NEXT = 2K, for all periodic signals.
The corresponding result for FEXT, assuming no jump discontinuities
in V(¢), is

Vie(t) = Kl Y ionwne™ (23)
and
rExT = | 2 POWer of Vi(2) ] (24)
| ac power of V(¢)
- 1/2
Y |anwn|?
=|Ke|l | =—— | . (25)
2 lanl?

n=1

By using the tabulated values of K, and 1/v = Tp/I. given in the
appendix together with eq. (22), one can estimate the NEXT resulting
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from a general periodic signal on any of the cps. Also, by using the
bound on | K. | given in Section 4.2 along with eq. (25), one can bound
the intralayer FEXT on any of the cps.

As an example of a simple periodic signal, let V() represent a
sinusoid of frequency f,. Then egs. (22) and (25) yield

NEXT = 2K, | sin 27f,Tp | (26)
FEXT = | Kp. | L.2nf,. (27)

When f, = (4Tp)”!, NEXT attains its maximum value of 2K,., which is
twice the maximum NEXT resulting from the pulse signal considered in
Section 4.2.

It can be shown that eqs. (26) and (27) are special cases of the more
general results presented in the classical works on sinusoidal crosstalk
presented in Refs. 14 and 15. These references also include the effects
of conductor losses. In our application, the coupled length, I, is
relatively short (I. < 18”), so that conductor losses are negligible over
a frequency range of about 250 MHz.

For small values of f,Tn(= fol./v), eq. (26) yields

NEXT = 47K,of.Tp = 47Kpe é{f—r (28)

In this case, eq. (28) shows that NEXT is proportional to both frequency,
f., and coupled length /. much as is FEXT.
4.4 Crosstalk resuiting from a random signal

Let V(¢) represent a differentiable, stationary random signal having
zero mean and one-sided power spectral density W(f). The correlation
function, p(7), of the random signal is defined by

p(t) = E[V({)V(t+ 7)] = J WA(f) cos 2nfr df, (29)
0

where E = expectation operator.
The correlation function, pn.(7), of the crosstalk waveform at the
near-end of the idle conductor can be determined from eq. (8). Thus,

Pne(T) = -E[ Vne(t) Vne(t + T)]
= K2 [2p(r) — p(r — 2Tp) — p(7 + 2Tp)]. (30)
The power spectral density, Wa.(f), of V..(f) is given by

Wael(f) =4 J pne(T) COS 27fT dT (31)

0

= 4K2. W(f) sin® 2nf Tp. (32)
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For this random signal case, it is reasonable to define the NEXT by

NEXT = 2%, (33)
o
where
one = rms value of V,.(f)
o = rms value of V(¢).
Thus,
One Pne(o)
NEXT = — = | [ = 34
o \/ p(0) @4
1/2
- 2K,,,[1 _£ (2":")] =< 2K, (35)
o
Equation (35) shows that NEXT is bounded by 2K,. for all stationary
random signals.
The corresponding results at the far end are
pre(7) = E[Vi(t) Ve(t + 7)] = —| Kre |*12p” (1) (36)
Wee(f) = [| Kpe | I (2nf)]* W(f) (37)
and
Ofe —p”(0)
FEXT = — = | K. lc\/—— 38
XT = — = | K| 5(0) (38)
= IKfel I"-‘WIG! (39)

where

of = rms value of Vi(?)
B = average number of zero crossings per
second of V(t).
Thus, for all differentiable, stationary random signals FEXT is propor-
tional to the average number of zero crossings per second of V(f).

By using the tabulated values of K. and 1/v(= Tp/l.) given in the
appendix together with eq. (35), one can estimate the NEXT resulting
from a general random signal on any of the cps. Also, by using the
bound on | K. | given in Section 4.2 along with eq. (38), one can bound
the intralayer FEXT on any of the cps.

As an example of a random signal, let

0,2

B B
S hmg=f=fi+s
w() = B 2 2

0,

(40)
otherwise,
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where

B = bandwidth of the signal V(¢)

fo = center frequency of the signal V(¢).
For this case, egs. (29) and (35) yield

One sin 27BTp 2
M e— = JﬁKne “\—"—Q<==m o .
NEXT . 1 o BTo cos 47f,Tp (41)

Notice that, as B — 0, eq. (41) approaches eq. (26), the corresponding
result for the sine wave case.
The result for FEXT is

FEXT = _"é_ = | K| Lw V4f3 + B*/3. (42)

As B — 0, this result approaches eq. (27), the corresponding result for
the sine wave case.

The theoretical developments in Sections 4.2, 4.3, and 4.4 can be
generalized to include egs. (13) and (14) in place of eqs. (8) and (10).
When v, = v; = v, all one needs to do is replace Z,Cn by Z;C, in K.
and Kr. The more general case, v; # v, will not be treated in this
paper, since experimental results show that the propagation velocity
is approximately constant on a given cP.

V. SOME APPLICATIONS
5.1 Selection of a CP style

Since the costs associated with the various cP styles differ signifi-
cantly,' it is very important to select a cP style which is both suitable
electrically and relatively inexpensive. The pulse transmission prop-
erties summarized in Table II and tabulated in more detail in the
appendix can be used to help select such a cost-effective cp for a given
application.

It is also very important that the physical designers and systems
designers using BELLPAC hardware be aware of these basic pulse
transmission properties. The cP transmission properties must be com-
patible with the transmission properties of the backplane, frame wiring,
and the CP components.

5.2 Estimation of crosstalk on a given CP style

By using the theoretical results presented in Section IV together
with the appropriate K,.. and 1/v values given in the appendix, one can
estimate the amount of near-end crosstalk for fine line conductors
carrying a wide variety of signals on any of the cps considered in this
paper. As discussed in Section IV, far-end crosstalk is always less

PRINTED WIRING BOARDS 1009



than near-end crosstalk, usually much less. Also, intralayer, far-end
crosstalk can be bounded by using the experimentally determined
constant | Ke| = 0.09 ns/ft and the theoretical results presented in
Section IV.

Let us consider as an example a pair of adjacent, parallel conductors
on the inside signal layer of the 6L. MLB (INT P/G, surface routing).
From Table B of Figure 12 in the appendix, we see that K. = 0.16 for
two adjacent conductors (Y:Y,;) in the 200-mil channel when the
conductor width and conductor spacing are 8 and 9 mils, respectively.
Table A of this same figure gives 1/v = 1.8 ns/ft. Thus, for a pulse
signal, eq. (17) yields

0.16, 2Tp > Tr
(43)
NEXT = 2T,
(0.16) (—), 2Tp < Tk,
Tr
where
le .
Tp = = propagation delay over the coupled length (ns)
l. = coupled length (ft)
Tr = rise time of the pulse signal (ns).
Also, for the pulse signal, eq. (18) yields
FEXT =< (0.09) i (44)
Tr

Similarly, for a sine wave signal of frequency f,, egs. (26) and (27)
yield

NEXT = (2)(0.16) | sin 27/, Tp | (45)
FEXT < (0.09) [.27f,. (46)

In a very similar manner, one can also estimate the NEXT and bound
the intralayer FEXT for an arbitrary periodic or random signal by using
eqgs. (22), (25), (35), and (39).

By using this method, one can estimate the NEXT and bound the
FEXT for a wide variety of conductor pairs and a wide variety of signal
types on any of the cps considered in this paper.

For a required crosstalk constraint, the theoretical and experimental
crosstalk results can be used to help determine routing restrictions on
coupled length for general types of signals. Alternately, this informa-
tion can be incorporated into computer-aided designs to help deter-
mine whether a routed cp has violated a given crosstalk constraint
associated with a particular signal type. In this manner, a routed cp
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can be analyzed to detect potential crosstalk problems before the cp
routing is finalized for manufacture.

As a final point concerning the estimate of crosstalk, one can also
estimate intralayer NEXT for a pair of adjacent, parallel conductors
having a range of conductor spacings. It turns out that intralayer NEXT
is essentially independent of conductor width (see Ref. 4). Accordingly,
to estimate the value of K..(S) for a pair of adjacent, parallel conduc-
tors (i.e.,, Y,Y,) having conductor spacing S, one can interpolate or
extrapolate the values of K, for S = 9 mils or 13 mils given in the
appendix by assuming that K.(S) is proportional to 1/S. It can be
shown that this is a satisfactory assumption when 7 mils < S < 40
mils, the region of most interest in this paper.

As an example, let us apply this method to a pair of adjacent parallel
conductors having conductor spacing S (mils) on the inside signal layer
of the 6L. MLB (INT P/G, surface routing). For the 200-mil channel,
Table B of Fig. 12 yields the following minimum mean square error
estimate:

Kne (S) = {9)(13) [13Kn€(9) + gKne(13)] = 147.9

(9* + 13%)S )

This method can be applied to pairs of adjacent, parallel conductors
on any cP considered in this paper.

%. (47)

5.3 Electrical comparison of the CPs

The results in Table II and the appendix can be used to compare
the various cps from the electrical point of view. For example, Table
IT shows that, of the three cps containing only two layers of metalli-
zation, namely, the double-sided epoxy, the double-sided metal, and
the bonded board, the double-sided epoxy board is inferior to the other
two. It has a relatively high characteristic impedance and higher values
of intralayer crosstalk. Recall that intralayer crosstalk is more trouble-
some than interlayer crosstalk, which can be reduced considerably by
using orthogonal routing on adjacent layers.

Also, the double-sided metal board is somewhat better electrically
than the bonded board because the impedance variations and crosstalk
are less for the metal board.

Table II also shows that the MLBs having an internal power and
ground plane (INT P/G) are superior electrically to those having an
external power and ground plane (EXT P/G). The MLBs having (INT
P/G) have less impedance variations and yield less intralayer crosstalk.

Notice from Table II that a wire-wrap cP and the double-sided
(epoxy) cP are both inferior to the MLB styles from the electrical point
of view. Also, the double-sided (metal) and the bonded board have
electrical properties which are comparable to all the MLBs having (INT
P/G).
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Finally, the extender board, because of its special design, is clearly
the best electrical design of all the cPs considered in this paper. It has
relatively little variation in characteristic impedance and very low
crosstalk.

5.4 Estimation of the capacitance and inductance of the conductors

In certain applications of the cPs, it is important to have an estimate
of the value of C, the capacitance per unit length, and L, the inductance
per unit length for the conductors on all of the cp styles. This
information is important, for example, when one needs to estimate the
electrical load on a driver circuit for certain ranges of frequency or rise
times. The values of C and L can be estimated from the values of
propagation delay per foot (1/v) and characteristic impedance Z, given
in the appendix for each cp style. Using these values, C and L are
given by
_ (I/v) nf

C Z ft (48)
1 nh

For worst case estimates, 1/v should be increased by about 10 percent,
since the values listed in the appendix are averages over about 20
different conductor paths on each cp.

5.5 Generalization to other dielectric materials
If egs. (48) and (49) are used in eq. (8) to reduce K., we have

1|Cn  Ln

Equation (50) shows that K. is independent of the relative dielectric
constant, e (effective). It can also be shown that the more general K.
discussed at the end of Section 4.4 is also independent of the relative
dielectric constant. Thus, the values of K,. given in the appendix apply
when the cpPs are fabricated with any dielectric material.

One can also show that the propagation delay per foot, 1/v, and the
far-end crosstalk coefficient | K| are both proportional to Ve, , while
the characteristic impedance, Z,, is inversely proportional to Ve, . Thus,
many of the results in this paper can be applied when the cps are
fabricated with other dielectric materials such as ceramic, Teflon, or

polyimide.

5.6 Electrical characterization of backplanes

In the physical design of large electronic systems, various styles of
printed wiring-board backplanes are often used to interconnect cps.
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These backplanes are usually very similar to some cP styles considered
in this paper. Accordingly, many results in this paper can be applied
to help electrically characterize various styles of backplanes.

VI. SUMMARY

A Bell System packaging effort (BELLPAC packaging system) is
now under way to develop a modular packaging system for packaging
electronic equipment. This effort makes use of a suitable connector
(963) and a number of circuit pack (cp) styles (ranging from wire-wrap
cps to multilayer board cps) which have common features suitable for
computer-aided design.

This paper presents some experimental results concerning the pulse
transmission properties of fine line printed conductors (e.g., width = 8
mils, spaces = 9 mils) on various styles of cps which include those in
the BELLPAC hardware family of cps. The pulse transmission prop-
erties include the characteristic impedance, the propagation delay, the
rise time, the bandwidth, and the intralayer and interlayer pulse
crosstalk. Theoretical scaling laws are developed to extend the appli-
cation of the experimental crosstalk results to conductor spaces in the
range of 7 to 40 mils.

A simplified theoretical model is presented which leads, directly, to
some basic crosstalk equations. Also, theoretical results are developed
to extend the application of the experimental crosstalk results to
arbitrary pulse signals, periodic signals, and random signals.

The results in this paper can be applied to the:

(f) Selection of a cp style for a given application.

(i) Estimation of crosstalk on a given cp style.

({ii) Comparison of the electrical properties of the cp styles.

(iv) Estimation of the capacitance and inductance of the conduc-

tors.

(v) Determination of the pulse transmission properties of the cp

styles with various dielectrics.

(vi) Electrical characterization of various styles of backplanes.

The crosstalk results are very important since they tend to limit the
packaging density of printed conductors on the cp styles by limiting
the coupled length and spacing of parallel conductors.
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APPENDIX

Experimental Results
Index to pulse transmission properties

Figure No. Containing

the Pulse Transmission
Circuit Pack Style Properties
Wire wrap 4
Extender board 5
Double-sided (epoxy) 6
Double-sided (metal) 7
Bonded board (LAMPAC) 8
4L MLB (EXT P/G) 9
6L MLB (EXT P/G) 10
6L MLB (INT P/G) 11
6L MLB (INT P/G, surface routing) 12
8L MLB (INT P/G) 13
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W ~TOP
rd
/
q
1
|
300 mils _ ~BOTTOM
I /
1 /
'R J . WIRING SIDE
- = == G, (20Z Cu)
62 mils ' ' C-STAGE [FE P (202 Cu)
‘ COMPONENT SIDE oo !
LAYUP FOR THE WIRE WRAP BOARD
TABLE A

PULSE TRANSMISSION PROPERTIES OF THE

WIRE WRAP BOARD

AWG 30 WITH MILENE INSULATION

AWG 30WITH TEFLON INSULATION

LOCATION CHARACTERISTIC LOCATION CHARACTERISTIC
OF WRAP IMPEDANCE OF WRAP IMPEDANCE
ONPIN {OHMS) ONPIN (OHMS)
ROUTING IN TOoP 175 OHMS ToP 194 OHMS
200 mil
CHANNELS(!! BOTTOM 78 BOTTOM 124
ROUTING IN TOP 158 TOP 164
100 mil
CHANNELS BOTTOM 17 BOTTOM 138

® PROPAGATION DELAY = 1.4 ns/ft. (=1/v, MILENE), 1.3 ns/f1. (=1/v, TEFLON).
®80% RISE TIME ON TDR FOR 1 ft CONDUCTOR LENGTH = 2.0 ns (MILENE) 1.8 ns (TEFLON).
@ BANDWIDTH FOR 1 ft CONDUCTOR LENGTH = 250 MHz (MILENE), 278 MHz (TEFLON).

(1) THE 200 mil CHANNEL ALSO CONTAINS A GROUND PLANE.

TABLEB

K, = MAXIMUM NEAR-END PULSE CROSSTALK') FOR

WIRE WRAP BOARD

VARIOUS WIRE PAIRS ON THE

AWG 30 WITH MILENE INSULATION AWG 30 WITH TEFLON INSULATION
LOCATION CROSSTALK LOCATION CROSSTALK
OF WRAP (TIGHTLY COUPLED | OF WRAP (TIGHTLY COUPLED
ONPIN PAIRS) ON PIN PAIRS)
ROUTING IN TOP 40% TOP 35%
200 mil
CHANNELS'Z) | BOTTOM 16 BOTTOM px}
ROUTING IN TOP 28 TOP 36
100 mil
CHANNELS BOTTOM 23 BOTTOM 13

(1) CROSSTALK WAS MEASURED AS A PERCENTAGE OF THE INPUT STEP.

{2) THE 200 mil CHANNEL ALSD CONTAINS A GROUND PLANE,

Fig. 4—Impedance, propagation delay, rise time, bandwidth, and pulse crosstalk for
the wire-wrap board with 963C-100 connectors.
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T 112 CU-4 B-STAGE

1
: Ys C—STAGE
| T T G
6‘6 T —— T === P
, 315 C-STAGE _
! 02 2
i 2 B8-STAGE

PAD 2

® 2 0Z CU CONDUCTORS @ ALL DIMENSIONS IN MILS

(a) NOTATION FOR INTERLAYER CROSSTALK ON THE
EXTENDER BOARD.

{b) NOTATION E@R INTRALAYER CROSSTALK ON THE
EXTENDER BOARD.

ELECTRICAL CHARACTERISTICS OF LARGEST (7.67" X 14.78")
EXTENDER BOARD (WITH 963C CONNECTORS)

® CHARACTERISTIC IMPEDANCE = 70 + 5 OHMS,
® PROPAGATION DELAY = 1.80 ns/ft.

® B0 % RISE TIME ON TDR = 1.3 ns.

® BANDWIDTH = 385 MHz.

® MAXIMUM INTRALAYER NEXT: Y, Y, =16%

® MAXIMUM INTERLAYER NEXT: §; S, = 03 %

Fig. 5—Impedance, propagation delay, rise time, bandwidth, and pulse crosstalk for
the extender with 963C-100 connectors.
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