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Channel transmission models for use in estimating the performance
of radio systems on line-of-sight paths at 6 GHz are explored. The
basis for this study is the simple three-ray multipath fade, which
provides a channel transfer function of the form H(w) = afl — b exp
— J(w — wo)7], where a is the scale parameter, b is a shape parameter,
7 is the delay difference in the channel, and wo is the (radian)
frequency of the fade minimum. This model is indistinguishable from
an ideal channel model, within the accuracy of existing measure-
ments. The propagation data that confirm the model were obtained
in summer 1977 from a 26.4-mile hop near Atlanta, Georgia. The
received power at 24 sample frequencies spaced at 1.1 MHz and
centered on 6034.2 MHz was continuously monitored and recorded
during periods of anomalous behavior. The model is applied to
estimating the statistics of the channel delay difference, 1. The aver-
age delay difference giving rise to significant selectivity in the channel
is between 5 and 9 ns. The distribution of delay difference is obtained
for delay differences greater than 10 ns. The channel is found to have
more than 3 dB of selectivity (difference between maximum and
minimum attenuation in band) due to delay differences greater than
20 ns for more than 70 seconds in a heavy fading month. (This is
comparable to the time the channel attenuation of a single frequency
exceeds 40 dB.) The three-path model requires further simplification
for narrowband channel application. For a channel with 30 MHz
bandwidth, a model with fixed delay of 6.3 ns provides a sufficiently
accurate representation of all observed channel conditions. The re-
sulting nonphysical model is used to statistically characterize the
condition of the fading channel. The statistics of the parameters of
the fixed delay model are almost independent and of relatively simple
form. The distribution of the shape parameter b is of the form (1 —
b)*?. The distribution of a is lognormal. For b > 0.5, the mean and
standard deviation of —20 (log a) are 25 and 5 dB, respectively; the
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mean decreases to 15 dB for smaller values of b. The probability
density function of wo is uniform at two levels; measuring wo from the
center of the band, the magnitude of wor is five times as likely to be
less than /2 than to be greater. A companion paper describes the
use of this model for determining the bit error rate statistics of a
digital radio system on the modeled path.

I. INTRODUCTION

Performance prediction of a digital radio system on a line-of-sight
microwave channel requires an accurate statistical model of the chan-
nel. Because different digital radio systems may have different sensi-
tivities to the various channel impairments, the model must be com-
plete to the extent that it must be capable of duplicating the amplitude
and phase (at least approximately) of all observed channel conditions.
To facilitate laboratory measurements and computer simulations for
calculating outage, the model should be realizable as a practical test
circuit and should have as few parameters as possible. Most important,
the parameters should be statistically well behaved.

Two types of models have been generally considered for line-of-sight
microwave radio channels: power series type models'™ and multipath
models.*® A power series model will require a few terms only if the
channel is a multipath medium with a small spread of delays relative
to the reciprocal bandwidth of the channel.’ This implies that one
must understand the channel as a multipath medium to understand
the behavior of a power series model. Hence, we have limited our
characterization efforts to multipath models.

The basis for this study is the simple three-ray multipath fade.” If
the fading in a channel can be characterized by a simple three-path
model, the channel will (as shown in Section II) have a voltage transfer
function of the form

H(w) = a[1 — be¥“™7], (1)

where the real positive parameters a and b control the scale and shape
of the fade, respectively, 7 is the delay difference in the channel, and
wo is the radian frequency of the fade minimum. The plus and minus
signs in the exponent correspond, respectively, to the channel being in
a nonminimum phase or minimum phase state. Note that, with appro-
priate choices of parameters, this model can be reduced to a two-path
model or a scaled two-path model, etc.

It has been shown previously,” and is illustrated in Section II, that
the simple three-path fade overspecifies the channel transfer function
if the delay is less than % B, where B is the observation bandwidth.
The critical value of 7 for a 30-MHz channel is about 5.5 ns, which is
comparable to the mean delay in the channel. As a consequence, unless
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the channel response can be determined to an accuracy on the order
of 0.001 dB, a unique set of parameters a, b, 7, and f, cannot be
determined for more than half the faded channel conditions encoun-
tered. To avoid this problem, one must suppress or fix one of the
model parameters. Section II shows that the delay, 7, is the only
parameter which, when fixed, produces a reasonable model.

While a model with a fixed delay may appear to be a strange choice,
it has all the required characteristics for modeling the channel transfer
function. Figure 1 shows the amplitude of the channel transfer function
of eq. (1) on a power scale and on a decibel scale for 7 = 6.31 ns. With
r fixed, the response minimum is shifted with respect to frequency by
varying f,. Varying a changes the overall level and & changes the
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“shapeliness.” If the minimum is within the 30-MHz bandwidth of a
channel, the fixed delay model can generate notches with a wide range
of levels and notch widths. With the minimum out of band, it can
generate a wide range of combinations of levels, slopes, and curvatures
within the channel bandwidth. Section VI shows that the model
versatility, with T chosen to be 6.31 ns, is sufficient to characterize a
30-MHz channel in the 6-GHz common carrier band.

Section II provides a brief discussion of the simple three-path fade.
A comparative discussion of the relative merits of the different possible
simplifications of this model leads to the choice of the fixed delay
model.

The data used for detailed evaluation of models were obtained from
a 6-GHz experiment in Palmetto, Georgia, in June 1977. The radio
channel was equipped with a general trade 78-Mbit/s, 8-PSK digital
radio system, and the received spectrum was monitored with a set of
24 filters with bandwidths of 200 kHz spaced at a 1.1-MHz separation
across this channel. During fading activity, the received power of each
of these frequencies was measured five times each second, or once
every 2 seconds, depending on how rapidly the channel was changing;
sampled power, quantized in 1-dB steps, was recorded by the MIDAS
system.* The data base used for this study consists of approximately
25,000 scans representing 8400 seconds of fading activity; about 8700
scans were recorded during periods when the equipment was indicating
errors. These data represent about 60 percent of the fading activity of
a heavy fading month; therefore, the derived statistics must be viewed
as provisional and subject to some modification as additional data are
processed. At the very least, the data base is sufficiently large to
indicate what can happen on the channel and to form a basis for
choosing and validating a model.

As described in Section III, the model parameters were estimated
for each scan by fitting the magnitude squared of the transfer charac-
teristic [eq. (1)] to the observed channel shape as characterized by the
power received at the sampling frequencies. Phase is subsequently
derived by assuming the channel is minimum phase. Problems are
encountered in realizing a minimum-phase solution because of quan-
tization noise and the presence of certain channel shapes caused by
large delays. The procedure for handling these difficulties is described.

The statistics of the parameters of the fixed delay model are dis-
cussed in Section IV. Equations providing an idealized description of
the statistics of the parameters of the model are also given here.

In Section V, the determination of the delay difference present in
the channel is considered. In the first subsection, it is demonstrated

R ;Multiple Input Data Acquisition System, constructed by G. A. Zimmerman; see
ef. 1.
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that, during the observed period of fading activity, the average delay
is 9 ns. A lower bound on the distribution of delay difference for large
delays is developed in the second subsection. A third subsection
provides an example of a channel scan that can best be approximated
by a three-path fade with a delay difference of 26 ns. Fades with at
least this delay and with a more moderate amount of shape (2 dB or
more) were encountered for about 60 seconds of the data base studied.
Thus, one might expect 26-ns delays to be present during about 100
seconds of a heavy fading month.

The presence of such large apparent delays raises questions as to
the accuracy with which the fixed delay model represents the channel.
These questions are addressed in Section VI where the statistics of the
errors in modeling scan fits are described. The errors are small and do
not compromise the usefulness of the model.

Results and conclusions are briefly summarized in Section VII.

Il. CHOICE OF MODEL

In this section, we provide a brief description of the simple three-
path model and show why it cannot be used to estimate delays when
the delay bandwidth product is less than %. In a comparative discus-
sion, we show why the fixed delay model is the only simplification of
the model that is manageable.

2.1 Simple three-path model

Consider a channel characterized by three paths or rays. The am-
plitude of the signal on each of these three paths, as seen by the
receiver, is 1, a;, and a,. The second and third paths are delayed with
respect to the first by 7, and 7, seconds, respectively, where 7o > r,. We
define the simple three-path model by requiring the delay between the
first two paths to be sufficiently small, i.e.,

(w2 — )T K 1, (2)

where w; and w; are the highest and lowest (radian) frequencies in the
band. The complex voltage transfer function of the channel at a
frequency w may be illustrated with a phasor diagram. Figure 2a shows
the phasor diagrams for w, and w. superimposed. By designating the
amplitude of the (vector) sum of the first two paths by a; the angle of
the sum by ¢ = wer — 7, where 7 is equal to 7, the delay difference in
the channel; and the amplitude of the third ray by ab, we obtain the
simplified diagram in Fig 2b.*

* Note that, if the third amplitude is greater than the sum of the first two, we
interchange the assignments of amplitudes a and ab and obtain a nonminimum phase
fade.
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The simple three-path fade cannot be used for a channel model
because the path parameters lack uniqueness. The basic difficulty is
illustrated by the two superimposed fades in Fig. 3. Note that the
amplitudes of the transfer functions of these two fades match, at

Hiw) = 1+a1e” %7y + a, e iwr2

1

H{wq)
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Fig. 2—Simple three-path fade. (a) Three rays shown. (b) Simplified.
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Fig. 3—Two degenerate simple three-path fades with wor = 0.
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midband and at both edges. It has been shown elsewhere’ that fades
matched in this way will be identical in band to within a few tenths of
a decibel at most, and will have almost identical envelope delay
distortion. Given noisy quantized measurements of | H(w) | over the
band, it is impossible to distinguish between such fades unless we fix
one of the four parameters. Let us consider each of the four possibili-
ties.

2.2 Pseudo two-path fade

If one fixes the amplitude, a, at unity, the simple three-path fade
reduces to a two-path fade with independent control of the frequency
of the minimum of the response. The difficulty with this model, as
may be seen by referring to Fig. 2b, is that it can provide in-band
minima only for | H () | < 1 and maxima in-band only for | H(w) | > 1.
In other words, the model cannot match an in-band maximum at an
arbitrary fade level. In addition, it was found that during approximately
half the periods when the radio equipment was indicating errors, the
channel could not be well modeled with a pseudo two-path model.

2.3 Scaled two-path fade

If one fixes the phase, ¢ = wor — m, in the simple three-path model
at 0, the fade reduces to a scaled two-path fade. (For a two-path fade,
we require the additional condition a = 1.) This is the most physically
desirable of the reduced three-path models because it may be derived
without recourse to the three-path formalism. Unfortunately, it is
mathematically intractable, particularly when dealing with amplitude
data only. In fitting the model to a given channel shape (in the manner
described in Section III for the fixed delay model), one obtains a
function of @, b, and  that must be minimized to obtain the best fit.
Because of the wr term in the exponent of the model, this function has
a local minimum in every interval of 7 of length 0.17 ns, the reciprocal
of 6 GHz. Since the possible range of 7 extends to about 30 ns, one
may have to perform hundreds of minimizations to find the best fit to
a single channel scan. Even then this “best fit” may have no minimum
phase realization, and there is no known procedure that leads to one.

2.4 Fixed b model

If one fixes the amplitude b in the simple three-path model, the
resulting reduced model has all the mathematical difficulties of the
scaled two-path model and no satisfactory physical interpretation.

2.5 Fixed delay model

It is demonstrated in the remainder of this paper that the fixed
delay model described in Section I is useful and effective in character-
izing the channel.
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. ESTIMATION PROCEDURES

This section describes how the model parameters are estimated from
the channel scans and how realizability difficulties are surmounted.

3.1 Parameter estimation

The channel data consist of a set of 25,000 scans of the channel
power spectrum. Each scan consists of a power measurement at each
of 24 frequencies at 1.1-MHz spacing across the channel. (Actually,
only 23 frequencies are used since the 19th was inoperative during this
test period). The power measurements are recorded in decibels, and
each must be referenced to the average power level of that frequency
at mid-day. With proper conversion and calibration, the basic data
characterizing a scan are a set of power ratios. We designate the power
ratio at nth frequency by Y., where

Y, = Y(wn) n=1,2,.-.,24 (3)

We wish to model the channel with a voltage transfer function of
the form given in eq. (1), which we repeat here for convenience

H(w) = a[1 — be¥“0], (1)
Thus our estimate of Y, will be
Y. =| H(wa)|? = a — B Cos(wn — wo)r, (4)
where
a=d(1+b)
B = 2a%. (5)

For convenience, we measure frequency in the units of the frequency
separation of the power measurements. Thus,

wp=27f, =2mrn(1.1xX10° n=1,23,-.--,24. (6)
If we choose
1
TTN@ILLIx 109" ™
then
n
WaT = 27 N (8)

For the fixed delay model, we choose N = 144 which gives a model 7
of 6.31 ns. Thus, the in-band frequencies correspond to n values
between 1 and 24, and the channel transfer function given by the
model is periodic for n modulo 144, corresponding to a frequency shift
of 144 % 1.1 X 10° = 158.4 MHz.
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The weighted mean-square error between the estimated and ob-
served power is given by

24
z Cn(Yn - Yn)z
n=1

E =

2 ’ 9)
2 Ca
n=1

where the summation skips n = 19 as described above, and where C,

is a weighting applied to the measurement at frequency w.. Since the

original data, from which the Y,’s were derived, were uniformly quan-
tized on a logarithmic scale, it is appropriate to use a weighting that is
approximately logarithmic. Hence, we use the weighting function

1
Y.

A number of different weighting functions were tested, but the one
given by (10) is, generally, the most satisfactory.

Estimates of a, b, and f, may be obtained by minimizing the weighted
mean-square error, E. It is shown in the appendix that one may obtain
closed form estimators for a, 8, and f, by substituting eq. (4) into (9)
and minimizing E, first with respect to a, then with respect to 8 (or
vice versa), and last with respect to f,. In the resulting scheme, the
estimator of f;, the frequency of the model minimum, is a function of
data only. The estimators of « and B are functions of the estimated f,
and the data.*

After estimates of a and 8 have been calculated, the parameters a
and b of the model are obtained by inverting the relationships given

by eq. (5).
o « 2 1/2
b=-—|(=5] -1 11
B [(B) ] a

~ B 1/2

1t is clear from (11) and (12) that we can realize the channel shape
with the model only if a = B. This is to be expected. Since | H(w)|* is
a power transfer function, it must be positive for all frequencies, which
is possible only if a = B [see eq. (4)]. Thus, the condition a = 8 allows
us to obtain a minimum (or nonminimum) phase transfer function
whose magnitude squared is the minimum weighted mean-square error
fit to the observed power transfer response of the channel.

Cn= (10)

* For mathematical simplicity, we actually use an estimator for 8 conditioned on £,
a, and the data.
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3.2 Application of estimators

If the procedure described above is strictly applied to the set of
25,000 scans in the data base, one finds that about 35 percent of the
scans cannot be modeled with real values of a and &. A study of these
problem scans revealed that the estimator for f,, the frequency of the
fade minimum, was biased for two types of scans. One type is a scan
with little shape, dominated by quantization noise; the other is a
selective channel shape having a steep slope across the band. Both
types of scan are illustrated in Fig. 4. The scan in Fig. 4, which is
almost flat, was fabricated to illustrate the severity of the quantization
problem. The other scan is typical of the more shapely troublesome
scans.

To obtain a good realizable fit to such channel shapes requires
degrading the quality of the fit; that is, moving the parameters away
from the values that minimize the fit error, eq. (9). Given the form of
the estimation scheme, this is easily accomplished by moving the
frequency of the fade minimum, f,, away from its original “optimum”
value and reoptimizing the remaining parameters to obtain values of
a and b that are optimum for the new value of f,. Figures 5 and 6
illustrate the results of such a quasi-optimization regarding f, as a free
parameter. They show the fit error E and the values of @ and b as f, is
varied from its original optimum value. Figure 5 corresponds to the
flat fade in Fig. 4 and Fig. 6 to the sloped fade.

The shapes of the curves in Figs. 5 and 6 are typical of those
obtained when the channel has no minimum in band. The weighted
error in the fit, E, is not very sensitive to the estimate of f,, the

20

N

22 JUNE 1977

0= 7 22h, 48m, 23.2 5

CHANNEL ATTENUATION IN DECIBELS

40 1 | | 1 ]
-15 =10 -5 0 b 10 16

FREQUENCY MEASURED FROM MIDBAND x 1.1 MHz

Fig. 4—Two channel scans that produce realization difficulties.
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Fig. 5—Locus of weighted fit error and model parameters with £, as a free variable for
flat fade in Fig. 4.

frequency of the modeled fade minimum. The minimum of E is broad
and flat, due to quantization and instrumentation noise in the channel.
The variation of the parameter a with f; is also typically very gradual.
The salient features of the variation of b with respect to f, are clearly
seen in Fig. 6, and are also present and labeled in Fig. 5. As f, is varied
from its original optimum value, b varies from a value of 1 to a value
of 0 in a sideways s-curve with two stationary points, a maximum and
a minimum. Extensive simulations with known channel characteristics
indicate that a good choice of parameters is the set corresponding to
the point where b is locally minimized. To illustrate this point, assume
that the channel shape is that given by the model, with 6.3-ns delay,
f> at 18,5 X 1.1 MHz, a = 0.04, and b = 0.7. One can construct a plot
similar to Figs. 5 and 6 for this simulated fade, with the result shown
in Fig. 7. The curves in this figure illustrate the results cited above, in
that the true value of f, occurs near a minimum value of 4. A better
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Fig. 6—Locus of weighted fit error and model parameters with £, as a free variable for
typical scan in Fig. 4.

choice for the case shown and for others that have been simulated
would be “on the shoulder” between the minimum and & = 1; however,
such a criterion is difficult to quantify.

To summarize, if the standard routine does not provide a realizable
fit to a scan, one merely varies f,, the position of the minimum, until
one obtains a realizable solution with a value of b that is stationary*
with respect to variations in f,. We recognize that this procedure
introduces additional sources of error into the estimates of the model
parameters. The errors in @ and b are small because b is near a
stationary value and a is slowly varying. The error in f, is also small,

* Since b is a monotone function of a/B, it is only necessary to invert solutions with
stationary values of the ratio, a/B.
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usually less than 3 MHz, but is always in the direction corresponding
to moving the minimum nearest to the band closer. We consider the
effects of these errors in Section VL.

IV. MODEL STATISTICS

Applying the procedures described in Section III to the scans in the
data base results in 25,000 sets of values of a, b, and f,. The relative
joint frequency of occurrence of these three parameters may be de-
scribed by the set of distribution functions shown in Figs. 8 to 12. The
distribution of the parameter b is described in Fig. 8 in terms of the
distribution of —20 log (1 — &), which is approximately exponentially
distributed with a mean of 3.8 dB. This distribution gives the time
that b exceeds the value given by the abscissa as a fraction of the time
in a heavy fading month that the rms level in the channel is depressed
by more than 15 dB. For instance, we see that 40 percent of the time

(b}

—20 Log (1-b)

25 —
(a)

—20 Log (a)

30—

(E)

-5 Log (E)

50 —

55 | ] | 1 ]
-10 0 10 20 30 40 50
x 1.1 MHz

FREQUENCY OF MODEL MINIMUM MEASURED FROM MIDBAND

Fig. 7—Locus of weighted fit error and model parameters with f, as a free variable.
For channel given by model with r = 6.31 ns, a = 0.04, b = 0.7, f, = 18.5 X 1.1 MHz.
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1074 | ]
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—20 Log (1—b) IN DECIBELS

Fig. 8—Distribution of b.

when the channel is depressed the value of b exceeds 0.3. It exceeds
0.7 for 4 percent of that time, and 0.99 about 0.3 percent of that time.
The distribution of b can be modeled in the form

20

P(l-b<X)=Xx"1"8"0_ x23 (13)

The distribution of @ is conditioned on b and is approximately
lognormal as shown in Figs. 9 and 10. The mean and standard deviation
of the distributions in Figs. 9 and 10 are plotted in Fig. 11. From Figs.
9 to 11 it is apparent that a and b are almost independent; however,
less shapely fades tend to occur at less depressed values. We note that
shape occurs when the average depression is 20 to 25 dB,* that the

* The value of a corresponds to average power level over a large frequency span and
not strictly to the average power in a narrowband channel.
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Fig. 9—Distribution of a conditioned on the value of b for =20 log (1 — &) less than
8.5 dB.

average depression is near 25 dB for b greater than 0.7, and that it falls
off gradually to 15 dB for small 4. The distribution of A = —20 log a is
conditioned on & and may be modeled as

Y—A.,(b)]

P(A>Y)=1—P[ 5 (14)

where P is the cumulative distribution function of a zero mean, unit
variance, and Gaussian random variable, and A,(b) is the mean of A
for a given value of b as given in Fig. 11. We see from Fig. 11 that the
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standard deviation of A may be taken as 5 dB regardless of the value
of b; the variations near —20 log (1 — b) = 20 are due to small sample
problems.

Figure 12 shows the time during which scans had f, in 4 X 1.1-MHz
frequency intervals. It is, in effect, an estimate of the density function
of the distribution of f, and is, consequently, quite noisy. The maxima
near = 30 X 1.1 MHz from the center of the band are due in part to the
movement of estimates of f, to achieve realizability. While, on physical
grounds, one would expect £, to have a uniform distribution, the fixed
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delay model is decidedly not a physical model. Consider a simulated
set of simple three-path fades having a uniform distribution of £, fixed
values for a and b, and a delay r, fixed at a value other than 6.31 ns.
This set of fades will engender a nonflat probability density function
for the f,’s obtained in fitting to the 6.31-ns model. The probability
density function is flat within the band regardless of the fixed delay of
the set of simulated fades; however, it will more nearly resemble that
shown in Fig. 12 if the delay of the set is greater than 6.31 ns than if it
is less than 6.31 ns. In short, Fig. 12 is characteristic of a channel with
a considerable fraction of delay differences greater than 6 ns.

Based on Fig 12, we approximate the probability density function of
fo by a two-level function. Note that f, is defined on an interval of
length 1/7, where 7 is 6.3 ns the delay of the model. Thus, with f,
measured from the center of the band, the probability density function
for f, may be approximated by

bt 1
- lhl=—
3 47
pr(fo) = . 1 1 (15)
- —_—<< < —.
3 4r 7] 27
30
25 MEAN, Ag
20
]
w
@ 50
[&]
w
a
10f
STANDARD DEVIATION
5
0 | I ] I |
0 4 ) 12 16 20 24

—20 Log (1-b)

Fig. 11—Mean and standard deviation of the distribution of —20 log a as a function
of —20 log (1 — b).
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Fig. 12—Time that model parameter, f., was in intervals of width 4 x 1.1 MHz.

An extensive examination of various conditional distributions has
established that there are no other obvious and pervasive dependencies
among the statistics of the parameters.

V. CHANNEL DELAY DIFFERENCE

This section presents some results obtained in estimating the chan-
nel delay difference. Some techniques described here are used in the
error analysis in Section VI. Three topics are considered in this section.
First a simple method is presented of estimating the average delay
spread in the channel. A second subsection shows that the distribution
of large delays (larger than 10 ns) can be obtained for a simple three-
path fade model. The delay distribution is shown to be consistent with
the estimate of average delay. A third subsection illustrates the prob-
lem with an observed channel shape that can be matched most
successfully using a simple three-path model with a delay of approxi-
mately 26 ns.

5.1 Mean delay difference in the channel

The mean delay difference of a channel that can be characterized by
a simple three-path model is easily estimated. Consider a fade with a
delay, . If £,, the frequency of the minimum, is uniformly distributed,
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the probability that such a fade produces a minimum in a band B Hz
wide is equal to the ratio of the bandwidth to the spacing of the
minima, or

— = Br. (16)

If p(7x) A7 is the fractional number of fades having delays between (A
—1)Arand kA, then the fractional number of fades having a minimum
in band will be Pyin, where

Puin =Y Bryp () At = BT (17)
k
and
T=Y np(re)Ar = f Tp(t)dr. (18)

It follows from eq. (17) that one may estimate the mean delay, 7,
from a knowledge of P, the fractional number of scans having a
minimum in a band of width B. Since any method of determining Py,
is acceptable, consider estimates of Pp,in from the parameters estimated
using the fixed delay model. The method of estimating the frequency
parameter in the model involved moving null positions of some fades
that had out-of-band minima. These fades can be excluded by using
only the central two-thirds of the band in estimating 7. Of the 24,920
scans in the data base, 3974 had minima between the 4th and 20¢h
frequencies. Hence,

_ [ 3974 1
T {24920} ExLIx10° 1m (19}

One might argue that the mean delay should be estimated for a
more carefully screened set of scans. Table I shows the mean delay
estimates obtained from scan populations qualified by having the
estimate of the model parameter a in a given 5-dB interval. Table IT

Table |I—Mean delay for scans selected by value of
parameter, a

—20 Log a, dB Number of Scans Scans "IgithdMin' in Delay, 7, ns

an
0-5 101 31 17.4
5-10 725 235 18.4
10-15 4299 875 11.6
15-20 6891 1161 9.6
20-25 7644 906 6.7
25-30 4184 606 8.2
30-35 1019 159 8.9
All 24920 3974 9.1
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Table Il—Mean delay for scans selected by value of
parameter, b
Scans Vg;tllllde. N pelay, 7 ns

—20 Log 1-b, dB Number of Scans

0-2 10,442 1186 6.5
2-4 7040 1712 13.8
4-6 3721 538 8.2
6-8 1474 191 74
8-10 892 118 7.5
10-12 527 68 7.3
12-14 282 28 5.6
14-16 190 21 6.3
16-18 146 46 17.9
18-20 99 32 18.4
All 24920 3974 9.1

shows mean delay estimates qualified by the model parameter b, which
specifies the shapeliness of the fade.

With several exceptions, the estimated delay spreads given in Tables
I and II are reasonably constant. One exception is seen for large values
of b (—20 log 1 — b greater than 16). This is consistent with a channel
for which large differential attenuation across the channel is more
likely to occur when long delays are present. The existence of such a
correlation should not be surprising. The other exception is the large
delays estimated for small values of b and for values of a between 0
and 10 dB. We provide strong evidence of the existence of such a class
of fades in the next subsection. The existence of this subclass of fades
suggests that they have a different physical source than the other
fades in the population.

5.2 Distribution of delay difference

To further enhance our knowledge of the distribution of delay in the
channel, the data base was processed to extract a delay estimate.
Recall that, for the fixed delay model, parameter estimates are chosen
to minimize the weighted fit error [E in eq. (9)] for a given fixed 7.
The present calculation was performed for a set of different values of
r and the value which produced the smallest weighted fit error and
corresponded to a realizable fade was designated as the delay for that
scan if it met certain qualifications.

Because of the degeneracy in the simple three-path model, changing
the delay in the fixed delay model will not appreciably improve the fit
for any scan that can be well approximated by a fixed delay of 6 ns or
less.” In performing the optimum delay calculation, the weighted fit
error was minimized for a predetermined set of delays; the differences
between adjacent delay values were chosen to be approximately 15
percent. A given scan was assigned a delay different from 6.3 ns only
if the third best value of the weighted fit error was at least 0.1 dB
worse than the best value. (We use the third best value because we
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must examine three values to detect a minimum.) This criterion sets
a threshold on the acceptable sharpness of the minimum in the fit
error with respect to changes in delay.

The selection criterion was chosen, after several iterations, to insure
regularity in the estimates derived from successive scans. With the
chosen criterion, the scans that were assigned a new delay occurred in
groups of consecutive scans and may be said to constitute fading
events. During any of these events, the delay was consistent in that
indicated delays were within +15 percent. If we assume that the
physical channel does not change between scans, we can associate a
time with each scan and plot the distribution of the time periods
during which the characterizing delay was greater than a specified
delay.

A series of such plots, conditioned on the concurrently estimated
value of b, is given in Fig. 13. The uppermost curve contains the data
derived from all scans which met the selection criterion; its shape is

1000

ALLb

b>0.115

b>0.170

SECONDS OF DATA CHARACTERIZED BY DELAY GREATER THAN ABSCISSA

0.3 | | 1 |
0 10 20 30 40 50

DELAY IN NANOSECONDS

Fig. 13—Distribution of optimum delay for simple three-path model, as qualified
by realizability, the sharpness of minimum, and by several values of the model
parameter b.
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dominated by the 627 seconds during which the channel was best
modeled by a delay of 43 ns (the largest delay in the test set) or more,
but had little shape (& < 0.115). These characteristics contribute to
the large (18 ns) mean delays noted in the previous subsection for
small values of 5. They may be due to quantization but are apparently
not artifacts of the estimation scheme. Although the origin of this type
of channel defect is currently not understood, it should not trouble
any existing radio system.

It is apparent from the distributions in Fig. 13 that very few scans
qualified for a new delay with delays less than 10 ns. Consequently,
the distribution should not be trusted for delays less than 12 or 15 ns;
beyond 15 ns, it may be interpreted as a lower bound to the true
distribution. The three curves qualified by the parameter b correspond
to fades with peak-to-peak variability of 2, 3, and 6 dB. (Peak-to-peak
variability is 20 log(1 + b/1 — b), as may be seen in Fig. 1.) If the delay
were exponentially distributed, the distribution of delay would be a
straight line on Fig. 13 and would have the form

P(r>x)=¢e*". (20)

Fitting a straight line to the three distributions in Fig. 13 for which b
> 0.115 shows that the average delay decreases with increasing . The
corresponding values are 5, 5.5, and 11 ns. Note that this implies that
b and 7 in a simple three-path model are not independent.

5.3 An example of a long delay scan

To confirm the existence of long delay scans, consider an event that
covered approximately 10 seconds on 22 June 1977, from 23 h, 28 m, 54
s. A representative scan from the middle of this period is shown with
the fit obtained with the fixed delay (6.3 ns) model in Fig. 14a. To
emphasize the consistency of this channel condition, an average of the
channel condition for the central 4.2 seconds (21 scans) of this event
is compared to the selected scan in Fig. 14b.

It is apparent from Fig. 14a that the 6.3 ns delay does not have
enough curvature (delay is too short) to precisely model the channel
shape. Figure 15 shows the same scan modeled by three-path fades
having delays of 22.7, 26, and 30.3 ns. The 26-ns fit is the best; it has
a weighted fit error 0.4 dB better than the 22.7-ns fit and 0.8 dB better
than the 30.3 ns fit. However, the closeness of all three fits illustrates
the difficulties in estimating channel delay differences. Visually, one
would choose the 26-ns model on the basis that the 30.3-ns fit has too
much curvature and the 22.7-ns fit too little.

VI. ERROR ANALYSIS

To verify that the model adequately represents the transmission
characteristics of the channel, we examine the errors between the
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Fig. 14—Scan from 22 June 1977, 23 h, 28 m, 48.6 s. (a) Comparison with fixed delay
model. (b) Comparison with average of scans from 23 h, 28 m, 464 s to 23 h, 28 m,
50.4 s.

channel as observed and as modeled. In this section we consider the
statistics of the rms errors and the maximum errors.

6.1 RMS errors
A useful measure of the quality of the fit of the model to a given

channel scan is the root-mean-square value of the decibel error at each
of the sampled frequencies. Denoting this error as E,..,, we have

23 n=1

n¥l9

L 172
Erps = [— ¥ (dB error atfn)z:l . (21)

The model parameters were estimated, as described in Section ITI, to
minimize the error, E, which is a weighted sum of the squares of the
power differences at each frequency [see eq. (9)]. The weighting was
chosen [eq. (10)] so that the error E would approximate the error E, .,
as given by eq. (21).* Indeed, one may show directly that the two
expressions are equivalent as long as

|1—§3|<<1fora]ln. (22)

* Note that the parameter estimation problem cannot be solved in closed form by
minimizing E, ..
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Fig. 15—Model fits to long delay scan for three different model delays.

As we have seen in Fig. 14, this inequality is not always satisfied.
Consequently, in using E,.. as a standard of comparison, we are
evaluating not only how well the model fits the observed channel, but
also how well we have chosen the parameters to make the match.

The error E,s is a desirable quantity to work with because we can
estimate its distribution under the assumption of perfect matching.
We observe that if the decibel error were Gaussian with unit variance
and zero mean, 23 EZ,, would be a x® variable with 20 degrees of
freedom (to account for the three parameters estimated per scan).
Observations of a simulated channel with the transmitter and receiver
back-to-back indicate that the instrumentation errors are approxi-
mately Gaussian with a standard deviation, o;, of about 0.65 dB.
Observations of the channel at mid-day with the channel nominally
flat and unfaded indicate that the standard deviation of the errors is
between 0.68 and 0.73, varying frequency to frequency and day to day
by a few hundredths of a decibel. Hence, if we enter a table of the x*
distribution, @ (x*|20), with

2 _ 28 Elns

e (23)

X
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we can determine the distribution of E,., under the assumption of
perfect matching.* This distribution is shown as a reference on
Figs. 16 and 17. It is indicated by a solid curve labeled “ideal” for o;
= (.70 and by o’s for a; = 0.75.

Figure 16 presents the distribution of the rms error for two scan
subpopulations using the fixed delay (6.3 ns) model. The subpopulation
of the distribution labeled “standard” consists of all scans that could
be modeled directly; the distribution labeled “modified” shows the rms
error distribution for all scans which required an adjustment of the
frequency of the modeled fade to achieve realizability. Figure 17 shows
the distribution of the rms error for the composite of all samples using
the fixed delay (6.3 ns) model. The distribution labeled simple three-
path model indicates the error distribution that was obtained when
the scan fitting allowed unqualified variation in model delay to achieve
the best fit. That is, the calculation described in Section 5.2 was
performed and the results were qualified only on the basis of realiza-
bility.}

In each case described above, the mean value of the rms error is
close to the median value. For the two subpopulations shown in Fig.
16, the calculated mean fit errors correspond to o; values of 0.76 and
0.85 dB, or the errors are about 0.09 dB larger when a realizable fit is
obtained by varying the frequency of the model minimum. Comparing
the composite distributions in Fig. 17, we find that the mean error in
the fixed delay (6.3 ns) model corresponds to o; = 0.78 dB or about
0.08 dB higher than that observed when the channel is quiescent. The
simple three-path model has a distribution of rms error that very
nearly matches the ideal distribution (with 19 degrees of freedom) for
o; = 0.75. This is consistent with the instrumentation error imputed to
the standard distribution in Fig. 16 and is indicative of the instrumen-
tation error in the presence of multipath fading. It is exceptionally
good considering that the data are obtained from time sequential
measurements on a dynamically changing channel. One concludes that
the modeling error is negligible for the simple three-path model. For
the fixed delay model under the assumption that the instrumentation
and modeling errors add in quadrature, the modeling error has a
tolerable value on the order of 0.2 dB. That is,

[(0.75)* + (0.2)*]"* = 0.776.

The tails of the distributions in Figs. 16 and 17 for large errors are
of considerable interest. The tails near small values are of little

* From the central limit theorem, we know that E7,., will be approximately Gaussian,
as is x?, regardless of whether or not the measurement errors are precisely Gaussian.

i ﬁote that although one cannot always reliably localize the values of the parameters
in fitting with the simple three-path model (see discussions in Section 2.1 and Ref. 7),
the error in the fit is always well defined.
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Fig. 16—Distribution of rms fit error for two scan subpopulations with fixed delay
(6.3 ns) model.

consequence; they are distorted by quantization because one cannot
associate any error with the 12 flat fades included in the data base.
The deviation of the distributions from the ideal distribution at large
errors is significant.

The large deviation of the modified fits in Fig. 16 reflects the failure
of the fixed delay (6.3 ns) model to accurately fit the long delay fades.
The tail deviation from ideal is modest down to about the 0.5 percent
level, corresponding to a few tens of seconds per month. For compar-
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Fig. 17—Distribution of rms fit error for composite population with fixed delay and
simple three-path models.

ison, we note that the rms error of the fit shown in Fig. 14a is 2.3 dB;
this was the worst fit encountered for the fixed delay (6.3 ns) model.
However, even in this case the model failure is hardly describable as
severe. The model of the channel is depressed by 40 dB and has 9.5 dB
of gain slope; the actual channel is depressed by 39 dB and has 11 dB
of gain slope. Also, we note that the 6.3-ns delay model has the
response minimum at about the same frequency as the best represen-
tation, the 26-ns delay model shown in Fig. 15.
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The deviation of the tail of the error distribution for the three-path
fade (Fig. 17) reflects the fact that there are fades that even this model
has difficulty in fitting. An example of such a fade is shown in Fig. 18
along with the fit provided by the fixed delay (6.3 ns) model. The same
rms error (1.6 dB) is obtained for all values of model delay between
0.05 and 9 ns; the fit degrades for larger delays. Either more than three
rays are needed to describe the channel shape in Fig. 18, or the channel
is so depressed that the amplitudes in the notch are distorted due to
closeness to the noise level in the measuring equipment. The scan
shown in Fig. 18 is one of three similar scans and has little statistical

significance.

6.2 Maximum errors

Another type of error that can be used to judge the quality of the fit
of the model to the channel is the worst-case error. That is, after fitting
to each scan, one records the magnitude of the largest difference (in
decibels) between the observed channel shape and the shape calculated
from the model. The following paragraphs consider the distribution of

these worst-case errors.
As in the preceding subsection, we can calculate an ideal distribution;

however, the ideal distribution is not as realistic in this case since it is
strongly dependent on the tails of the distributions of the individual
measurement errors. We assume that each power measurement had

20

30

~~FIT FOR
T = 631ns
a = 0.0650
b = 0.9108

35— fo= —8.4Bx 1.1 MHz

CHANNEL ATTENUATION IN DECIBELS

E=49.0dB
a0 - Epms = 1.6dB
Emax = 3.9d8B
45 | L | | I
-15 —10 -5 0 5 10 16

x 1.1 MHz
FREQUENCY MEASURED FROM MIDBAND

Fig. 18 —Severe fade observed on 22 June 1977 at 22 h, 29 m, 8.6 s.
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an error in decibels that was Gaussian, with zero mean, a standard
deviation of v20/23 o; to account for the three parameters estimated
from the 23 observations per scan,* and that the errors are independent
frequency to frequency. If the probability of any one measurement
having an error less than x is denoted by Pi(x), the probability that all
23 have values less than x is

Py(x) = [Pi(x)]* . (24)

This is the probability that the maximum error is less than x, whereas
we want the probability that it is greater than x which we denote
@23(x). It follows immediately from eq. (24) that

Qul(x) =1-— [PL(JC)]23
=1-[1- x5 (25)

The distribution given by (25) is used as a reference in Figs. 19 and
20, which show the distribution of the maximum error for the same
cases as in Figs. 16 and 17. Since the tails of these distributions are
well behaved for larger errors, the distribution of the maximum errors
is apparently dominated by the instrumentation noise. That is, if we
use for the standard deviation of the measurement noise the value
obtained from the mean of E,,, for one of these cases (as given in
Section 6.1), the resulting worst-case error distribution calculated with
eq. (26) will closely match the observed maximum error distribution.

Vil. CONCLUSIONS

By analyzing the errors in fitting the observed channel characteris-
tics in Section VI, we demonstrated that the simple three-path fade
model is indistinguishable from a perfect model of a line-of-sight
microwave radio channel.

The simple three-path model was used in Section V to characterize
the channel delay difference. By two different methods, it was shown
that, when there is 3 dB or more shape present in the channel, the
average delay difference is between 5 and 8 ns. We developed a lower
bound on the tails of the distribution of delay difference. From these
results, which are shown in Fig. 13, we observe that a differential
channel attenuation in-band of 3 dB or more may be due to delay
differences as great as 43 ns. In another dimension, one would expect
to see differential attenuation of 3 dB or more in-band due to delays
greater than 20 ns for at least 70 seconds in a heavy fading month.
This is comparable to the time the channel attenuation at a single
frequency exceeds 40 dB.

* For comparisons with the three-path model, it is appropriate to use v19/234;.
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Fig. 19—Distribution of maximum (dB) fit error for two scan subpopulations with
fixed delay (6.3 ns) model.

From the error analysis in Section VI, we also conclude that the
fixed delay (6.3 ns) model is a very good approximation to the channel
for all observed conditions. This conclusion is further substantiated by
Figs. 14 and 18, which show the scans for which the fits with the fixed
delay model exhibited the largest rms fit error (2.3 dB) and the largest
maximum error (3.9 dB), respectively. The fixed delay model is pref-
erable to the three-path model for channel modeling because it requires
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Fig. 20—Distribution of maximum (dB) fit error for composite population with fixed
delay and simple three-path models.

only three parameters, and these can always be uniquely determined
from a channel amplitude scan.

The statistics of the parameters of the fixed delay model as described
in Section IV and shown in Figs. 8 to 12 provide the means of
statistically generating all the channel conditions that one expects to
see on a nominal hop channel operated at 6 GHz. If one determines,
by laboratory test, the parameter values that will cause a particular
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error rate in a digital radio system, one can easily calculate the time
during a heavy fading month that the error rate will equal or exceed
this critical value. A companion paper describes the laboratory test
and the required calculations.®

Future work will be directed toward verifying the model and model
statistics with additional fading data obtained both at 6 GHz and at 4
GHz. Using coherent data obtained in 1973, it will be possible to
determine the extent to which the channel is actually a minimum
phase channel.
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APPENDIX
Estimation of Parameters

The problem of estimating the parameters «, 8, and £, in Section III
is equivalent to the problem of determining the first three terms in a
subharmonic Fourier series expansion of a function in the frequency
domain. Since such expansions are not standard, we provide a complete
description of the methodology here.

From eqs. (4) and (9), we may express the weighted mean-square
error between estimated and observed power as*

_ 2 Ca(Ys — a + B cos(wn — wo)7)*

E A (26)
For simplicity, we use a normalized weighting function, d,, defined by
dn = zcén 27
so that
Yd.=1 (28)
In terms of the normalized weighting we may write (26) as
E =Y du(Y, — a+ B cos(wn — wo)7)? (29)

* Throughout this appendix, all summations are taken over all values of n correspond-
ing to all frequencies observed in a scan.
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6r in expanded form as
E=Yd.Y:+ o+ B dncos’(wn — wo)T
+ 28 Y dpY.cos(w, — wo)T
— 2af Y, dncos(wn — wo)T — 2a Y, du Y. (30)

The error E is a minimum when «, 8, and wo are chosen so that the
partial derivatives of E with respect to «, 8, and w, are all equal to
zero. Setting the partial derivative of eq. (30) with respect to 8 equal
to zero and solving for 8 gives

a Y dncos(wn — wo) T — ¥ dnYncos(wn — wo)T
Y dncos®(wp, — wo) T

B = (31)

Substituting (31) into eq. (30), we find Ej, the error minimized with
respect to f3, as

1
Y dacos*(wn — wo) T

(Y, dncos?(wn — wo)T — (¥, dncos(wa — wo)7)?]

— 20 [(Y dn Ya) (T dncos®(wn — wo)7)

— (Y, dncos(wn — wo) )Y, dnYncos(wn — wo)T)]

— (X dnYacos(wn — wo)7)%}. (32)

Eﬁ=2dﬁY:21+

Minimizing this with respect to a requires that we set the partial
derivative of Ey with respect to a equal to zero. This gives

(E dn Yn)(z dnCOSZ(tdn - WO)T) -

_ (¥, dncos(wn — wo)T)(Y, dnYncos(wn — wo)T)
¥ dncos*(wn — wo)T — (3, drcos(w, — wo)7)?”

(33)

Substituting (33) into (32) gives E.g, the error minimized with respect
to both a and B, as
Egp=Yd,Yr-Y*
_ (E dn( Yn - Y)COS(GJ" - ‘IJO)T)2
Y dncos (wn — wo)T — (Y dncos(wn — wo)7)*’

(34)
where
7 =7 duYn (35)

We note that we could have obtained this same expression by first
minimizing with respect to « and then with respect to 8; however, one
obtains different but equivalent expressions for a and 8, depending on
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the order of differentiation. We develop the alternative expressions for
a and B in the following paragraphs.

Let us define some new quantities to simplify these expressions. Let
the difference between the observed power and the weighted mean

power in the band be designated by X.; then

X.=Y.-Yd.Y.=Y,- Y. (36)
If we also define the quantities
X. =Y d,X.cos wnr, (37)
X, =} d.Xnsin w,r, (38)
D, =Y d.cos*(w, — wo)T, (39)
Dy =Y, dacos(w, — wo)T, . (40)

we may rewrite ¢ and 8 from eqs. (31) and (33) as

~  [Xccos wor + Xsin wor]Ds

a=Y D.—Di (41)
and
B= Dl {(a = Y)D, — (X.cos wor + X,sin woet)}. (42)
Using (41) to eliminate « from (42), we obtain
X, cos wor + X,sin wor
B=- D =D (43)
We may use (43) in (41) to obtain
a=Y+ BD,. (44)

Equations (43) and (44) are the estimators that would have been
obtained if the order of taking partial derivatives in the preceding
development had been reversed. It is apparent that, after one has
estimated wo, one may estimate o and £ by using either egs. (41) and
(42), (43) and (44), or eqs. (41) and (43).

The estimate of wo that minimizes the weighted error is obtained by
minimizing Eg, with respect to wo. Using egs. (35) to (40) in eq. (34),
we write
[X.cos wor + X,sin wor]?

D, — D}

To see the explicit dependence of Eg, on wy, we define the following
quantities

de = Y, dncos’wnt — (Y, dncos wat)?, (46)

Ep =Y d. X2 - (45)
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dy = ¥ dnsin®w,r — (3 dasin war)?, (47)
des = Y, dnC08 w,T SIN waT — (3, dncos wat)(Y, dasin wat).  (48)
Substituting these into (45) gives

[X.cos w,T + X.sin wor)?

Es =Y d. X2 — - . .
b = X dnXn d.cos® woT + 2d.sC08 wor Sin wot + d,Sin‘woT

(49)

Setting the partial derivative of Eg,, as given by (49), equal to zero
gives the estimator for wo as

dc 5 = dcu c
woT = Tan_l[ X X :‘ (50)

duXr.' - dchs

Obviously, two values of wer in the interval (—m, 7] will satisfy
eq. (50). One of these, the principal value, lies in the interval (—m/2,
7/2], the other differs from the first by +7. We shall show that the two
solutions are equivalent, but that our chosen solution is unique.

If we replace wor by wor * 7 in egs. (39), (40), (43), (44), and (45), we
see that D, and 8 change sign and « and Ejg, are unchanged. Since we
want the solution with 8 greater than zero, we take the principal value
solution to (50) if the resulting estimate of 8 is positive. Otherwise we
add or subtract « to obtain a positive value for 8 and a value of wor in
the appropriate interval.

While we could substitute the result of eq. (50) into (49) to obtain
the minimum error, E.p.,, it is more generally useful to evaluate E.;
for the optimum wo. This is especially true when we do not use the
optimum wy, as given by eq. (50). The simplest form for E. is obtained
by substituting (43) into (45) to give

Eoy =Y du X3 — (Do — DYB. (51)

These equations were implemented, with the modifications de-
seribed in Section 3.2, to obtain all the fits described in this paper.
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