Copyright © 1979 American Telephone and Telegraph Company
THE BELL SYSTEM TECHNICAL JOURNAL
Vol. 58, No. 4, April 1979
Printed in U.S.A.

Rapid Automatic Index Profiling of
Whole-Fiber Samples: Part Il

By H. M. PRESBY, D. MARCUSE, H. W. ASTLE, and
L. M. BOGGS

(Manuscript received May 1, 1978)

Automatic, nondestructive methods have been developed for mea-
suring and analyzing the refractive index distribution of a fiber that
is immersed in index-matching oil and illuminated transversely to
its axis in a single-pass interference microscope. The output field of
the microscope is automatically processed with a video-digitized,
computer-controlled system, and the profile is determined by the
solution of an integral equation that can handle arbitrary variations
in the index distribution. The resulting profiles are reproducible to
approximately 1 percent and can be determined within a few minutes
after fiber fabrication. Details of a rapid video scanning procedure
and of error estimates involved in solving the integral equation are
presented along with representative profiles.

I. INTRODUCTION

One of the most important parameters in determining the usefulness
of graded-index multimode optical fibers in high-capacity communi-
cation systems is their refractive index profile. The closer the profile
conforms to the required optimum distribution, the greater the result-
ing bandwidth of the fiber. As demand for high-capacity fibers in-
creases and as fabrication facilities are optimized to produce them
dependably, it becomes very important to have reliable, accurate, and
fast methods to measure the fiber’s refractive index distribution. These
methods would greatly aid in tailoring more ideal profiles and would
form the basis of a fiber evaluation and sorting scheme in which fibers
are selected for specific applications, depending upon the quality of
their profiles, almost immediately upon production.

One of the most sensitive means of measuring the index profile is by
interferenceé microscopy utilizing cut and polished fiber-slab samples.'?
While this technique allows very precise measurements,> it requires
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a high precision, time-consuming procedure of preparing the thin (on
the order of 50 um) and extremely flat samples. This can be alleviated
somewhat by simultaneously processing many samples and utilizing
an automatic analysis scheme to save time in the evaluation;*® how-
ever, it would still be preferable to avoid any sample preparation.

A technique requiring no sample preparation based on interferom-
etry has been proposed in which a sample of the whole fiber is
immersed in index-matching oil and illuminated perpendicular to its
axis.” The refractive index profile is subsequently obtained from the
fringe shifts by mathematical methods which were shown to operate
for fibers whose profiles are a quadratic function of the radius of the
core. This method has also been extended® to a more general class of
profile shapes describable by a parameter a which appears in the
expression describing the index distribution n(r),

n(r) = no[1 — 2A(r/a)*]"?,

where r is the distance from the center of the core, a is the core radius,
and An = n, — n,. Assuming that « is constant, this treatment showed
that An and a could be determined to better than +10 percent. The
assumption of constant «, however, is a severe restriction not met by
most currently fabricated fibers and the resulting accuracy of +10
percent is also not sufficient for many applications. In addition, these
methods cannot accommodate arbitrary perturbations of the profile
which commonly exist in the form of barrier layers at the core-cladding
interface and an index depression along the axis of the fiber.

These limitations have been overcome with a method of analysis in
which profiles with arbitrary shapes can be handled.® In that analysis,
the fiber core is modeled as having many layers, with each layer having
a constant index of refraction. The profile is then built up in a stepwise
manner using the index value from each preceding section as the
starting point for the next. The resulting accuracy is on the order of a
few percent.

That analysis, however, is based on having a certain minimum width
for each layer and breaks down if smaller intervals are utilized. While
this is not a serious limitation in practice, it may present problems if
very rapid and narrow variations occur in the profile. We have there-
fore developed a new analysis scheme not having this potential draw-
back in which the profile is obtained by the solution of an integral
equation which can handle small regions. However, this new method
is still restricted to index profiles of rotational symmetry. We have also
fully automated the measurement and analysis procedure so that its
inherent rapid nature can be fully exploited. We call our nondestructive
measuring procedure the “whole-fiber method.”

This paper consists of two basic sections. In the first, the details of
the solution of the integral equation and error estimates are treated.
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In the second, the automated system is described and various profiles
are presented, discussed, and compared with those obtained by other
methods.

Il. SOLUTION OF THE INTEGRAL EQUATION AND ERROR ESTIMATE

In the whole-fiber method, the ray traverses the fiber core at right
angles to its axis.® The phase shift of each ray is an integral over the
product of the length element of the ray path ds times the relative
refractive index (relative with respect to the cladding index n.). Ignor-
ing ray bending in the core, we may express the relative phase shift
according to Fig. 1 as

(1)

The upper limit of the integral actually need only be p = a but, because
n(p) = n. for p > a, we may as well use the limit «. To obtain the
relation between the fringe shift S(r) and the relative phase shift P,
we observe that the ratio of fringe shift to fringe spacing D must be
equal to the ratio of the relative phase shift to 27,

St _ Pr)
D  2n

. 2

- R

Fig. 1—Outline of fiber core and variables appearing in eq. (1).
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Equations (1) and (2) thus lead to the following integral equation for
n (P ) — N

A
[n(p) — n.] == S(r). (3)
f /—p —2 2D

We show in the appendix that the solution of this integral equation
may be expressed as

An(r)—n(r)—nf—__;\_deS(P) dp
R e

This explicit solution of the integral equation (3) shows that the
refractive index difference at any point r in the fiber core can be
obtained from a knowledge of the fringe shift function S(r) by differ-
entiation and integration. Since the fringe shift is known only at certain
discrete points, numerical techniques [see eq. (14)] for approximating
the derivative as well as the integral must be used.* The accuracy of
the resulting refractive index distribution depends on the accuracy of
the measurement of S(r), on the density of points at which S(r) is
being measured, and on the sophistication of the methods used for
numerical evaluation.

The explicit solution (4) of the integral equation (3) is useful not
only for obtaining numerical solutions for the refractive index profile
but also for calculating estimates of the error of An that is introduced
by the fact that the measured values of the fringe shift S(r) are only
known to a limited precision. We use the subscript o to indicate the
index difference An, that would be obtained if the fringe shift S, and
its derivative were known precisely. The variance of the refractive
index difference is thus, according to (4),

<(An — An,)*>

- ( A ) J’ dp J’ dp I8@) = S @ISE) = S > o
aD R - J(p2 _ r2)(pr2 _ ]"2)

The derivative of S is indicated by the notation S and the symbol
< > designates an ensemble average. The numerator under the inte-
gral sign in (5) is the autocorrelation function of the derivative of the
fringe shift S. For simplicity, we assume that this function is of the
following form:

(4)

* At and near p = r, an analytical approximation of (4) is used, based on a fourth-
order polynomial expansion of S(p).
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Ra=<[S(p) = So(p)[S(") — S (p")]>

={(AS)‘-’ for |p—p'|<B

, 6
0 lo-p'|>B ©

The autocorrelation function is assumed to have a constant value,
equal to the variance of the function S, over a narrow region outside
of which it vanishes. The interval B assumes the physical meaning of
a correlation length. We consider B as a very short distance, much
shorter than any of the transverse dimensions of the fiber. This
assumption allows us to work out the following approximation for (5).

s = (A ag2 B
<(An An,,)>-(mD (AS) rln B) (7)

Approximation (7) is valid only for r > B; however, if we try to
evaluate (5) with the special function (6) directly at » = 0 we find an
infinite result. This failure indicates that it is not permissible to use
(6) for arbitrarily small values of p because the derivative of S, and
hence its variance, must vanish at p = 0 because of the symmetry of
the structure. Assuming (AS)® to be constant is thus not permissible
for arbitrarily small values of p.

The variance (AS)? of the derivative of the fringe shift function S is
not easy to visualize intuitively. For this reason, we must relate it to
the variance (AS)? of the fringe shift function itself. The autocorrela-
tion function (6) for S and the autocorrelation function for S

R(u) = <[S(p) — So(p)I[S(p + u) — So(p + u)]> (8)
are related by the well-known equation''
d’R

Rys=— Rk 9

If we exclude the point | u| = B, and keep in mind that R (u) = R (—u)
is required, we conclude that if Rs has the form (6) R must have the
functional form

B*—u?®
R(u) = [(AS)2 B for |u|<B (10)
0 for |u|> B.

Equations (6), (9), and (10) lead to the following relation between the
variance (AS)? of the derivative of the fringe shift function and the
variance (AS)? of the fringe shift function itself:

2(A8)*

(B8 = =0

(11)

INDEX PROFILES OF OPTICAL FIBERS: Il 887



Substituting (11) into the square root of (7) finally yields the following
expression for the rms deviation of the refractive index difference:

2 1/2
6[An(r)]=J§ﬂ}1\)AS [ rBB ] , (12)

with the definition
8(An) = [<(An — An,)*>]1"2 (13)

It remains to obtain an estimate for the correlation length B. We
assume that the measured values of the fringe shift S at equidistantly
spaced measuring points r; are used to define a Lagrange interpolation
polynomial

F=nilﬁ'(r_”) S: (14)

i=1 j=1 \Fi—1;
i

where we used the abbreviation
S = S(r). (15)

An interpolation polynomial of this type with n = 4 is actually used to
evaluate the derivative S and the integral in (4). We assume that the
differences of the measured values S; and the true values S,(r;) are
mutually uncorrelated,

<(AS)(AS))> = (AS:)*sy, (16)
where, by definition,
AS; = 8; = S,(ri). (17)

We use n + 1 adjacent points r; to define F' according to (14) and
extend this function outside this range by defining a new function with
the help of the next set of n + 1 adjacent points, etc. Using

Rr(u) = <AF(r)AF(r + u)>, (18)
where AF is defined in analogy with (17),
AF = F(r) — F,(r), (19)

we have computed the function (18) numerically by using (14) and
(16). Figures 2 through 5 show the results of these computations for a
few points r = 1, 1.5, 2, and 2.5 for a fourth-order polynomial approx-
imation using points r, = 1 through r;s = 5 and extend this function by
corresponding polynomials outside of this range. The endpoints of one
range are simultaneously also endpoints of the polynomial expansions
in adjacent ranges. It is apparent that the autocorrelation function is
neither stationary nor symmetric because it depends on the choice of
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Fig. 2—Correlation function R(r’ — r) associated with a fourth-order interpolation
polynomial if the functional values at the five points used to define the interpolation
polynomial are mutually uncorrelated. The distance between adjacent interpolation
points is used as the unit of length. In this figure, the autocorrelation function is
evaluated with r = 1 being the end point of adjacent interpolation intervals. Adjacent
intervals (of 5 points each) are approximated by similar interpolation polynomials. Note
that, for this cﬁoice of r, the function assumes a symmetrical appearance.

r in (18). On the other hand, we may use this approach to gain an
order-of-magnitude estimate of the correlation length B. Figure 6
shows an average of the autocorrelation functions averaged over r.
This function is very nearly of the form (sin x)/x and, in its central
portion, is a reasonable order-of-magnitude approximation of the cor-
relation function (10). It is clear from this averaged autocorrelation
function that the correlation length B is on the order of the length of
the interval used for defining the individual interpolation function,

B = nAr, (20)
where Ar indicates the distance between adjacent sampling points
Ar= Fi+1 — Ii. (21)

Even though our error analysis can claim to give no more than an
order-of-magnitude estimate, (12) and (20) show that the error due to
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Fig. 3—Similar to Fig. 2 with r = 1.5. The autocorrelation function is now not
symmetrical around the point r’ — r = 0.

the limited accuracy of the measurements of the fringe shift S(r)
increases as r decreases and also that the error of the refractive index
determination increases as the length of the interval Ar between
adjacent sampling points decreases. This latter error can be decreased
by using an interpolation polynomial of higher order. All these trends
have been clearly observed in our experimental results.

To gain insight into the numerical values of the rms deviation §(Ar),
let us make the following assumptions. The distance between adjacent
scan lines of the vidicon corresponds to 0.2 um of the vertical direction
along the fiber core. Because of an averaging procedure using 10
adjacent scan lines for finding the center of each fringe, we may assume
AS = 0.2/10 = 0.02 pum. The distance between adjacent sampling points
in horizontal direction is typically Ar = 1 um. We set n = 4 because of
our use of a fourth-order interpolation polynomial. The fringe spacing
is typically D = 6 um. If we use A = 1 um and use a value halfway
between core center and core boundary, r = 15 um, we find, from (12),

8(An) =3 x 1074, (22)

This amount of rms deviation is in excellent agreement with the
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Fig. 4—Similar to Figs. 2 and 3 with r = 2.

observed values. However, it is important to remind the reader that
this is the error caused by the random uncertainty in the fringe position
that is inherent in the measuring process. It is not the absolute error
relative to the (unknown) precise value of An. Our derivation of the
error estimate (12) is limited to the random component of the uncer-
tainty of the fringe shift S and does not include systematic errors
arising from distortions in the imaging process of the microscope or
the vidicon and furthermore does not include the systematic error
arising from the process of using a finite number of discrete points for
evaluating the derivative S and the integral in (4). Only the additional
error caused by the uncertainty about the actual values of S(r:) at the
sampling points is responsible for the rms deviation of An expressed
by (12). Systematic errors existing in the system have been investi-
gated, however, and were found to be at least one order of magnitude
less than this value.

Ill. AUTOMATIC PROCESSING AND ANALYSIS SYSTEM

The experimental arrangement to automatically measure and ana-
lyze the profiles of whole fibers is shown in Fig. 7. The use of this
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Fig. 5—Similar to Figs. 2 and 3 with r = 2.5.

system has been briefly described elsewhere.’ Here, we discuss the full
details of its operation.

The basis of the system is a Leitz dual-beam, single-pass transmis-
sion interference microscope which is generally used to perform precise
refractive index profiling of optical fibers by examining polished slab
samples.'® For the whole-fiber measurements, a short length of fiber
(~1 cm) is inserted into index-matching oil in the sample arm of the
microscope and a similar thickness of oil is placed in the reference
beam. An excellent match to the cladding could be achieved at an
observation wavelength A = 0.9 pum with matching oil of index np =
1.457 + 0.0005 with no temperature control.

The output field of the microscope is detected with an infrared-
enhanced, silicon-target vidicon, and the video signal is sent to a video
digitizer that has the capability of addressing discrete picture elements
in the television frame and digitally encoding the intensity at each
element. The digitizer resolves 480 picture elements along the Y axis
and 512 elements on the X axis. The X- and Y-position data inputs are
provided by the 16-bit duplex input/output (I/O) interfaces of a
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Fig. 65—Averaged autocorrelation function. The average is taken over r in the interval
l=r=5.
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ﬁbFig. 7—Experimental arrangement to perform automatic index profiling of whole
ers.
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Hewlett Packard 9825A computer with the least significant bit of the
Y address serving as the field selector.

The digitizer normally operates by deriving horizontal (line) and
vertical (field) timing from the video input signal and uses these timing
signals to keep track of the position of the video signal relative to the
TV raster at any instant. This location is compared with the selected
X, Y sample point and, when coincidence is achieved, the video at that
point is digitally encoded to 8 bits or 256 gray levels and sent to the
computer which then issues new X, Y coordinates and the procedure
is repeated. We have found, however, that the transition of the com-
puter between issuing new data (writing-mode) and receiving the
digitized information (reading-mode) is sufficiently long (~3 ms) that
it does not allow for the digitization of all Y values for a given X
coordinate (one column) within one field, 1/60 s. To do this requires
an execution time of 50 ps or less. In fact, only one point per field can
be processed, and digitizing a single column typically takes about 3 s.
This is not normally a serious limitation since only on the order of 50
columns (requiring 2% minutes) are needed to measure the profile with
good resolution. However, if it is desired to obtain maximum sensitivity
by averaging over many scans to reduce video noise levels, this limi-
tation becomes prohibitive.

The computer, on the other hand, is capable of reading 400,000
words of data per second and if it could be freed of the need to supply
consecutive Y addresses, digitization of a column could be accom-
plished in 1/60 s (for each field), saving a factor of almost 200 in time.

This has been achieved with the addition of the interface board
shown schematically in Fig. 8, which essentially contains an 8-bit
programmable counter and support logic gates. At the start of each
columnar digitization, the computer loads the counter with the logic
value of the number of points desired and issues the initial X value.
These readings are then taken, and a stop pulse is issued. An enable
pulse whose length is related to the number of data points is also
generated by the circuitry to supply handshaking (timing) for the
system and to allow the region being processed to be observed on a
display monitor.

A photograph of the display showing a typical graded-index fiber
observed at a wavelength of A = 0.9 um is seen in Fig. 9. Location of
the point being encoded is indicated by a dot cursor and the gray scale
value for all Y elements along a sample line at the selected X position
is displayed as a waveform at the side of the monitor screen. The two
vertical lines bounding the waveform display indicate the black and
white reference levels which are encoded as 255 and 0, respectively.

The sequence of events for determining the fringe shift as a function
of radius, S(r), from which the profile is computed, shall be described
with reference to Fig. 9. It is first necessary to choose a desired fringe.
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Fig. 9—Display of video monitor showing transversely illuminated whole fiber at a
wavelength of 0.9 pm.

This generally is not critical since any fringe should give the same
index distribution assuming that the profile is constant along the fiber
and the sample is relatively clean and free of surface imperfections.
Once selected, the fringe is located by a procedure of fringe counting.
For example, starting from point A and proceeding along a line AB, let
the desired fringe number be 3. Thus all elements along line AB
defined by a fixed X value are digitized. The computer then counts the
fringes to find the third one. In this procedure, a fringe is defined by
following the digitized data and noting transitions in gray-scale values
by more than some fixed number. Twenty data points in the vicinity
of the fringe maxima are chosen, and a parabolic fit to them is formed.
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The maximum of the curve thus determined is taken as the center of
the fringe. The computer also determines at this time the uniform
spacing, D, of the fringes in the cladding by locating the center of each
fringe and averaging over the number of fringes.

The X position value is then changed and the same determination
is made for the right-hand side of the cladding along line CD. A
straight line is fitted by the computer to pass through the centers of
the third fringe at these right- and left-hand sides. This line serves as
the reference level from which fringe displacements are made and also
compensates for possible misalignment of the fringes to the scanning
line axis.

Next, the X position is automatically set to point E which is about
midway between fringe 3 and 4, and scanning proceeds from E to B. X
is then incremented for each such columnar encoding and the Y
address is automatically corrected to track the fringe by picking
midway initial X values as was done for point E.

To enable the calculation of the radius, the XY coordinates of the
fiber’s axis are located as part of an initial set-up procedure. This is
readily achievable due to the index depression which exists along the
axis'® and causes a perceptible dip in the fringes. The initial set-up
procedure also includes entering into the computer the coordinates of
points A, B, and C, the wavelength of observation, the desired X
increment, and the desired fringe number. The computer then takes
over and at the end of the encoding process calculates An as a function
of radius for each half of the core, averages both halves, and plots the
resulting index profile along with coordinates and labeling on an XY
plotter.

A best-fit power-law (a) curve to the index profile may be determined
after the coordinates of the limits over which the fit is to be made are
entered. In addition to the a parameter, this fitting procedure also
determines the core radius, the shift of the center of the core, the
maximum index difference between core and cladding, and a fitting
error to provide a measure of how well the a curve approximates the
measured profile. These values are then printed out and the best-fit
a curve is drawn on the plotter.

Four examples of measured profiles for various GeOz-doped fibers
demonstrating the general applicability of this method are shown in
Figs. 10 to 13.

Figures 10 and 11 show typical and reasonably smooth profiles (solid
line) which are fit with relatively good a curves (broken lines), the
fitting errors being on the order of 1 percent. Perturbations in the
profile, mainly in the form of the index depression along the axis and
variations in deposition layers close to the center, are clearly resolved.
It is important to emphasize that this method assumes circular sym-
metry for the fiber core and thus variations in core geometry, if
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Fig. 10—Profile of typical GeO.-doped fiber (solid curve) and best-fit a curve (broken
curve).

existing, would not be detected. The variations in the plotted profile
also represent averages over both sides of the core.

Figure 12 shows the profile of a fiber with strong index variations in
the vicinity of the axis, and Fig. 13 shows a fiber with a very large
boron barrier layer at the core-cladding interface. These unique fea-
tures are clearly detectable and well resolved, thus demonstrating the
applicability of this technique to even these extreme cases.

We have compared profiles obtained using the circular index analysis
technique of Ref. 8, in which the profile is built up piecewise, with the
integral equation approach used here. The agreement was excellent
with the profiles being essentially identical.

The profiles have also been compared with those obtained by
preparing polished slabs of the same fiber samples. The comparison
results, presented in detail in Ref. 8, show very good agreement with
the average difference of the maximum An values and the a values

being about 4 percent.
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The experimental accuracy of the measured profiles and the effects
of index mismatching were investigated by measurements made on
unclad fiber (uniform-index) samples under various matched and un-
matched conditions. Variations of the index were consistently found
to be within about 2 parts in 10, in excellent agreement with the
theoretical analysis of the previous section. For unclad fibers with
intentional index mismatch, we obtained step index profiles with the
height of the step corresponding to the degree of mismatch. When a
good match is visually observed on the monitor, as evidenced by a
straight fringe parallel to the scanning line axis, the error in the profile
due to mismatch was found to be on the same order as that due to the
index variations (a few parts in 10%); thus, no attempt at more precise
matching was made.

In conclusion, the techniques described to measure the refractive
index profiles of optical fibers rapidly and automatically should prove

- ~\40.02
\
\ 15F3098
An = 0.0203
r = 2588um
- [0.015
H 001
An
- 0.005
]I ——aumiTs~_ |y
-~ ~,
Y
L | £ 1 L

-30 20 -10 0 10 20 1/ a0

CORE RADIUS IN itm

I \

Fig. 11—Profile of GeO:-doped fiber (solid curve) and best-fit « curve (broken curve)
showing somewhat greater variations than fiber of Fig. 10.
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Fig. 12—Profile of GeO.-doped fiber (solid curve) and best-fit a curve (broken curve)
showing strong central index perturbations.

valuable not only in reducing the time required for these measurements
but also in forming the basis of an evaluation scheme in which fibers
can be rated and selected for specific applications, depending upon the
quality of their profiles, almost immediately upon production.

APPENDIX

We sketch the solution of the integral equation (3), which we write
in the form

® xf(x) dx
———=g(y) (23)
J; y V(x* =y

In our application, f(x) is an even function of x; this allows us to
express it in the form

f(x) =f F(u)cos(ux) du. (24)

Substitution of (24) into (23) yields after integration
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= 1
—g[ F(u)Jl(uy)du=;g(y), (25)

where o/, is the Bessel function of order one. This integral relation is
the Hankel transform whose inversion is given by the formula

F(u)=— % u f g(y)Ji(uy) dy. (26)

Substitution in (24) yields

flx)=- %j g(y){J u cos(ux) < (uy) du} dy. 27

— 001
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Fig. 13—Profile of GeO.-doped fiber (solid curve) and best-fit a curve (broken curve)
showing resolution of large boron barrier layer.
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This expression can also be written in the form:

flx) = Ef g(y){if cos(ux)Jo(uy) du] dy. (28)
™), dy ),

We perform a partial integration
f(x)

=—’—2T{g(0)f cos(ux) du+J’ j—f] cos(ux)Jo(uy) du dy}. (29)

where we used the fact that the fringe shift vanishes outside the fiber
core so that g(o) = 0. The integral over the cosine function vanishes
for x # 0. The integral over the product of the cosine and Bessel
functions can be found in tables so that we finally obtain

__2("dg_dy
f(x) = wjx dym. (30)

The integral transform pair (23) and (30) corresponds to the transform
pair (3) and (4).
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