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An extensive library of z-domain building block equivalent circuits
ts derived to facilitate the analysis and synthesis of switched capac-
itor (sc) networks. These sc building blocks, typically comprised of a
single capacitor and from one to four switches, serve as basic circuit
elements for sc networks in much the same spirit that resistors and
capacitors serve analog networks. This building block library facili-
tates the derivation of canonic z-domain equivalent circuits for
complex sc networks and the application of well-established mathe-
matical network analysis and synthesis tools. What has been sought
are easily applied techniques for achieving the same insights for sc
networks that we have long enjoyed with analog networks.

Il. INTRODUCTION

Over the past several years, many researchers'""” have searched for
the means to realize monolithic analog recursive filters, particularly
for voice frequency applications. Initial attempts to realize a monolithic
filters technology led to the development of active-R or resistor-only
active filters."® By removing the large external capacitors (C ~
5000 pF), such filters are, in principle, highly suited to integration with
standard bipolar processing. The frequency dependence for these
filters is derived'” from the single-pole rolloff due to a compensation
capacitor (C ~ 30 pF) to achieve a unity gain frequency of 1 MHz.
This method of operation posed two significant barriers to the practical
application of active-R filters; namely, large resistor ratios'™ are re-
quired to reach audio frequencies and the unity gain frequencies are
not sufficiently stable'™ for precise filter realization. Although these
barriers have to some degree been overcome,”® it has become clear
that the future of integrated circuits is in Mos large-scale integration
and very large-scale integration processing. Ls1 has substantially re-
duced the cost of digital logic and memory, and vLs1 will bring even
further cost reductions.
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With the overwhelming success of digital Mos Ls1 and the promises
of VLSI as motivation, much productive effort” ' has been spent on the
development of a compatible Mos LsI sample data technology. This
work culminated in the development of compact operational ampli-
fiers'? with acceptable noise and power specifications, charge transfer
device (cTD) transversal filters,'* '” and switched capacitor (sc) recur-
sive filters™"" which fully utilize the advantages provided by M0S LsI.
The transfer function coefficients™'' of an sc recursive filter are
determined by a highly stable clock frequency and capacitor ratios
which can be held to very tight tolerances (measured' errors of less
than 0.2 percent have been achieved for binary valued capacitor
ratios). Furthermore, MOs capacitors are nearly ideal, with very low
dissipation factors and temperature coefficients" of less than 100 ppm/
°C. This process of inherent precision and quality is sufficient to meet
many filter and system specifications.

Considering the growing interest in MOS switched capacitor net-
works, the need is obvious for analytical and computer-aided tools'™'
for the analysis and synthesis of sc networks. The pioneering work'* !
of Kurth and Moschytz provided a rigorous, network-theoretic foun-
dation to the characterization of sc networks. They considered the
analysis of sc networks comprised of capacitors and periodic, bi-phased
switches. These networks, which are sampled data in nature, were
shown to be characterized by nodal charge difference equations with
periodically time-varying coefficients. This system of equations can be
transformed into the z-domain®* *' to obtain the frequency response of
the sc network. To reduce the analytical complexity, a building block
approach was introduced'” with the six basic building blocks: (i) shunt
capacitor, (ii) series capacitor, (i) shunt capacitor in parallel with a
switch, (iv) series capacitor in parallel with a switch, (v) shunt switch,
and (vi) series switch. These building blocks were expressed as four-
port equivalent circuits with each two-port pair accounting for each of
two signal paths which result from the two switch phases. The two
signal paths, denoted even and odd, were shown to be linked by a
common link two-port (LTP)'” network. Any sc network, comprised of
bi-phase switches, can be transformed into a z-domain equivalent
circuit by interconnecting the appropriate combination of these build-
ing-block equivalent circuits. This equivalent circuit then provides the
network designer with a pictorial representation of the circuit from
which transfer relations can be derived between any pair of node
voltages and provides the instant insight to circuit innovations we
have long enjoyed with analog, linear, time-invariant networks.

The primary objective of this paper is to extend the Kurth-
Moschytz'” library of building blocks to include those higher-order sc
elements which occur frequently in complex sc networks. These ele-
ments are typically comprised of one capacitor and from one to four
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switches. With this expanded library of equivalent circuits, one can
efficiently derive canonic 2-domain equivalent circuits for any sc
network. It is shown that, by manipulating the equivalent circuit for a
toggle-switched four-port element one can derive all the equivalent
circuits in the library. Alternative interpretations of the Kurth-
Moschytz LTP are also provided which facilitate the derivation of
canonic equivalent circuits. Finally, several examples are given which
demonstrate the ease in which equivalent circuits are constructed and
the insight derived therefrom.

Il. APPLICATION OF Z-TRANSFORM TECHNIQUES TO THE ANALYSIS OF
SC NETWORKS WITH BI-PHASE SWITCHES

This section briefly reviews the basic assumptions'® '" regarding the
sampled data nature of sc networks and the fundamentals germane to
the derivations and procedures given in the succeeding sections. This
review also provides an opportunity to define symbols and to acquaint
the reader with the notation employed.

2.1 Operation of ideal SC networks

Consider now the operation of an ideal sc network, comprised of
ideal capacitors, ideal switches, and ideal voltage-controlled voltage
sources (i.e., ideal operational amplifiers) when excited by sampled
data voltage inputs. Typically, the switches are controlled by a two-
phase, nonoverlapping clock of frequency f. = 1/2T, as shown in Fig.
1. Note that ¢“ is used to denote the even clock phase that instanta-
neously closes the e-switch on the even 2% T times. Similarly, ¢” denotes
the odd clock phase that instantaneously closes the o-switch on the
odd (2k + 1)T times. The switches are assumed to have a 50-percent
duty cycle with equal (7T-second) on- and-off time periods. It is further
assumed that both the input and output of the sc network are sampled
data signals which change in value only at switching instants 27T Thus,
in their most general form, the voltage sources and internal circuit
voltages are assumed to be sampled at times T and held over a one-
half clock period interval (T) as shown in Fig. 2a. With this assumption,
we can apply'™"" z-transform techniques to the general analysis and
synthesis of sc networks. The z-transform, z = e, where s is the
complex analog frequency variable and r is the clock period, then
provides us with a convenient means for performing frequency domain
analysis. Of course, the z-domain transfer functions obtained from this
procedure relate the input and output samples of switched capacitor
networks. Thus, to obtain the response, the input must also be char-
acterized in the z-domain. Furthermore, if the output is considered as
a held* (staircase) signal, this computed response must be modified*
by (sin x)/x. When continuous inputs are applied directly™ *' to sc
networks, the analysis can become considerably more complex.
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Fig. 2—(a) Sampled data voltage waveform portioned into its (b} even and (c) odd

components.

732 THE BELL SYSTEM TECHNICAL JOURNAL, MARCH 1979



As pointed out in Ref. 16, the switching action described in Fig. 1
provides a time-varying nature to the sc network. That is, as the
switches open and close, the network graph changes, alternating be-
tween two topologies. One topology corresponds to the even clock
phase and a second topology to the odd clock phase. Thus, one can
view the time-varying sc network, with bi-phase switches, as two
interrelated time invariant networks.'*' In lieu of this fundamental
approach, it is mathematically convenient to partition'® the sampled
data voltage waveform in Fig. 2a into its even and odd components as
shown, respectively, in Figs. 2b and 2c. Comparing v and v" to the
clock waveforms ¢° and ¢, we observe that v* is only nonzero when
the e-switch is closed and v” is only nonzero when the o-switch is
closed. This fundamental observation'®'” has opened the door to a
rigorous understanding of switched capacitor networks and has re-
sulted in several methods for their analysis.

One way to interpret the relationship between the even and odd
topologies is to consider them topologically decoupled, with the states
of one determining the initial conditions for the other." " This inter-
pretation results in two distinct circuits coupled together via dependent
sources which establish the initial conditions mentioned previously.
This formulation has been found'® ' to be particularly convenient for
computer-aided analysis. Another interpretation' ' is to combine the
even and odd networks topologically into a single z-domain equivalent
circuit. In general, an n-port sc network'®'” will require a 2n-port
equivalent circuit, i.e., n-ports for the even clock phase and n-ports for
the odd clock phase. It is this interpretation that provides the kinds of
valuable insight that Laplace transform techniques have provided for
analog linear-time invariant networks.

Since sc networks can be most rigorously characterized'® '” in terms
of charge transfer operations, discrete time voltages v,(kT) and dis-
crete time charge variations Ag,(kT) are used as port variables. At the
switching times kT, charges are instantaneously redistributed with the
principle of charge conservation maintained at every node in the
network. It is this principle that allows us to write nodal charge
equations in the same spirit with which we apply Kirchoff's current
law to continuous networks. In general, due to the bi-phase switching
operation, two distinct, but coupled, nodal charge equations are re-
quired to characterize the charge conservation condition at a particular
node for all time instants £7. Namely, one equation for the even 2kT
times and a second equation for the odd (2% + 1) T times are required.
These equations are written, for some node p, as

M, M,
Agyp(kT) = ¥ qu(kT) = ¥ qu(tk —1)T)
=1 =1

for £ an even integer, (la)
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and
M, M,
Agp(RT) = ¥ qpi(kT) — ¥ gni((k=1)T)
i=1

i=1

for k an odd integer, (1b)

or equivalently in the 2-domain

M, M.,
AQL(2) = ¥ Qui(2) — 27 Y Qpi(2) (2a)
i=1 i=1
and
M, M.,
AQu(z) = ¥ Qpi(z) — 27 ¥ @pil2), (2b)
=] =1

where g%, g and Qji, @) denote, respectively, the instantaneous
charges stored on the ith capacitor connected to node p for the even,
odd kT time instants and their z-transforms. Also M., and M,,, denote
respectively the total number of capacitors connected to node p during
the even and odd clock phases.

For single capacitor sc blocks, z-transformed nodal charge equa-
tions' lead directly to the desired equivalent circuits as described in
Section IIL. To characterize a complex sc network one simply substi-
tutes, one-for-one, the appropriate z-domain block equivalent circuit
for each sc element in the network schematic. As demonstrated in
Section IV, transformed nodal charge equations for each node in the
network are then written by inspection from the equivalent circuit.
The desired voltage transfer function(s) is then obtained by algebrai-
cally manipulating these z-domain equations in the usual manner.

2.2 Sample data waveforms

It should be noted that there are several sample data waveforms
that can be modeled as special cases of the waveform depicted in
Fig. 2. These waveforms and their respective even and odd components
are shown in Fig. 3. One can immediately invoke the z-transform to
mathematically describe these waveforms. The return-to-zero wave-
forms in Figs. 3a and 3b can be expressed mathematically as

Va(2) = Vi(2) + Vi(2), (3a)
where
Va(z) =0 (3b)
and
Vi(2) = Vi(z) + Vi(z), (4a)
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Fig. 3—Common special-case sampled data voltage waveforms and their respective
even and odd components.
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where
i(z) = 0. (4b)

In a similar manner, we can characterize the full clock period sampled
and held (S/H) waveforms in Figs. 3c and 3d as

Ve(z) = Vi(2) + Vi(z), (5a)
where
Vi(z) = 272 Vi(2) (5b)
and
Va(z) = Valz) + Val(z), (6a)
where
Vi(z) = 27 Vil2). (6b)

If a capacitor of value C is placed across the terminals of the voltage
source v.(t), we observe that the charge on the capacitor changes in
value only once per clock cycle, ie., at the even 2kT time instants
when v.(¢) changes. At the odd (2& + 1) T time instants v.(t), the
capacitor voltage is unchanged, thus, the charge remains constant.
This phenomenon is described analytically, for the even and odd clock
phases, in the following manner:

AQi(z) = CVi(z) — Cz 2 Vi(z) = C(1 — 27" ) Vi(2) (7a)
and
AQ:(z) = CVi(z) — Cz7'*Vi(z) = 0. (7b)

It is noted that the condition AQ¢(z) = 0 can also be obtained by
disconnecting V. from the capacitor with a switch which is open during
the odd clock phase. Thus, in the sense that no charge is transferred,
this open circuit condition also implies a full cycle sample and hold
operation. Corresponding relations can also be written for the full cycle
S/H waveform in Fig 3d.

It is useful to note that the return-to-zero waveforms v.(¢) and v, (¢)
can be obtained by processing v(¢) in Fig. 2 with simple switch
networks as shown in Fig. 4. When the switches in Fig. 4 are ideal, va
and v, are ideal, zero-impedance voltage sources with waveforms as
depicted in Figs. 3a and 3b, respectively.

The various sample data waveforms considered in this section can
be generated externally (i.e., an independent voltage source) and at
any internal node by an appropriate combination of switches and
capacitors. It is often crucial, particularly at the network output where
one may either resample or couple to another sc network, to identify
the waveform type of internal node voltages. From the properties
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described in this section, this identification process is usually straight-
forward.

2.3 SC network transfer function relations

The voltage transfer function is well recognized as a convenient
mathematical tool for the analysis and synthesis of continuous, linear,
time-invariant networks. The value of the voltage transfer function is
not expected to diminish with sc networks. At this point, it should be
obvious that sc network transfer functions are most conveniently
written in the z-domain.

Let us, for simplicity, confine the discussion in this subsection to
two-port sc networks with one input and one output. As noted previ-
ously, the two-port can be represented by an equivalent four-port, as
shown in Fig. 5. In general, a 2 X 2 transfer matrix is required to fully
characterize the input-output relations for this four-port network, i.e.,

[V:u,(z)] _ [H.(z) Hz(z)][Vﬂ.(z)] @)
Voulz) H;(z) Hi(z) || Viu(2)
where, by superposition,
Vin(z) = Via(2) + Vii(2) (9a)
Vour(2) = Viu(2) + Viu(2). (9b)

o
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Fig. 4—Switch networks for return to zZero voltage generation.
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Fig. 5—Four-port z-domain equivalent circuit.
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In many cases, the signal conditioning performed at the input and
output imposes constraints on the form of the transfer relations. For
example, consider the application of the return-to-zero source in Fig.
3a to the sc network in Fig. 5. Substituting Vi,(z) = 0, obtained from
eq. (3b), into eq. (8) yields the following transfer relations

Viau(z) = Hi(2) Viu(2) (10)
and
Vouw(2) = H3(2) Vin(2). (11)

Thus, depending on whether v,.,(kT) is sampled at the even 2kT times
or the odd (2% + 1) T times, the voltage transfer function is either H,\(2)
or H,(z), respectively. However, if v.., is sampled at all £T" times, then

Vuuf(z) = (H],(Z) + H?l(z))vgn(z)- (12)

In general, H,(z) # Hi(z); however, they are obviously interrelated.
Therefore, one is not able to independently synthesize H(z) and Hi(2).
In practice, by appropriately conditioning the input and output
signals, one can realize an sc network which is completely character-
ized by a single transfer function. Equations (10) and (11) describe
examples of this class of sc network. One can in principle synthesize
sc networks of this type directly in the z-domain using digital filter** *
synthesis techniques. Several examples of multi-transfer function and
single transfer function sc networks are provided in Section IV.

lil. EQUIVALENT CIRCUIT MODELS FOR SC BUILDING BLOCKS

In this section, multi-port z-domain equivalent circuits will be de-
rived for several sc building blocks. It has been shown'” that any sc
network can be constructed from the six blocks mentioned in Section
I and voltage controlled voltage sources. The objective here is to
facilitate the application of this approach by deriving a library of
higher order building blocks which, when interconnected, lead to
canonic z-domain equivalent circuits. sc elements comprised of one
capacitor and from one to four switches are treated as basic circuit
elements much like passive R’s, L’s, and C’s in analog circuits. As
noted in the previous section, the z-domain transfer relations can be
derived from the equivalent circuit using familiar network analysis
techniques.”

Figures 6 and 7 contain listings of the commonly occurring sc
elements and their respective z-domain equivalent circuits or building
blocks. In addition to the sc building blocks, z-domain models are also
given for each of the sample data sources discussed in the previous
section. This library is sufficiently general to accommodate all the
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Fig. 6—General library of 2n port z-domain equivalent circuits for switched capacitor
building blocks (continued on pp 740-743).
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DISCRETE TIME CIRCUIT

(e) TOGGLE SWITCHED DIFFERENCER (TSD)

Aq1 e,0 o.e Aqg
Al -
s o o—2+
V1
= c vi >
V2 2,0 oe
—o—o)r oI-o -
4q, —

{f) SINGLE PHASE GROUNDED CAPACITOR

Z—-DOMAIN EQUIVALENT CIRCUIT

AQY

Auefn
NAe-
+Or

V?.n _cz_”z

= -1/2
voe Cz—
+ Ol

AQ%° A~
-~

Fig. 6—(continued).

(SPGC)
Aq, e,0 eo A0
+M OTO%,oﬂ-CH
Vi c T v, >
-0 o—
(g) SINGLE PHASE FLOATING CAPACITOR (SPFC)
Aq, .0 c Agy
+ +
vy V2 :>
— O - ——
(h) SINGLE PHASE SWITCHED CAPACITOR (SPSC)
Aq, e,0 Agy
+ & o o [ i
vy c T v2 :>
—0= —0—
DS —
. T
published”'" '™ ***" sc networks

which use nonoverlapping bi-phase

switches. The equivalent circuits in Fig. 6 are derived in their most

general 2n-port form, assuming
clock cycle intervals, as per v(¢)

that all voltages update at one-half
in Fig. 2. The e, o notation refers to

the switch phasings as noted in the previous section. Similarly, super-

740 THE BELL SYSTEM TECHNICAL JOURNAL, MARCH 1979



DISCRETE TIME CIRCUIT Z-DOMAIN EQUIVALENT CIRCUIT
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Fig. 6—(continued).

scripts e, 0 and o, e are used to denote the even or odd port variable
(Vi, AQ:) components and the complement odd or even port-variable
components, respectively. This e, o notation conveniently provides the
connectivity information for interconnecting the building blocks.
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DISCRETE TIME CIRCUIT
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Fig. 6—(continued).

In practice, there are many sc networks in which the charges and
voltages update, due to the internal switching action of the sc network,
only on full clock cycle intervals. This behavior, which is readily
identified on a block-by-block basis, results in 2n-port equivalent
circuits with n open ports. Many of the sc blocks in Fig. 6 fall within
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DISCRETE TIME CIRCUIT
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Fig. 6—(continued).

this category. When properly interconnected,'” these 2n-port equiva-
lent circuits can be reduced to the n-port equivalent circuits in Fig. 7.

3.1 2n-port SC building block equivalent circuits

In this section, derivations are given for several of the sc equivalent
circuits in Fig. 6. These derivations will be based on z-transformed
nodal charge equations which can be derived by inspection from the
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DISCRETE TIME CIRCUIT
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Fig. 7—Simplified library of n port z-domain equivalent circuits (continued on pp. 745-

746).

sc circuit. As noted in the previous section, one can write a distinct
nodal charge equation for each switch phase. Therefore an n-port sc
block is characterized by 2n nodal charge relations. The desired 2n-
port z-domain equivalent circuit evolves directly from these relations.
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Fig. 7—(continued).

The equivalent circuit for a complex sc network is derived by properly
interconnecting the appropriate block equivalent circuits. To avoid
boring the reader with excessive repetition, derivations will only be
provided for blocks b through f and | of Fig. 6. Once these derivations
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Fig. 7—(continued).

are understood, the validity of the remaining equivalent circuits can
be established by inspection. The independent and dependent voltage
source equivalent circuits are obtained directly from the relations in
the previous section.
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3.1.1 Floating capacitor equivalent circuit

One can derive the desired equivalent circuit in a straightforward
manner directly from the nodal charge equations. In these equations,
the even and odd voltage components (V* and V") serve as independ-
ent variables and the even and odd charge variation components (AQ*
and AQ") serve as the dependent variables. Since the floating capacitor
block in Fig. 6b contains no switches, the z-transformed nodal charge
equations, where V*, V“, Vi and V% are independent voltage excita-
tions, are instantly written as

AQ1"(2) =

CVi“(z) — Cz27'"*Vy*(z) — CV5"(2) + Cz7'2V3“(2), (13a)
AQ5"(2) =

CV5"(2) — C27'*V§*(2) — CVi®(2) + Cz ' Vi“(2), (13b)
AQ1(2) =

CVi“(2) — C27'Vi®(2) — CV“(2) + C2™'*V5"(2), (13c)
and
AQ3“(2) =

CV3e(2) — C27'7V5°(2) — CVi“(2) + Cz~'*Vi°(2). (13d)

There are perhaps several circuit interpretations for this set of
equations. One convenient interpretation is the balanced lattice equiv-
alent circuit shown in Fig. 6b. Another circuit interpretation'” for these
equations is a four-port network comprised of an unbalanced floating
LTP coupled to the even and odd transmission paths via ideal trans-
formers. By interpreting eqs. (13) as a balanced lattice, one can
eliminate the transformers. This balanced lattice is referred to in this
paper as a balanced floating LTP; in contrast, the Kurth-Moschytz
circuit is referred to as an unbalanced floating LTP. Both circuits are
equivalent and valid under all port termination conditions.

3.1.2 Toggle switched capacitor’ (TSC) equivalent circuit

Due to the switching action of the toggle switch, the capacitor C
receives charge from vy, only on the even (odd) times and charge from
v, on the odd (even) times. When the switches are open, the corre-
sponding ports are open and AQ = 0. These observations are consistent
with the z-transformed nodal charge equations:

AQ5"(z) = CVi“(2) — Cz7'*Vi“(z) (14a)
AQ3"(z) =0 (14b)
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AQi*(2) = 0 (14c}
AQ3%(2) = CV3*(2) — Cz~'*Vi*(2). (14d)

These equations lead directly to the four-port equivalent circuit in Fig.
6¢. As described in Ref. 17, an unbalanced LTP is seen to bridge the 1-
e,0 and 2-0,e ports. Note that ports 1-0,e and 2-e,0 are always open;
therefore, no transmission occurs at these ports. This is a property
common to all bi-phase toggle switched sc blocks (e.g., equivalent
circuits 6d and 6e in Fig. 6).

3.1.3 Toggle switched inverter'' (TSI) equivalent circuit

The operation of this circuit is similar to the Tsc element; with the
exception that in the TsI the voltage is inverted as the charge on C is
transferred from port 1 to port 2. This process is described by the
following z-transformed nodal charge equations:

AQ1°(2) = CVi“(2) + C27'*V§*(2) (15a)
AQ7"(2) =0 (15b)
AQ5°(z) =0 (15¢)
AQs*(z) = CV3°(2) + C27'*Vi“(2). (15d)

These equations are readily interpreted by the four-port equivalent
circuit in Fig. 6d. Note for this block the 1-e,0 and 2-0,e ports are
bridged by an unbalanced LTP-like network in which the storage
elements (Cz™'?) are all premultiplied by (—1). Since this network
serves both as a link between even and odd transmission paths and as
a signal inverter, it is referred to as an unbalanced inverting LTP.

3.1.4 Toggle switched differencer’’ (TSD) equivalent circuit

In this element, the charge on C is determined by the voltage
difference v{°(kT) — v5°(kT) during the e,0 switch phase. When the
o0,e switches close this voltage, difference appears directly across port
3. This operation is described by the following z-transformed nodal
charge equations:

AQ5“(z) = CVi°(z) — CV35“(2) — Cz7'*V§“(2) (16a)
AQT4(z) =0 (16b)
AQs°(z) = CV5°(2) — CVi“(2) + Cz7'?V§(2) (16¢c)
AQ3(z) = 0 (16d)
AQi°(z) =0 (16e)

and
AQ4“(z) = CV4“(z) — C27'2Vi“(2) + Cz7'2V§°(2). (16f)
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The six-port equivalent circuit representation for these equations is
given in Fig. 6e. Note that three of the six ports are open. The Tsp
element exhibits yet another form of LTP. In this element two e,0
transmission paths are linked to a single o,e path through a differencing
operation. It is perhaps appropriate to refer to this LTP as an unbal-
anced differencing LTP.

3.1.5 Single phase grounded capacitor (SPGC)

This sc element occurs frequently in sc networks, particularly in
low-pass sc filters. In a sense, it serves as a companion element for the
grounded capacitor in Fig. 6a. It is also a special case of the grounded
capacitor. The nodal charge relations for this block are readily written
as

AQ5°(2) = C(1 — 27 ) V°(2) (17a)

AQS°(z) = -z hVee(z) (17b)

AQT(z) =0 (17c)

AQ3(2) =0, (17d)

where V*°(z) = V{°(z) = V%°(z). It is noted that one can derive eqs.

(17) from the grounded capacitor equivalent circuit in Fig. 6a by setting
AQY¢ = AQ%* = 0, which implies V*¢(z) = z~"/?V*°(z). For the spcc
block, V°(z) represents the voltage stored and held on capacitor C
and no longer refers to port voltages V1“ and V3. As noted in Section
11, this condition is equivalent to a full clock period S/H.

Equations (17a) through (17d) lead directly to the four port equiv-
alent circuit in Fig. 6f. Due to the switches, two of the ports are open
as described by egs. (17¢) and (17d). This network is equivalent to the
open circuit LTP described in Ref. 17. The equivalent circuit for the
floating capacitor is seen to similarly reduce to that in Fig. 6g when a
series switch is added. Since these blocks occur frequently in complex
sc networks, their recognition results in substantially simplified equiv-
alent circuits.

3.1.6 Open circuit grounded resistor with series switch (OGR/SW)
equivalent circuit

This block performs a function similar to the sGr in Fig. 6i, except
that capacitor C is discharged while it is totally disconnected from the
circuit. Therefore the shorted capacitor does not load the circuit during
the discharging switch phase. The equivalent circuit, in Fig. 61, for this
block is obtained from the following z-transformed nodal charge equa-
tions

AQi"(2) = CV**(2) (182)
AQi(2) =0 (18b)
AQ5°(z) = CV*“(2) (18¢)
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and
AQ#“(2) = 0, (18d)
where
Ver(z) = Vi(z) = V5°(2).

This block is memoryless, and it is an open circuit during the o,e clock
phase when capacitor C discharges. Thus during the e,o clock phase,
the block serves as a resistor and during the o,e clock phase it does
nothing. In many sc network arrangements, where it is only necessary
to transmit during one clock phase, this block serves as an excellent
resistor equivalent.

Equivalent circuits 60 and 6p represent straightforward, nevertheless
useful, generalizations of circuits 61 and 6m. These sc networks are
seen to provide, for the even and odd clock phases, different value
resistor-like components. This type of component suggests the possi-
bility of time-sharing capacitors and operational amplifiers to achieve
different even and odd circuit behaviors.

This concludes the derivations for equivalent circuits in Fig. 6. At
this point, the interested reader should be able to derive the remaining
sc equivalent circuits easily.

3.2 Simplified SC building block equivalent circuits

In the previous section, it was observed that many of the four-port
equivalent circuits result in n (of 2n) open circuit ports. Obviously,
any signals applied to one or more of these open ports will neither be
processed nor transmitted. Therefore, sc networks comprised of these
blocks will only provide transmission and filtering, when the switches
are phased such that the blocks interconnect to provide one nonopen
signal path'’ from input to output. Assuming this connection rule, the
open ports are nonfunctional and can be removed from the equivalent
circuits. The immediate identification of these blocks in a complex sc
network results in much labor-saving equivalent circuit simplification.
More specifically, 2n-port equivalent circuits reduce directly to n-port
equivalent circuits. T'o emphasize this point, the appropriate four-port
equivalent circuits in Fig. 6 have been reconfigured as two-port equiv-
alent circuits in Fig. 7. Many complex sc networks™'' can be modeled
exclusively with these simplified equivalent circuits. For this class of
sc networks, circuit analysis is no more complex than that for contin-
uous (linear) time-invariant networks. Since the blocks listed in Fig. 7
perform all the necessary network functions, it is expected that one
can synthesize general z-domain transfer functions using only these
blocks. This restriction, with little sacrifice in generality, should lead
to efficient z-domain synthesis procedures for sc networks.

In addition to the reconfigured equivalent circuits from Fig. 6, Fig.
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7 contains two additional building blocks. These blocks are shown in
Fig. 7h and 7i. Let us briefly discuss each of these blocks on an
individual basis.

3.2.1 Toggle switched floating four-port (TSFFP) equivalent circuit

This element is the most general of the toggle switched (single)
capacitor elements. Thus the equivalent circuits for the Tsc, Ts1, and
the TsD can be derived directly from the equivalent circuit in Figure
7h, by simply shorting to ground the appropriate port or ports. The 2-
transformed nodal charge equations for the block are expressed as

AQ$"(2) = CVi“(2) — CV5"(2) — C2 2 Vi*(2)

+ Cz7V2Vie(2) (19a)
AQY(2) = 0 (19b)
AQs"(2) = CVE(2) — CVi“(2) — Cz™*Vi(2)

+ Cz7'*V§©(2) (19¢)
AQi(z) =0 (19d)
AQi%(z) =0 (19e)
AQ5(z) = CV4“(z) — CVi“(2) — C27'*Vi"(2)

+ Cz7'*V§"(2) (19f)

AQi"(z) =0 (19g)
and .

AQi"(2) = CVi(2) — CVi*(2) — C2 *V5"(2)

+Cz ' PVi(2). (19h)

To be completely general, eqs. (19) describe an eight-port equivalent
circuit with four open ports. Such an eight-port description is shown
in Fig. 6n. The more useful four-port equivalent circuit in Fig. 7h is
obtained by deleting the open ports.

Comparing Figs. 6b and 7h, one observes that the four non-open
ports of the TSFFP are coupled together via a 90-degree rotated,
balanced floating LTP. In fact, if the TSFFP is rotated 90 degrees with
ports 1 and 3 serving as the incoming ports and ports 2 and 4 as the
outgoing ports, we indeed have the equivalent circuit for the floating
capacitor in Fig. 6b. If ports 2 and 4 are then shorted to ground, one
can then easily derive the equivalent circuit for the grounded capacitor
in Fig. 6a. All the toggle-switched (the Tsc, Ts1, and TSD) elements can
be readily derived from the TSFFP. For example, if ports 2 and 4 are
shorted to ground, the TSFFP equivalent circuit reduces to that of the
tsc in Fig. 7e. Also, the Ts1 in Fig. 7f is obtained when ports 1 and 4
are shorted to ground. In summary, by providing the proper termina-
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tion conditions, one can derive the equivalent circuits for any of the
single capacitor sc elements in Figs. 6 and 7 with the TSFFp.

3.2.2 Toggle switched blocks driven by full clock cycle S/H voltage
sources

Equivalent full-cycle time delays can be experienced when toggle-
switched sc blocks are driven with full cycle S/H voltage sources. A
situation of this type is illustrated in Fig. 7i. The behavior of this
circuit can be described in the following manner. When source v.q(t)
changes to value v:3, the o,e switch is open; thus, the charge on
capacitor C remains unchanged. One-half clock period later when
switch o,e closes, capacitor C acquires the charge Cuia. Another one-
half clock period later, the o,e switch opens, the e,0 switch closes, and
v2% appears at the output with a net time delay of one full clock period.
Obviously, when the source changes value in synchronism with the
initial o,e switch, the net time delay is one-half of a clock period. The
Sc circuit in Fig. 7i can be modeled according to the equivalent circuit
in Fig. 8. Writing a nodal charge equation at node 2 yields

CVi“(z) = Cz~'*(27'*Vii(2)) = C27'Viil2). (20)

The equivalent circuit in Figure 7i conveniently characterizes this
relationship. Similar equivalent circuits can be derived for the Ts1 and
TsD blocks as shown in Figs. 9a and 9b respectively. Full cycle time
delays can readily'' occur when appropriately phased toggle switched
blocks are driven by operational amplifier integrator circuits.

IV. APPLICATIONS TO THE ANALYSIS AND SYNTHESIS OF SC NET-
WORKS

In this section, the concepts developed in the previous sections are
applied to the analysis of several passive and active sc networks. Many
examples are simple, to emphasize the insight provided by the equiv-
alent circuits.

4.1 Passive SC networks

In this section we examine two single pole passive sc networks. The
equivalent circuits in Figs. 6 and 7 allow one to examine a given sc
network under an assortment of input-output conditions, as in Fig. 3.
As we will see, such an examination can reveal some rather interesting
circuit behavior that is not immediately obvious.

4.1.1 First-order, low-pass SC networks

As the initial example, consider the simple first-order, low-pass
network depicted in Fig. 10a. An equivalent circuit for this network
can be obtained by simply cascading blocks 6¢ and 6f, as shown in Fig.
10b. This circuit can obviously be reduced to that in Fig. 10c. One
could have immediately written the equivalent circuit in Fig. 10c by
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Fig. 8—Toggle switched capacitor driven by a full clock period S/H voltage source.
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Fig. 9—(a) Toggle switched inverter and (b) toggle switched differencer, driven by
full clock period S/H voltage sources.

cascading the simplified block equivalent circuits 7a and 7e. Writing a
single nodal charge equation at node 2, namely,

(Cr = Cz7"*+ Ciz7"? + C2 = Coz™)Wi(z) = Crz7V*Vi(2)  (21)
yields the familiar low-pass z-domain transfer function

Vou(2) _ Cz7'*

Hy(2) = - :
l(Z) an(z) C] + Gz - C;;z"

(22)

Note that Vi, and V7., are removed by sampling operations at the
input and output respectively. Thus, the transmission through this
network is completely described by a single transfer function, namely
H,.

4.1.2 First-order, high-pass SC network

The simple first-order, high-pass circuit shown in Fig. 11 is a rather
interesting circuit, as we shall soon see. Its interesting behavior stems
from the input-to-output switch free path which permits both V¥, and
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Fig. 10—Single pole “passive” sc low-pass network

V¢, to determine the e and o components of V... To study this circuit
we write the equivalent circuit in Fig. 11b by cascading blocks 6b and

Analysis of the equivalent circuit yields the following relations
Ci(1
o p—

z7)
CrCioCa Vin(z) + OVin(2) (23a)

= Hy(2)Vix(2) (23b)

and
) —Cpz V2 )
Voul(z) = C 7 C-Cz' Via(2) + Vin(2) (24a)
= Hy(2)Va(2) + Hy(2) Vin(2). (24b)
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Fig. 11—Single pole “passive” sc high-pass network.
Note:
Vou(2) Ci(1-=2z7")
H A —— = 25
@ L Ve =0T Cr G- G (202)
is a first-order, high-pass function, while
Vour(2) —Cpz” 12
4 = 2
Hilz) & Valz) |[Vea=0 Ci+ C:— Ciz™’ (25b)

is a first-order, low-pass function. This is a most interesting result,
indeed. From eqs. (24), we observe that by forcing Vi, = 0, as in Fig.
12a, this circuit behaves like a first-order, high-pass filter when the
output is sampled on the even times and behaves like a first-order,
low-pass filter when the output is sampled on the odd times. A circuit
that achieves this bifunctional characteristic is shown in Fig. 12b. To
achieve this behavior, a simple return-to-zero source of the form shown
previously in Fig. 3a, or equivalently in Fig. 4a, is used to drive the
high-pass circuit depicted in Fig. 11.

4.2 Active SC networks

Due to obvious reasons, much of our interest is in active sC
networks. These networks are typically®''***” comprised of capacitors,

8-11,26,27
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Fig. 12—Single pole “passive” sc high-pass/low-pass network.

switches and operational amplifiers. Many of the active sC networks
appearing®'' in the literature are comprised of simple sc building
blocks, of the form listed in Fig. 7, buffered by operational amplifiers.
When these operational amplifiers can be assumed to be ideal, the
virtual grounds result in further simplifications in the equivalent
circuits. In the voltage-charge domain, a “virtual” ground at the input
of an ideal operational amplifier shall be defined by the condition AQ
=0, V = 0. Let us now consider the equivalent circuit representations
for the following selection of first-order active sc networks.

4.2.1 Lossless integrator

The equivalent circuit for the lossless integrator in Fig. 13a is
derived, in full generality, using blocks 6b, 6¢c, and 6u as shown in Fig.
13b. Of course, one may accommodate the finite gain of an actual
operational amplifier using the voltage-controlled voltage source, cited
in Fig. 6 as block 6t. The rather unwieldy circuit depicted in Fig. 13b
can be immediately simplified by removing all elements shunting
virtual ground points and voltage sources. This network is then re-
drawn in the form shown in Fig. 13¢, which can be again reconfigured
to yield the circuit in Fig. 13d. Finally, the second stage of Fig. 13d is
noted to be a voltage-controlled voltage source with 8 = z7'/? as in
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Fig. 13—Active-sc integrator.

Fig. 8. The final equivalent circuit in Fig. 13e implies that the lossless
integrator could have been derived directly from the simplified equiv-

alent circuits in Fig. 7.
The transfer functions for the lossless integrator are then readily
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Fig. 14—Active-sc lossy integrator with Tsc damping.

determined to be

Vou(z) = (Ci/Cr)z™""?
Velz)  1—2z

Hs(z) = (26a)

and

Vou(2) - (Cl/Cz)Z_l

Vi 1-2z7"
Note that when the output of the lossless integrator is sampled at the
odd times, the transfer function is H; and when sampled on the even
times the transfer function is H,.

H(z) = (26b)
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4.2.2 Lossy integrator with TSC

As should be expected, the equivalent circuit for the lossy integrator,
shown in Fig. 14a, is similar to that derived for the lossless integrator.
To shift the pole to the left of z = 1 + j0, a toggle-switched capacitor
(Tsc) has been placed across the feedback capacitor. Obviously, the
intent is for the Tsc to play a role comparable to a resistor in active-Rc
lossy integrators. To analyze this network, let us first derive the
equivalent circuit. This equivalent circuit can be derived step by step,
as was done for the lossless integrator and shown successively in Figs.
14b and 14c, respectively. The final equivalent circuit in Fig. 14c, like
that in Fig. 13e, can be readily derived from the simplified equivalent
circuits in Fig. 7 by direct substitution. This result simplifies tremen-
dously the equivalent circuits for complex, high-order active sc net-
works.

The transfer functions for the lossy integrator are then readily
obtained from the circuit in Fig. 14¢, namely,

Vioul(2) —(C/Cy)z7"*

Hiz) =3 = T = G/l

(27a)

and

V:;ltf(z) _ _{01/02)27]

H(z) = = .
(&) = ) T T = (G Gz

(27b)

It is interesting to examine Hy(z) for different values of C,. Consider
the following three conditions Cy = Cs, Cy = 2C», and C, > 2C,. For C;
= C-_::

C .
Hy(z) = — 5‘ P (28)
an ideal half-delay element. For C; = 2C,
—(C Cz —1/2
Hyz) =L (20)

and the circuit is no longer stable. Finally, when C; > 2C. the pole of
H.(2) lies outside the unit circle and the circuit is clearly unstable.
Obviously, the Tsc is much more than a resistor; a point which has
been illustrated'” in other ways.

Let us look briefly at the effect of alternating the phases of the
switches which make up the feedback Tsc. This sc network along with
its equivalent circuits are shown in Fig. 15. The transfer functions are
then readily written

Viulz) —(C/Cy) 22

Hi(2) = =
(2) Viz)  1-[1=(Cy/Co)]z"

(30a)
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and

Viourl(2) _ —(C1/C)[(Cs — Cy)/Cs)27!
Vin(2) 1-[1- (C::/Cz)]z_l

Comparing the pole location for Hi(z) in eqs. (27) and (30), one
observes that the Tsc switch phasing has no effect on this parameter.
However, the dc gain for the even component V,.. is altered by the
factor (C; — C3)/Cs. It should be noted that these observations were
not totally expected.

H(z) = (30b)

e ]
—o{ O
“T
I
e o “C2
Ta’) o >
oo b————— -~
+
Vin(kT) <, Vour (KT)
| > o-
(a)
cpe 12
v
c 212
I 1
1
{C )
Vi Vout ¢ 2_0,‘,3' V23, Vou
ae o
(c)

Fig. 16—Active-sc lossy integrator with Tsc damping. The switches of the feedback
Tsc are phased opposite to that shown in Fig. 14.
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4.2.3 Lossy integrator with OFR

Another lossy integrator realization is shown in Fig. 16a. Of perhaps
only theoretical interest is the comparison of the behavior of this
circuit with its counterpart in Fig. 14a. The equivalent circuit, shown
in successive stages of simplification in Figs. 14b and 14c respectively,
can be derived directly from the simplified block equivalent circuits in
Fig. 7. The transfer functions for this circuit are

Voul(z) _ [-C/(C: + Cy)]2™"*

) = e ) T 1o 16/(C + Ol

(31a)

and

mel(z) _ [_Cl/(C2 + Cﬂ)]z_l

) =5 = T GAG + Oz

(31b)

The transfer functions expressed in eqs. (31) are seen to be truly
representative of lossy integrators. Hs(z) and H\(z) are absolutely
stable for all finite values of C,, C: and Cj.

4.2.4 Bilinear lossless integrators?® 2’

Previously, in Section 4.1.1, an integrator was analyzed which
achieved integration in the sample-data sense according to the trans-
formations™

1 272

—=r (32a)
or

1 z™!

—=r——r (32b)

It is well known®* * that eq. (32b) only adequately approximates the
function of an analog integrator for frequencies satisfying wr < 1.
Although eq. (32a) overcomes™ this difficulty, it cannot always be
rigorously applied.""*® An accurate and mathematically convenient
integrator implementation is obtained via the well-known bilinear
transform > 6 2

rl1+ 2z

21-27" (33)

1--
s

There are several ways bilinear integration can be realized® *” with
active-sc networks, as demonstrated in Figs. 17, 18, and 19. It is
interesting to examine the behavior of each of these circuits.

Let us initially consider the bilinear integrator® shown in Fig. 17a.
The z-domain equivalent circuit, obtained by interconnecting blocks
6b, 6c, 6m, and 6u, is shown in Fig. 17b. By straightforward nodal-

EQUIVALENT CIRCUITS FOR SC NETWORKS 761



VinlkT) G Vo (KT)
T "
(a)
1
12
A —Cyz7!
Cs Cy
P =B —
1 Cy —C,z-12
'B + 2
+
e
Ve Ve i Viu
> o-
1
(b)
ca
L
L] z!
.12 —AA—
1 C2
D)
Vi VL ¢ fm"g..; Vout
_ .
R
(c)

Fig. 16—Active-sc lossy integrator with oFR damping.

charge analysis, the following relations are easily obtained:

and

0

out =

_ —(C1/C)z ™

an -

(C/C:)

1-—

V::m’ =z

2—1

—1/2y70

e

oul -

(34a)

(34b)

From eq. (34a), we observe that the desired bilinear integration is only
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obtained when
Vin =272V, . (35)
Substituting eq. (35) into eq. (34a) yields the desired result

Vu“ — 1 -1
Hi(z) = ‘;:.r _ (C]/CZ)(I_;" z27) : (36a)
in 1-2

also,

::ul _ _(CI/C.!)ZLUZ(I + Z_l)

Hi(2) = 3 = T : (36b)

In summary, this circuit, with the switches phased as shown in Fig.
17a, will provide bilinear integration only when the input and output
are sampled at the odd (2% + 1)T times and the input is held for the
entire clock period.

A second bilinear integrator realization” is shown in Fig. 18a. The
2-domain equivalent circuit, shown in Fig. 18b, is obtained by inter-
connecting blocks 6b, 6e, and 6u. The transfer relations for this circuit
are readily determined to be

—(C,/C)(1 + 27! )2~ ?
= ZGUENLH 27) | 2O/CIZTT g
(1—27" 1—-2
and
—(C,/C)(1 + 27! ) 272
o, = OVCIA+2) . 2AC/CIZT gy
(1—-27" 1—=2

The output, sampled at all (both even and odd) kT times, is obtained
by summing eqs. (37a) and (37b) according to eq. (9) and cancelling
the common factor (1 + z7'%); i.e,,

me V:;m + V::ur _(C| /C_')(l + 2-”2)

Ha) =y =< v = 1= - @8
Comparing equations (38) and (36a), we see that the effective sampling
rate has been doubled with the circuit in Fig. 18a. Also, bilinear
integration is obtained independent of the input sampling conditions.
It is noted that sampling the output of this circuit at only the even
2kT times or only the odd (2% + 1)T times will result in an erroneous
output.

A third bilinear integrator is obtained by simply deleting one TsD
from Fig. 18a, as shown in Fig. 19a. It is interesting to analyze this
circuit and compare the results with that given in egs. (37) and (38) for
the integrator in Fig. 18a. The z-domain equivalent circuit in Fig. 19b
is readily obtained by deleting the appropriate elements from the
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Fig. 17—Active-sc bilinear integrator (Copeland, Ref. 26).

equivalent circuit in Fig. 18b. The transfer relations for this circuit are

- ] -1
0, = &/ 1Ci) (21_,+ Z )y (398)

and

_ Y =172
» =Lf’£{)f— Ve (39b)

Summing eqs. (39a) and (39b) yields

— (C1/C)(1 + 27'7)

‘/mrf = Vul;uf + V::ur = 1 Z,UQ

Via . (40)

Note that bilinear integration is obtained when the output is either
sampled at the even 2k T times or at all (both even and odd) £T times.
Again, bilinear integration is obtained independent of the input sam-
pling conditions. This concludes the first-order active sc network
examples. It should be noted that circuits similar to those in Figs. 13
through 16 could have been derived using the TsI and TSD elements
shown in Figs. 6d and 6e or Figs. 7f and 7g. To further illustrate the
procedure, the equivalent circuit for the fourth-order low-pass, leap-
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Fig. 18—Active-sc bilinear integrator (Temes and Young, Ref. 27).

frog, active-sc filter, depicted in Fig. 20a, is given in Fig. 20b. This
equivalent circuit is readily derived from the equivalent circuit blocks
in Fig. 7 and the principles discussed in this section. The equivalent
circuit in Fig. 20b is seen to be no more complex than the equivalent
active-Rc circuit. Note that, in the absence of the output even switch,
the only modification to the 2-domain equivalent circuit in Fig. 20b is
an additional voltage-controlled voltage source at the output. This
voltage-controlled voltage source defines the relation V¢, =
27*Viu, as shown previously in Fig. 14c. The verification of this
circuit is left as an exercise for the reader.

V. CONCLUDING REMARKS

The powerful tools which we commonly refer to as network or circuit
theory have been indispensable in advancing the analog filter art to its
present level of quality and sophistication. Such fundamental concepts
as transfer functions, poles, and zeros have provided the filter designer
with quick insight as to the behavior of a given filter. He can then
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(b)

Fig. 19—A reduced version of the bilinear integrator in Fig. 18.

efficiently design the filter by relating pole-zero movements to specific
circuit elements. It is interesting, in this era of high-speed computers
and sophisticated analysis programs, that many of the classical net-
works tools still maintain their important role in filter design. The
objective of this work has been to make tools'" ' of this kind more
accessible to the designers of switched capacitor filters.

In keeping with this goal, a comprehensive library of building-block
equivalent circuits has been given. This library extends that given in
Ref. 17 by providing equivalent circuits for higher order sc elements
and a variety of sampled data sources. These sc elements, typically
comprised of one capacitor and from one to four switches, serve as
circuit elements for sc networks much in the spirit in which resistors
and capacitors serve analog circuits. Viewing switched capacitor ele-
ments in this way facilitates the derivation of canonic z-domain equiv-
alent circuits for complex sc networks and the application of classical
networks tools to their analysis and synthesis.

In deriving the equivalent circuits, it is pointed out that there are
several interpretations and types of link two ports or LTPs. The
interpretation of the floating LTP as a balanced lattice network, in lieu
of an unbalanced structure, results in the elimination of two trans-
formers in the equivalent circuit for a floating capacitor. In addition,
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unbalanced inverting and differencing LTPs are also identified. An
equivalent circuit is provided for a general toggle switched floating
four port (TsFFp) element. The functioning ports are shown to be
linked via a 90-degree rotated, balanced floating LTP. By applying the
appropriate termination conditions to the TSFFP, its equivalent circuit
can be used to derive the equivalent circuit for any single capacitor
element in the library.

Several examples were worked out and discussed illustrating the
case of application of the proposed equivalent circuits and the insight
gained. Most interesting was the novel circuit depicted in Fig. 12 which
exhibits a bifunctional capability; namely, a high-pass function at the
even (2kT) times and a low-pass function at the odd (2k + 1)T times.
The application to active-sc networks of various complexities was also
discussed. Particularly noteworthy were the various subtle differences
among the circuits shown in Figs. 17, 18, and 19, all professed to realize

bilinear integration.
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