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Queuing models with cyclic-type service are applicable for perform-
ance studies of polling mechanisms in data communication and
switching systems or cyclic scheduling algorithms in real time com-
puters. This paper provides an approximate analysis of the multi-
queue system M™/G/1 with batch Poisson input, general service
times, general overhead (switchover) times, and a single server op-
erating under a cyclic strategy with nonexhaustive service of queues.
Based on a new concept of conditional cycle times, the generating
function of the stationary probabilities of state, the Laplace-Stieltjes
transforms of the delay distributions, and the mean waiting times are
derived explicitly for each queue through an imbedded Markov chain
approach and an independence assumption. The approximate ana-
lytic results are validated by computer simulations. Besides this
analysis, a stability criterion is derived for the general case of GI/G/
1 systems with cyclic priority service. The paper concludes with a
number of studies of the behavior of cyclic queues discovering inter-
esting properties such as the dependence of cycle times and waiting
times on the arrival and service process types and on the efficiency of
cyclic priorities.

I. INTRODUCTION

Cyclic service is a frequently used mechanism for the information
transfer between peripheral units and their centralized control opposed
to asynchronous or synchronous interrupt mechanisms. In a cyclic
service operation, the centralized control scans the peripheral units in
a cyclic sequence. At each peripheral unit, the queue of waiting items
(user or control data) is served either completely (“exhaustive service”)
or up to a specified maximum number of transferred items per scan
(“nonexhaustive service”) until the centralized device switches over to
the succeeding unit within the cycle sequence. Examples of this type
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of operation are found in data communications systems (polling, asyn-
chronous multiplexing), telephone switching systems (device scan-
ning), and certain I/O mechanisms of real-time computers. The per-
formance of these cyclic service mechanisms is of considerable interest
for traffic engineering, namely with respect to throughput and resource
utilizations, delays, unbalanced load, overload behavior, and the influ-
ence of various statistical properties of the traffic.

In the sequel, we refer to the general cyclic queuing model shown in
Fig. 1. There are g arrival groups of “customers” and their correspond-
ing waiting lines (queues). Customers of group j arrive according to a
general independent (GI) arrival process with probability distribution
function (pdf) A;(f) = P{Ta; < t}, where Ta; denotes the random
variable of the interarrival time in queue j,j=1,2, --+, g, and \; =1/
ET,; defines the arrival rate of customers in queue J. Special cases of
the GI arrival processes are: D (deterministic), M (Markovian), E;
(Erlangian order k), or H; (hyperexponential order 2). In case of batch
arrivals, the arrival process is defined by both the random interarrival
time T's; of batches and the random batch size K;,j= 1,2, ---, & The
batch size in queue j is given by its probability distribution g,z = P{K;
=k}, k=0,1, ... The total arrival rate of j-customers A; and the
arrival rate of batches Ap; are related to each other through A; = Ag;-
EK;. For the special case of deterministic arrival processes in more
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Fig. 1—Cyclic queuing model.
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than one queue, a “phase shift parameter” is additionally needed
which describes the relation between the periodic arrival patterns in
those queues.

Similarly, customers of queue j receive a random service time Ty;
with pdf H;(t) = P{Twy; <t} and mean hj = ETx;,j=1,2, -+, g. Once
the server has finished service at a particular queue j, it switches to
the succeeding queue in a finite switchover (overhead) time Ty with
pdf Uj(t) = P{Ty; <t} and mean u; = ETy;,j=1,2, ---, &

Finally, the general nonexhaustive cyclic operation of the server
may be specified by a sequence (“cycle”) {iy, iz, - -+, i1}, where i € (1,
2, ..., g) denotes the number of that queue which is served in kth
position within the cycle (I = cycle length). The sequence (i, iz, -+,
i1} is repeated in a cyclic manner. If there is no customer to serve from
the ixth queue, the server switches over to the ix+:8t queue (modulo /).
An example of this general (mixed) cyclic sequence for g = 3 queues is
(1,2,1, 3,1, 2}, where [ = 6. In this case, an overhead phase is inserted
after every queue visit. Cyclic schedules with different frequencies of
visits at the various queues within a cycle will also be referred to as
“cyclic priority service.” An important special case of cyclic priority
service is obtained when all visits at a particular queue within a cycle
are clustered such that the server attends queue 1 successively up to
[, times, queue 2 successively up to /; times, andsoon (I=14 + &L + -

- + ). In this case, an overhead occurs only when changing to
another queue. Limiting cases of this schedule are cycles with [; = 1, j
=1,2, .., g (“ordinary cyclic service” {1, 2, ---, g}) or cycles with ;
>1,/=1,2, ..., g (“exhaustive cyclic service”). The queuing analysis
in this paper is limited to the practical important case of ordinary
cyclic service; for stability and simulation studies the more general
(nonmixed) cyelic priority service will be considered.

Queues with cyclic service have received considerable attention in
literature (see Refs. 1 to 16). Cyclic queues with exhaustive service
with or without overhead have been treated in case of M/G/1 models'®
and in case of discrete arrival and service processes.” The case of
nonexhaustive cyclic service involves considerable mathematical dif-
ficulties and has been treated rigorously only for M/G/1 models with
two queues without overhead.'>"! Because of the mathematical intract-
ability of most cyclic queuing problems, several approximate methods
were suggested.'®'® The approximate methods usually rest on some
simplifying assumptions such as the “independence assumption”'?
under which the stochastic processes within a particular queue are
considered more or less independent of the processes within the other
queues.

In Section II of this paper, we first derive a stability criterion for
queues of the type GI/G/1 with cyclic priority service. Section III
deals with the cycle time analysis for GI/G/1 queues in case of ordinary
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cyclic service. Sections IV and V present an analysis of the probabilities
of state and the waiting times for cyclic queuing models of the types
M/G/1 and M™/G/1 with ordinary cyclic service and general over-
head, respectively. In Section VI finally, we report various numerical
results of the approximate analysis and of computer simulations for
validation and qualitative performance studies. Some of those results
discover new insight into the properties of cyclic queues and could
have direct consequences for system engineering and future research
as well.

Il. STABILITY OF CYCLIC QUEUES

Contrary to most standard queuing problems, an obvious and simple
criterion does not exist under which a queue in a cyclic queuing system
stays stable. In the following sections, we develop a stability criterion
for GI/G/1 multiqueue systems with a (nonmixed) cyclic priority
service.

2.1 A stability criterion for queues with cyclic priority service

Following analogously to a common definition for stability in system
theory, a queuing system will be called “stable” if for positive service
times and finite input rates the average queue lengths are limited (note
that a stationary queue is stable, whereas a stable queue need not
necessarily be stationary). Additionally, we assume that all arrival and
service processes are stationary so that the following reasoning can be
based on average values independent of specific distributional assump-
tions.

Let T be the random cycle time, ¢ = ET¢ the average cycle time,
and ¢o = u; + uz + .-+ + U, the average of the cycle time under the
condition that no customer is served during a cycle. The average
number of arriving j customers during a cycle is n; = A; c. In the
stationary state of the system, the average number of arriving j
customers equals the average number of served j customers, j = 1, 2,
+++, & Thus, we have

I3
c=co+ ) (Aje)h,
J=1
from which we find the result

Co

c= , (1)

1- Po
where po = p1 + p2 + + -+ + p, defines the total server utilization and
p; = Ajh; is the server utilization by j customers only, j = 1,2, ---, &

The result according to (1) has already been discovered for cyclic
queues with exhaustive and ordinary cyclic service. To find the bound-
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ary of system stability, we proceed as follows: First, we state a stability
criterion for a particular queue j under the condition of stability of the
residual queues. This condition can always be achieved for sufficiently
small arrival rates in the residual queues. The whole system is stable
if and only if all individual stability conditions are satisfied simulta-
neously.

Under the condition that all queues » # j are stable, queue j
approaches the stability boundary as n; — [; this corresponds to a
maximum arrival rate A; max at the margin n; = /; and an average cycle
length ¢f:

A co + Lih;

Ajmax = —, where == 2a
! CJ’ ! 1- Po + [ ( )
Thus, the system is stable if for all queues
L .
A1<Ajmax=—1— (I—pot+p), J=12..-,8, (2b)

co + Lk '

are fulfilled simultaneously. In a similar way, criteria of partial stability
can be stated in cases where some queues are saturated (a saturated
queue ¢ contributes to the average cycle time by /-A;). Finally, it
should be noted that the average cycle time ¢ stays always stable since
C‘ECo+l]h]+ oo +l_¢hg.

2.2 Examples

To further explore the stability criterion, consider the example of
g = 2 queues. From (2b) we find the following relationships between
Ay and Ay

L by

M <——— (1 = Azhy), A <————- (1 — Ahy), ,
VS I Ik ( 2ha) 2 i ( 1h1), (3a,b)
where co = u) + uz. These relationships are shown graphically by two

marginal lines in Fig. 2 with the intersection
l.
Ajo = —J_!
Co + llhl + lzhz

The absolute stable region is below the hatched area when both
individual criteria (3a), (3b) are fulfilled simultaneously. For A; < A,,
queue 2 always saturates first, whereas for A; < As, queue 1 saturates
first. At the intersection (Ai,, A2,), both queues saturate simultane-
ously. Similarly, for Ay > A, A2 > Az, both queues are saturated
(absolute unstable region). Within the intermediate regions A; > /;-(1
— Azha)/(eo + L), A2 < Ago (or Az > L+ (1 — Avhu)/(co + Lha), A1 <
A1), queue 1 (or queue 2) is saturated, whereas queue 2 (or queue 1)
is stable; in these regions of partial stability, the cyclic queuing system

Jj=12 (4)
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Fig. 2—Stability regions for a GI/G/1 queuing system with 2 queues and cyclic
priority service.

can be considered as consisting only from the stable queue where the
contribution of the unstable queue to the cycle time affects as an
increased cycle time overhead of /; (or /;) consecutive service times
T (or Tha). Furthermore, starting from any point within the absolute
stable region and increasing A, and A. simultaneously, we state that
the queue with the greater A;/l; ratio reaches saturation first, inde-
pendent of the service and overhead time parameters. This statement
differs from many other queuing stability criteria.

Finally, we discuss briefly two important special cases of the above
example. The first special case is that of ordinary cyclic service (I, =
I, = 1). The intersection in Fig. 2 falls on the median A, = Az This
means that the queue with the greater arrival rate always saturates
first. This result was already found by M. Eisenberg" for M/G/1
systems without overhead. Additionally, the average number of j
customers served during a cycle is identical with the probability a;
that the server meets at least one customer in queue j:

Co

* AJ: j = 1| 2. (5)

ﬂj=AjC=1_pD
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The second special case is that of exhaustive cyclic service (4, I > 1).
In this case, both marginal lines fall together on A, A, + A2h: = 1. The
stability criterion is simply A1h; + Az2h2 = p1 + p2 = po < 1. Approaching
the stability margin, both queues saturate simultaneously independent
of cq.

. CYCLE TIME ANALYSIS

In this section, we consider multiqueue systems of the type GI/G/1
with overhead and ordinary cyclic service. Since the queuing analysis
in Sections IV and V is based on the knowledge of cycle time, we
briefly discuss a known result and then develop an improved approxi-
mate solution for the pdf of the cycle time.

3.1 Cycle time analysis by Hashida and Ohara

The exact solution for the pdf of the cycle time T¢ is still unknown,
except for the mean c in (1). Based on the probabilities «; in (5) and
the approximation assumption of independence, Hashida and Ohara'®
gave the following expression for the Laplace-Stieltjes transform (LsST)
of the cycle time pdf C(t) = P{Tc =< t}:

£ £
oc(s) = [[1 tiu,r.'(-&')-l:[1 (ipmi(s) + [1 — ai]). (6)

In (6), dc(s) = [ e *dC(t) defines the LsT of C(¢); similarly, ¢ui(s)
and ¢pui(s) denote the LsTs of Ui(t) and H:(t), respectively. The
expression (6) follows directly when considering T¢ as a sum of
independent random variables.

From (6), the exact mean cycle time ¢ follows straightforwardly and
agrees with (1). However, it was found by intensive simulations (some
of them are given in Section VI) that (6) underestimates the cycle time
variance and, herewith, also the mean waiting times. For this reason,
we shall now improve the cycle time analysis by introduction of a new
concept of “conditional cycle times.”

3.2 Conditional cycle times

The basic idea of the queuing analysis in Ref. 13 and in Sections IV
and V of this paper is the description of the queue length of a particular
queue j at the scan instant by an imbedded Markov chain. The
influence of all queues » # j on the considered queue j will be expressed
only through the cycle time. The cycle time T¢ is the time interval
between two successive scan instants of a queue (say, j). However, a
particular realization of T clearly depends on whether a j customer is
served or not in a cycle. Therefore, we introduce two conditional cycle
times Tc, and Tc;, with respect to the considered queue j for cycles
without or with a service time contribution to the cycle by a customer

’

of queue j, respectively. The corresponding cycles are denoted by C;
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and C/. Since ET¢; > ETc, it is more likely that after a long cycle
another long one is fo]lowed and vice versa. Thus, the concept of
conditional cycle times increases the cycle time variance through a
reduction of the independence assumption by explicit consideration of
some history of a current cycle.

Let Cj(¢) and C ’-’(t) be the pdfs of the conditional cycle times Tc}
and T¢;, and aji, aji the corresponding probabilities for the service of
an i customer (i # j) during a conditional cycle without or with a j
service, respectively. Then, it follows by similar reasoning as for (6):

&
dc(s) = ]:[l t#u-‘(-‘:‘)-ml_‘[J (ajipmi(s) + [1 = aji]), (7a)

8
dc:(s) = ‘_Hl qu'(s)-‘l;[j (aji omi(s) + [1 — aji])-dui(s). (7b)
For the (unconditional) cycle time T¢ we find from the law of total
probabilities
dels) = (1 — aj)pc(s) + ajpc;(s). (8)

With ¢; = ET¢ and ¢ = ETc; we state the conditional cycle time
balances:

ci=co+ Y ajih, (9a)
irf

¢/ =co+ Y ajihi + h;, (9b)
inj

c=(1- aj)cj+ ajcf. (9c)

Similarly, as in (5), we assume
aji = Aicj, (9d)
aj = Ay, L #J. (9e)
Inserting (9d), (%e) in (9a), (9b), we find

Co

m— 10

J 1—po+p; (10a)
co+ h

of =Y 10b

T l-potpy (100)

Note that the exact value of c in (1) follows from (9c) and (10a), (10b).
It should also be mentioned that the solution (10a), (10b) holds only
as long as a, < 1. This condition is always fulfilled in case of symmet-
rical load A\; = Az = -+ = Ag, by = ha = .-+ = h,). In case of higher
unsymmetrical loads, it can indeed happen that ai > 1 so that a;/ can
no longer be interpreted as probability; this difficulty can be overcome
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by a suitable limitation of aj by 1 (i.e,, queue i always contributes a
service time to the conditional cycle time Tc;).

With (9d), (9e) and (10a), (10b), the conditional cycle time pdfs C/(¢)
and C/(t) are completely defined. The mean conditional cycle times
¢/ and ¢/ are given by (10a), (10b). For the variances, we find from
(7a), (7b):

g
VAR Tc,= ¥ VAR Tui + ¥ (ajih? — ajf-hi), (11a)
i=1 i)

&g
VAR Tc; = ¥, VAR Tui + ¥, (ajih? — aji*-h}) + VAR Ty;,  (11b)
i=1 LJ]
where h{? = ET%; denotes the ordinary second moment of Ty The
cycle time variance is finally given by

VAR Tc = (1 — a)):[VAR Tc, + ¢;*] + a;-[VAR T¢; + ¢/*] — ¢*.  (l11c)

The second moments of the cycle times follow from the definition
VAR Tc=c? — %

IV. QUEUING ANALYSIS OF M/G/1 SYSTEMS

Based on the concept of the conditional cycle times of Section III,
a queuing analysis is given for multiqueue systems of the type M/G/1
with general overhead times and ordinary cyclic service by means of
an imbedded Markov chain. Basically, the derivation follows the
approach of Hashida and Ohara."

4.1 Probabilities of state

For an exact analysis, the state of the system at a time ¢ has to be
defined such that all past history is summarized in it so that the future
development of the system state process is completely determined
from it. In the present case, the system state could be described by a
vector {Ni(¢), Na(t), -+, Ng(2), I(t), Xo(t)}, where N;(¢) defines the
number of waiting customers in queue j,j =1, 2, - .., g, I(¢) points to
the present location of the server within the cycle, and Xo(¢) specifies
the age of the current service (or overhead) phase of the server. An
exact analysis on this base seems not to be feasible.

In the following analysis, only the state N; of a particular queue j is
considered. Moreover, the analysis does not apply to continuous time
but is restricted to a set of special points, namely the scan instants (or
departure instants) of the considered queue j. The time intervals
between the scan instants of queue j are the conditional cycle times
T'c; and T'c; the influence of all the other queues on the queue length
process in queue j is completely expressed by those cycle times.
Although the following imbedded Markov chain solution js formally
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exact, the analysis approach is approximate since Tc; Tc; are
assumed to be independent and identically distributed (iid) variables;
the expressions for their pdf are only approximations, too.

The outlined method only renders results for the particular queue j
under consideration. In the case of unsymmetrical systems, the pro-
cedure must be repeated for the other queues, too. For ease of reading,
we suppress the subscript j in the following treatment, i.e., we write
A h, p, c’,c”, -+ instead of A;, A, pj, ¢j, ¢ + -+

4.1.1 State distribution at scan instants

We assume that the queuing sytem is in the stationary state. Let N
be the number of waiting customers at the server arrival instant (scan
instant) of a particular queue. We are interested in the stationary
distribution

pn=P{N=n}, n=012.--. (12)

Because of the memoryless property of the arrival process, the system
state of the considered queue forms an imbedded Markov chain at the
discrete set of scan instants (renewal points). The stationary distribu-
tion satisfies the equation (see Ref. 17, pp. 167-174):

n+1

Pn = Po*Pon + E Pm*Pmn, n= 1! 21 Ty (13&)

m=1

where the transition probabilities pm. are given by

r
® n—m-+1
j e™. —@—— - dC" (1), m>0
1m0 (n—m+1)!
Pmn = J (13b)
f e 2 aow, m=o.
[ Jemo- n!

Together with the normalizing condition

i prn=1, (13c)

n=0

the stationary probabilities of state at the scan instants are completely
determined by the set of equations (13a), (13b), and (13c¢). Introducing
the probability generating function of the state distribution p,, n = 0,

1; 2! R ]
G(x) = ¥ pax", (14)
n=0
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we obtain after some algebraic manipulations

. xpc(2) — ¢c-(2)
x — ¢c-(2)

G(x) = po , where z=A1-=-1x). (15)

Note that G(x) is completely expressed by po and the LSTs of the two
conditional cycle times. Using the identity G(1) = 1, we find from (15)
through evaluation of lim,_.; G(x) by L’'Hospital’s rule

1—Ac”

Po

The latter identity can be shown by using equations (10a), (10b), and
(5).

The expected number of waiting customers at the scan instant
follows from

d
EN = Ix G(x)

x=]
This results in

A’ (1= Ac”) + ¢'M%"® + 2 — 2\c”)

2(1 — Ac”)? » 17

EN = po-) -

where ¢’® = ET%, and ¢”® = ET%-.

4.1.2 State distribution at departure instants

Let N* be the number of waiting customers within the considered
queue which are left behind by a departing customer of that queue
with distribution

pn=P{N* =n}, n=012-.-. (18)

and generating function

G*(x) = Y prx". (19)

n=0
The probability px can be expressed through the probability of having
m customers at the scan instant given that the considered queue is not
empty, pm/(1 — po), and the probability of n — m + 1 new arrivals in
that queue during the subsequent service time of one customer. Hence,

n+1 = n—m+1
* _ Pm__ e, QO dH (t
pn mz_] 1 —po l[—o- e (n —m + 1)! ( ):

n=012-..-. (20)
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Substituting (20) in (19) and interchanging the order of summation
and integration, we find

Gty =— GW P ), (1)
1—po x
where
z=A1-x).

Therefore, it follows for the expected number of customers at the
departure epoch:

EN“=£G'(x) =ﬂ——1+p. (22)
dx - 1—po

On the other hand, EN* equals the expected number of customers
which have arrived during the sojourn (waiting + service) time of the
departing customer (for this, consider as an example the queue disci-
pline FcFs, first come, first-served). Hence, EN* = A.(w + h), where
w = ETw denotes the average waiting time in the considered queue
(service being excluded). Solving for w, we find with (22)

w=%-[EN —1]. (23)

1-po
4.2 Delay analysis

For the following derivation, the queue discipline FCFs is assumed.
Let Tw be the waiting time which an arbitrary customer of the
considered queue (in the following denoted by “test customer”) has to
undergo with pdf W(¢) and LST ¢w(s). Through an analogous reason-
ing as in the previous section, p} can alternatively be considered as
the distribution of the number of arriving customers during the sojourn
time T's of the test customer. Since T's = Tw + T and since T'w and
Ty are independent of each other, the pdf of T’ is the convolution of
W (t) and H(t), symbolized by W(¢) ® H(t). Hence,

p:=j E_M'(Arf') Ld(W() ® H(D), n=012---. (24)
t=0— :

Applying (19) in (24), we find G*(x) = ¢w(2) -$nu(2), where z = A(1
— x), which, with (21), finally results in

1-Ac” 1 — ¢ (8)

dw(s) = ¢ s—A-[1—¢c- (8] (25)
From (25) we find for the mean waiting time
d r(2) Ac”(z)
w——ﬁq&w(s) O—E’—-‘-W' (26)
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Equation (26) reveals that the mean waiting time depends basically on
the first and second moments of the conditional cycle times. Note also
that (26) agrees with (23) when the corresponding results for po, EN,
¢, e”, ¢’? and ¢”® from egs. (16), (17), (10a), (10b), and (11a), (11b),
respectively, are inserted.

It may be mentioned that the result (26) can also be derived directly
through the application of renewal theory and Little’s law: An arriving
test customer of the considered queue meets either a cycle C’' or C” in
progress. Since the arrival process is a Markovian process, the proba-
bilities of meeting a cycle C' or C” is simply the weighted ratio of
frequencies, i.e. (1 — a) - (¢’/c) or a - (¢”/c), respectively. According to
our approximation assumption, the conditional cycle times T¢- and Tc-
are iid-variables. Thus, the average residual cycle times are c¢’®/2¢’
and ¢”?/2¢” according to renewal theory (see, for example, Ref. 17,
pp. 158-161). The average waiting time w consists of the average
residual cycle time and the product of the mean cycle time ¢” and the
average number L of customers met at the arrival instant of the test
customer; the latter one can be expressed through Little’s law (see, for
example, Ref. 17, pp. 156-158) through L = A . w. The average waiting
time w can now be balanced as

’ 1{2) cﬂ n(2)

w=(l-a) — —+a-—-—+ (Aw)c". (27)
c 2c c 2
Solving for w, we yield precisely the result (26) from (27).

The pdf W(t) can be obtained by the inversion of (25) either through
a partial fraction expansion (in case of rational LSTs), by the numerical
inversion technique of D. Jagerman,'® or by an approximation using
the ordinary first and second moments."

Finally, we mention that (25) includes the exact result for the
limiting case g = 1 of a single cyclic queue with overhead. Furthermore,
another limit with zero overhead can be derived from (25); this case
represents the worst case with respect to the approximation accuracy
(see Section VI).

V. QUEUING ANALYSIS OF M /G/1 SYSTEMS

In this section, the solution of Section IV for single Poisson arrivals
(M) is generalized to batch Poisson arrivals (M) in every queue.
The analysis follows analogously to Section IV; i.e., we consider all
processes with respect to a particular queue j. Again, the subscript j
will be suppressed for ease of reading.

5.1 Probabilities of state

5.1.1 Arrival process

Customers of the considered queue arrive in batches of size K with
distribution
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qr=P{K=F}, k=0,1,2 ... (28a)
and probability generating function

Q(x) = kZO qrx®. (28b)

The interarrival times of batches are exponentially distributed with
mean 1/As = EK/\, where A and Ap are the arrival rates of customers
and batches within the considered queue, respectively.

Let Ng(¢) be the number of batch arrival instants in (0, t) with
distribution
(Ast)" oot

P{Ng(t)=n} = - , n=012-.-.- (29a)
and probability generating function
g(x’ t) = Z (A;tt) . e—ABt. xn = e_‘\B‘“FZ)- (29b)
n=0 .

Finally, let Na(t) be the total number of customers arriving at the
considered queue in (0, £). Then, the probability generating function
of the distribution P{Na(¢t) =%},£k=0,1,2, ---, is given by

h(x, t) = i P{Na(t) = k} - #* = g(Q(x), t) = 191 (30)
k=0

5.1.2 State distribution at scan instants

Since the cycle time approximation of Section III holds for GI/G/1
cyclic queues, the same pdfs C(¢), C’'(¢), and C”(t) can be used for
batch arrival processes. As in Section 4.1., let p, be the stationary
probability of state for n customers waiting within the considered
queue at the scan instants. The transition probabilities pm. in (13a)
are now

( i P{N5(t) = v}

t=0— y=0
P{Na(t) =n—m+ 1|Na(t) = »}-dC"(t), m>0
Dmn =< (31)

S P{Ns(t) = )

t=0— 0

[ .P{Na(t) =n|Na(t)=»}-dC’(t), m=0.
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The probabilities of state p, are completely determined by (13a), (31),
and (13c). The application of the generating function results finally in
the same expression for G(x) as in (15), however, with z = Az.[1 —
& (x)], where @(x) is defined by (28a), (28b). Also, for p, the identical
result is obtained as in (16). Further results can easily be derived
analogously as in Section 4.1.

5.1.3 State distribution at departure instants

Using the same definitions for p and G*(x) as in Section 4.1.2, we
find, instead of (20),

n+1 = @

pi=73 2

m
mil=po J_ =

=n-—m+ 1|Ns(t) =v}dH(?), n=0,12.... (32)

P{Ng(t) = v} - P{Na(t)
0

This again results in the same expression for G*(x) as in (21) with z
= Ag-[1 — @(x)], from which further results could be derived analo-
gously.

5.2 Delay analysis

Following the method outlined in Secton 4.2, p is also the distri-
bution of the number of arriving customers during the sojourn time of
a test customer of that queue. The number N* of customers left behind
in the considered queue by the departing test customer is now built up
from fwo components:

N* = Nf + N¥,
where
Nt = the number of customers that had arrived together with the

test customer in one batch but that were behind the test
customer

N7 = the number of customers that had arrived in subsequently
arriving batches during the sojourn time T's of the test cus-
tomer.

Let r, = P{(Nf =n},n=0,1,2, ---, be the probability that the
departing test customer leaves n customers behind which had arrived
together with the test customer in one batch. The test customer
arrived in a batch of size K = k with probability (see Ref. 20)

gt === k=123 ---. (33)

The test customer is first, second, - - , kth in the batch of size £ with
probability 1/k. Thus, g#/k defines the probability that the test
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customer arrived in a batch of size & in (k — n)th position, n =0, 1, 2,
«++, k—1.Then,
o qf 1

= T E qk, n=0! 1:2:"': (34)

rl'l = _— .
k=n+1 k EK k=n+1

and probability generating function

= 1 1-Q(x)
R(x)—nﬁ_jo A= T T (35)
Now, we can establish the relation between p and T's analogously as
in Section 4.2:

p;=J [i P{Nt =p}- iﬂP{N%’(t)=ﬂ—P|NB(t) =)
t=0— -

u=0

-P{Na(t)=v}]-d(W(t) ® H(t)), n=012-..-. (36)

In (36), the bracket term expresses the probability of new arrivals
within a sojourn time of length ¢ through consideration of all principal
possibilities of batch configurations of the departing test customer.

Introducing r. and R(x) from (34) and (35) and applying (19) on
(36), we find after some intermediate calculations

G*(x) = ¢pw(2) - pn(2) - R(x), (37

where

z=Ag[l - Q(x)].

Equating both expressions in (21) and (37) yields the final result
1—=2Ac" 1— ¢c(s) 1

A o-(s) —x R(x)’ (38a)

owl(s) =

where x = f(s) the solution of
s =As[1 - Q(x)]. (38b)
From (38a), (38b), we find for the mean waiting time of a customer

C:(Z) Ac”m} c” EKE
=—+ + . -1].
“’ (2.:’ 2(1 — J\c”)) 21— A [EK 1] 39)
Note that the mean waiting time consists of two terms; the first term
is identical with that of an M/G/1 system [see (26)], whereas the
second term expresses the influence of batch arrivals.

Analogously to Section 4.2, the mean waiting time can be derived
directly. Let w (i) be the mean conditional waiting time of a customer
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who is ith in his batch. For w(1), a similar balance can be stated as in
(27):
; 7(2) " r(2)

w(l) = (1 — a)-=.< Lt Qw)e” (40a)

o—
c 2¢ c 2¢”

The relationship between w(1) and w(i) is
w(i@)=wl)+(i-1)-c". (40b)

The mean waiting time w, irrespective of the test customer’s position
within the batch, follows by averaging over the conditional waiting
times. Thus, with (33) and (40b), we have

g kq.h 1 * L " EK>
"""Elﬁ'z'.-%“"”‘""”*E'[EE 1]- (41a)

Inserting (41a) in (40a) and solving for w(1) yields

cr(zp AC"(Z} AC”(Z) EK2
-+ + . -
Y T v T gy v [EK

The mean waiting time w is completely determined with (41a), (41b)
and agrees with (39).

Finally, we give the explicit results for w in the case of two special
batch size distributions. For constant batch size k, i.e., q; = 8(i, k), we
find

1] . (41b)

k-1 c”
w| mxi6n = w|mien +——

2 T-Ac “z2)

In the case of geometrically distributed batch sizes, which are defined
bygi=¢q'-(1-4¢q),i=0,1,...,and g = (EK + 1)/EK, the result is

”

c

1-Ac""

w l MIXygn = LU| man + EK - (42b)

The expressions (42a), (42b) demonstrate at first the increase of the
waiting time through the batch Poisson arrival process compared to
the pure Poisson arrival process and, second, the increase of w through
geometrically distributed batches against constant batches.

VI. NUMERICAL RESULTS

In this section, the results of the approximate analysis are validated
by computer simulations. Further results are given to show various
properties of cyclic queuing systems.

6.1 Cycle time variance for ordinary cyclic service

Since the mean cycle time ¢ according to (1) is always exact, the
approximation accuracy can be judged in a first step by the cycle time
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variance VAR Tc (note that even the pdf C(¢) of the cycle time would
not be sufficient for a complete validation since successive cycle times
are not independent of each other; for a more complete validation,
some covariance measure should be considered, too). We expect very
good accuracy for low traffic (since the independence assumption is
asymptotically exact for zero arrival rates) as well as for heavy traffic
(since each of the queues contributes in the limit with a full service
time to the cycle so that the cycle times become independent of each
other again).

10

NEW THEORY
————— HASHIDA/OHARA

SIMULATION RESULT
§ WITH 95% CONFIDENCE
LEVELS /

CYCLE TIME VARIANCE (VAR T.)

05+

0.1

0

SERVER UTILIZATION (pq!

Fig. 3—Accuracy of cycle time variances
Parameters: g = 2 symmetrical queues M/D/1 and M/H./1
cn = 2.0 coefficient of variation of service times for M/H/1
h, = hz = 1 average service times
¢o = 0.2 and 1.0, constant overhead.
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Table I—Cycle time variance for various G//M/1 queues with
ordinary cyclic service

Parameters: g = 10 symmetrical queues; A, =1, ; = 0.1 (0.5), ,, = A, j=1,2, ..., 10;
Constant overhead times; D/M/1: Equal phase shift between arrival instants; H./M/1:
Interarrival time coefficient of variation ca = 2.0; M*1/M/1: Constant batch size k = 4.

Parameters VAR T (simulation) (:;:rgf)
Po o D/M/1  EJ/M/1  M/M/1  Hy/M/1 MY/M/1 GI/M/1
0 1.0 0 0 0 0 0 0
04 1.0 1.83 1.88 191 1.88 1.66 1.38
0.6 1.0 6.60 5.38 5.14 5.03 461 3.25
0.8 1.0 21.90 15.40 14.50 12.90 11.00 9.20
0.909 1.0 10.00 10.00 10.00 10.00 10.00 10.00
0 5.0 0 0 0 0 0 0
0.2 5.0 2.23 2.77 2.78 2.81 2.64 2.38
0.4 5.0 11.10 7.85 7.59 7.28 6.66 5.80
0.6 5.0 21.70 13.00 11.30 10.70 10.40 10.30
0.667 5.0 10.00 10.00 10.00 10.00 10.00 10.00

In Fig. 3, vAR T¢ is shown dependent on the server utilization po in
case of g = 2 symmetrical queues of the types M/D/1 and M/H,/1,
each with two cases of constant overhead. As expected, the cycle time
variance depends largely on the pdfs of the service and overhead times.
The solid curves of the new approximation with the concept of condi-
tional cycle times compare generally better with the simulation than
the previous theory by Hashida and Ohara," especially for low over-
head. From a large number of computer simulations for M/G/1 sys-
tems, we made the following qualitative observations:

(i) The cycle time variance accuracy decreases with increasing

number of queues and increasing service time variance.

(it) The cycle time variance accuracy increases with increasing
overhead and for approaching the low or heavy traffic region.

(éiz) Observations (i) and (it) apply to the new and old theory; the
concept of conditional cycle times, however, yields generally a
better accuracy.

Since the approximation for the pdf of the cycle time is independent
of the arrival process type, it is interesting to know how the actual
cycle time variance depends on various process types. For comparison,
five different GI/M/1 systems with g = 10 queues (the accuracy is
generally better for g < 10), two cases of overhead, and five cases of
load have been considered (see Table I). Summarizing, we make the
following observations:

(i) The cycle time variance depends indeed on the arrival process
type. This dependence decreases, however, as the load ap-
proaches the low or the heavy traffic regions.

(it) For medium loads, the cycle time variance may decrease as
the arrival process peakedness increases.

(iif) The approximation generally underestimates the true cycle
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time variance. The accuracy increases with the overhead, the
peakedness of the arrival process, and as the load approaches
the low or heavy traffic region.

At first sight, observation (ii) is counterintuitive and surprising
since the mean waiting time generally increases with the arrival
process peakedness (see, for example, Fig. 9). However, regular arrival
patterns may result in very short and very long cycles since many idle
cycles could be produced after a service until the next arrival occurs.

100
NEW THEORY
= = HASHIDA/OHARA
§ SIMULATION RESULT WITH
95% CONFIDENCE LEVELS
10
E—.
w
=
=
©
Z
E
<
=
z
<
w
=
1
=
//
//
-
-
-
-
/
7 ~
0.1 | 1 I 1 1 | I |
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

SERVER UTILIZATION (pg)

Fig. 4—Accuracy of mean waiting times for cyclic queuing systems M/D/1

Parameters: g = 2 symmetrical queues
, = h2 = 1 average service times
¢y = 0.2 and 1.0, constant overhead.
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100

NEW THEORY
— — HASHIDA/OHARA

§ SIMULATION RESULT WITH
95% CONFIDENCE LEVELS

MEAN WAITING TIME (w;)

0.1 1 1 1 1 | | 1 1
Q 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

SERVER UTILIZATION (pg)

Fig. 5—Accuracy of mean waiting times for cyclic queuing systems M/H,/1

Parameters: g = 2 symmetrical queues
h, = hy = 1 average waiting times
¢y = 0.2 and 1.0, constant overhead
cu = 2.0 coefficient of variation of service times.

On the contrary, batch arrivals may stabilize the cycle time since many
cycles consist of one service time and the overhead only. Although
these characteristics depend largely on the parameter combination,
they indicate some interesting effects which may be important for
applications and theory as well.

6.2 Mean waiting time

Since the mean waiting times in (26) are basically dependent on the
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first two moments of the conditional cycle times, we can expect the
same accuracy trends as for the cycle time variance. Figures 4 and 5
show results for systems of the type M/D/1 and M/H,/1 with two
symmetrical queues for low and high overhead. The accuracy for M/
D/1 is excellent, whereas for M/H,/1 and low overhead the mean
waiting time is underestimated. In any case, the new approach yields
a better accuracy compared to Ref. 13, which results from the condi-
tional cycle time concept.

1000

mX1/D/1, CONST.BATCH SIZE

—_— M[x],’Dﬂ, GEOM. BATCH SIZE

§ SIMULATION RESULT WITH 95%
CONFIDENCE LEVELS

MEAN WAITING TIME {w;}

1 | 1 | | | 1 1 |
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

SERVER UTILIZATION (pg)

Fig. 6—Accuracy of mean waiting times for cyclic queuing systems M'*1/D/1
Parameters: g = 10 symmetrical queues
h; =1 average service time,j=1,2, ---, 10
¢ = 1.0 and 5.0, constant overhead
EK = 4 constant (average) batch size.
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1000

—— — mIXl/Hy/1, GEOM. BATCH SIZE

¢

MIX)/H,/1, CONST. BATCH SIZE

SIMULATION RESULT WITH
95% CONFIDENCE INTERVALS

MEAN WAITING TIME (wj)

1 1 1 | 1 | 1

0.2 03 0.4 0.5 06 0.7 0.8 0.9
SERVER UTILIZATION (pg)

Fig. 7—Accuracy of mean waiting times for cyclic queuing systems M™*1/H,/1

Parameters: g
h;

Co
EK =
CH =

10 symmetrical queues

1 average service time, j=1,2, ..., 10

1.0 and 5.0, constant overhead

4 constant (average) batch size

2.0 coefficient of variation of service times.

Figures 6 and 7 show the results for g = 10 symmetrical queues for
systems M'*1/D/1 (Fig. 6) and M'*)/H,/1 (Fig. 7), each with constant
or geometrically distributed batch sizes, low and high overhead. All
cases of batch arrival processes show an excellent accuracy. Many
other validations have also shown that the accuracy is far less depend-
ent on the parameters g, ¢y, or G compared to single Poisson arrivals.

This results from

the fact that the cycle time analysis yields the best
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accuracy in case of batch arrivals; also, the contribution of the batch
arrivals to the mean waiting time w dominates the expression (39) for
larger batch sizes.

Another study on the influence of the service process type G and
arrival process type GI on the mean waiting time w in case of ordinary
cyclic service is shown in Figs. 8 and 9 for zero, low, and high overhead.
The M/G/1 curves with overhead are analytic results according to
(26), whereas the GI/M/1 curves are simulation results; the results for

100

MEAN WAITING TIME (w;)

0.1 / A | | | 1 | 1 ] 1
0 0.1 0.2 0.3 0.4 0.5 06 0.7 0.8 0.9 1.0

SERVER UTILIZATION {pg}

Fig. 8—Influence of service process type for cyclic queuing systems M/G/1

Parameters: g = 10 symmetrical queues
h; = 1 average service time,j =1, 2, .-+, 10
¢o = 0, 1.0, 5.0, constant overhead

Systems M/D/1, M/M/1, M/H:/1 (cx = 2.0).
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zero overhead are exact and have been drawn from standard queuing
tables by the author.'” The main conclusions from Figs. 8 and 9 are:

100

MEAN WAITING TIME (w;)

(£) For M/G/1 systems with ordinary cyclic service, the influence
of the service process decreases with increasing overhead.

(ii) For GI/M/1 systems with ordinary cyclic service, the influence
of the arrival process does not remarkably decrease or may
even increase with increasing overhead (see also Figs. 6 and 7
for batch arrivals).

0.1 /A 1 | .-‘I/ | 1 | | |

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
SERVER UTILIZATION (pg)

Fig. 9—Influence of arrival process type for cyclic queuing systems GI/M/1
Parameters g = 10 symmetrical queues
h; = 1 average service time, j=1,2, ..., 10
¢ = 0, 1.0, 5.0, constant overhead
Systems D/M/1, M/M/1, H:/M/1 (ca = 2.0).
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These properties are most important for applications since they
show that the results are much more sensitive to arrival processes than
to service processes and that the usual approximation of arrival proc-
esses by Poisson processes may result in a quite dramatic error in the
performance estimation. Therefore, future analytic studies on cyclic
queuing systems should aim more to the generalization of arrival
processes.

100

P CYCLE (1,2,3,4)
——==——CYCLE(1,1,1,1,2,2,23,3,4)

1,2,3,4)

MEAN WAITING TIME (w;, j

p— e
S —C— 0.4 —0
o P T
P —— —— ~— =4
0.1 1 1
1 2 3 4

QUEUE NUMBER
Fig. 10—Unbalanced load performance of cyclic queuing systems M/D/1

hj = 1,7=1, 2, 3, 4, average service times
1, 2, 3, 4, constant overhead
4:3:2:1 arrival rate ratios.
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6.3 Equity of service for unbalanced load

So far, we have concentrated on cases of ordinary cyclic service. The
final study shows how cyclic priority service can be used to achieve
equity of service in cases of unbalanced load. In this case, queue 1 is
served up to /; times, queue 2 up to [, times, .-+, queue g up to
times within a cycle, so that 1, &, - - -, J; could be considered as cycle
priorities. Figure 10 demonstrates the use of cyclic priority service in
case of unbalanced load in a system M/D/1 with g = 4 queues and
arrival rate ratios Aj:Az:As:Ay = 4:3:2:1. In case of ordinary cyclic
service with the cycle {1, 2, 3, 4}, the unbalanced load produces also
unbalanced waiting times with increasing absolute load po. The dashed
curves show the result of cyclic priority service where Li:l:l3:l = Ai:
Az2:As:As with the cycle {1, 1, 1, 1, 2, 2, 2, 3, 3, 4}. For small po, both
schedules do not remarkably differ in performance. In case of higher
po, the unbalanced load effects can be compensated for by a cyclic
priority service.

Vil. CONCLUSION

This paper provides a new approximate analysis for cyclic queuing
systems M*1/G/1 with batch Poisson arrivals, general service and
overhead times, and ordinary cyclic service. The method allows a
relatively easy evaluation of numerical results. The accuracy of the
method has been validated by computer simulations. In addition to
the analysis method, a new stability criterion for systems GI/G/1 with
general cyclic service is developed. A number of traffic studies are
reported revealing more insight in the traffic performance of cyclic
queuing systems.
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