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This paper illustrates the usefulness of state-dependent, birth-death
processes in reducing the dimensions of stochastic service systems.
The approximation technigues introduced have wide applicability to
general (finite) multidimensional, state-dependent, birth-death proc-
esses. These techniques are introduced by considering the “classical”
telephony problems dealing with trunk group overflow traffic from
the point of view of state-dependent, birth-death processes. The main
part of the paper then applies these techniques to a two-dimensional
trunk group retrial model of Wilkinson and Radnik. The method,
which reduces the W-R model to an approximate, easily-solved, one-
dimensional model, makes use of the transition probabilities for state-
dependent, birth-death processes. These are obtained via a simple
extension of known results. We use the one-dimensional results to
compute blocking for a range of parameter values (trunk group sizes
and retrial rates) exceeding the computational limits of the W-R
model. Maximum relative errors do not exceed 10 to 15 percent, while
for most cases of practical interest the relative errors are less than 5
percent. The approximation also provides insight into the region of
applicability of even simpler retrial models. This one-dimensional
retrial model actually applies to more general (finite) state-depend-
ent, birth-death processes (e.g., loss-delay systems).

l. INTRODUCTION

The purpose of this paper is to illustrate the usefulness of state-
dependent birth and death processes in reducing the dimensions of
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stochastic systems. The principal application is the reduction of a two-
dimensional retrial model, proposed by R. I. Wilkinson and R. C.
Radnik,' to an approximate one-dimensional model, which is then
readily solved. While algorithms® exist for the numerical solution of
the two-dimensional Wilkinson-Radnik model, the large number of
states that are often needed can result in convergence difficulties.

Section II presents the history of and motivation for the techniques
used throughout the paper. The equations for the reduced one-dimen-
sional retrial model are described in Section III. Their solution is
discussed in Section IV. Section V contains numerical results and
comparisons, and Section VI discusses the theoretical accuracy of our
one-dimensional approximation.

The main points of this paper are the dimension reduction of
stochastic models using a state-dependent birth-and-death process and
a method of solution of the resulting approximate model. However,
the retrial problem considered here as an example is of interest in itself
and has been extensively studied in the past. L. Kosten®’ and J.
Riordan® considered retrials coming back in a secondary, uncorrelated
Poisson stream. J. W. Cohen® allowed for negative exponential distri-
butions in the interarrival times of calls, the holding times of calls, the
duration of the time interval between two successive attempts by a
subscriber whose call was blocked at the first attempt, and the time
during which a subscriber continues to make repeated attempts. All
these works* attest to the difficulty of modeling and obtaining numer-
ical solutions to the retrial problem. We hope that the ease with which
one can obtain reasonable numerical results by using state-dependent,
birth-death processes will motivate readers to consider this as one
possible approach to the simplification of probabilistic systems.

Il. HISTORY AND MOTIVATION FOR THE USE OF STATE-DEPENDENT
BIRTH RATES

One early use of state-dependent birth rates to reduce a multidi-
mensional system to a one-dimensional model is given in Ref. 6. The
motivating problem was the analysis of an alternate-routed telephone
network. The system to be analyzed consists of one or more primary
groups of servers, each with its own arrival process. Arrivals which
find all servers in its primary group busy are offered to a common
overflow group (see Fig. 1). With the common assumption of Poisson
traffic for the underlying arrival processes and exponential service
times, one can readily write down the appropriate birth-death equa-
tions. For the case where there is only one primary group, the analysis

* Those noted are only meant to be representative of various works concerned with
the retry phenomenon. They are not meant to provide a complete list of such works.
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Fig. 1—Overflow problem.

is already somewhat complicated, although it has been carried out.”
Moreover, reasonably sized trunk groups quickly lead to systems where
even numerical solutions are not feasible. However, one is often only
interested in the behavior of the overflow group, e.g., finding which
attempts are blocked there and hence lost from the combined system.
In this case, the primary trunk groups are of interest only inasmuch as
they supply the input to the overflow group. It is here that state-
dependent, birth-rate modeling has proved of value.* But before noting
some of the previous work on state-dependent birth rates related to
this overflow problem, it is useful to consider the application of our
basic ideas on dimensionality reduction.

For the simplest case of one primary group of N servers overflowing
to a group of M servers, Poisson input rate A, and (unit) exponential
holding time, the birth-death equations can be written as

A+i+))P;= AP+ (j+ DPijsr + (i + 1)Piyy

i<N
(A+ N+ j)Pnj=APn-1;+ (j+ )Py + APy, (1)
i=N Jj<M

(N + M)Pnm = APn-.m + APN M-
(P,=0 if { or j<0),

where P, is the probability that there are i busy servers in the primary
group and j busy servers in the secondary group.
Since our main interest is in the marginal distribution P.;, we begin

* Actually, if total lost calls were the only item of interest, then the equivalent
random method (Ref. 8) would perhaps be more applicable. However, we will be
considering more general questions here.
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by summing eq. (1) over i. The result after simplification is
JPi+ APnj=(j+ DPui + APnj00  J<M
MPy =APyu-  J=M, (2)
(Pj, Pn;=0 if j<0),

where we have denoted the marginal distribution P ; by P;.

If we subtract the equation for j = M from that for j = M — 1, and
then proceed to subtract the new equation for each j from the old one
for j — 1 we obtain the equivalent, but simpler, system

APyj=(j+ )P, O0=j<M. @3)

Note that we could have obtained eq. (3) directly by balancing the
upward transitions from j to j + 1 with the downward transitions from
J + 1 toJ, in equilibrium. In any event, by now using the fact that Py,
can be written as Py;P} and denoting the term APy, by A;, we obtain

ANPi=(j+ DPin0=j<M, (4)

an apparent one-dimensional birth-death process. Care must be taken
in this interpretation. The quantity A; is the average “birth” rate when
there are j busy on the overflow group. That is, the input process can
be characterized by a state-dependent birth rate only in an average
sense. Thus, while (4) is a valid equation satisfied by the equilibrium
probabilities P;, other quantities that might be obtained by viewing
this as a birth-death process (e.g., transitory behavior) would at best
be approximate. Indeed, even to obtain the P/s from (4) it would be
necessary to determine the A; exactly. Since this can usually only be
done by solving the combined system (primary plus overflow trunk
group), a problem we wish to avoid, we turn to approximations for the
l\j,S.

Linear birth rates (e.g., \, = a@ + bj) were suggested in Ref. 6 for the
case where the overflow group is infinite. This results in a negative
binomial distribution for the state probabilities. Determining the pa-
rameters a and & by matching the mean and variance of the number
of busy servers was found to result in a reasonably good approximation
for the state probabilities. The idea of relating the birth rates to
conditional probabilities was presented in Ref. 7. The resulting ap-
proximation for the state probabilities for an infinite overflow group
were found to be better than those obtained with the negative binomial
distribution, particularly for large values of the number busy.

Extensions of the negative binomial approximation (linear birth

* The notation P, refers to the conditional probability of N (busy on the primary
group) given j (busy on the overflow group).
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rates) to a system with a finite overflow group are given in Refs. 8, 9,
and 10. The approach in Ref. 9 is to solve for the equilibrium proba-
bilities P{™ for an infinite overflow group, and then simply terminate
and normalize these to approximate the state probabilities P{" for the
finite group, i.e.,

(o2)
P =B
3 Pr

i=0

(6)

Equation (5) still implies a linear birth rate of the form A, = a + bi.
The problem is that if the parameters a, b are adjusted to match
moments on an infinite trunk group, then for the finite case the total
offered load A = Y7Ly A; P\ will no longer match the true offered load.
This problem can be rectified by adjusting the offered load (see, for
example, Refs. 9 and 10); however, this generally results in the need
for an iteration procedure. For example, a choice of A; results in a set
of probabilities P!, and hence an actual offered load A = Y%,
A:P{™ which, if not the desired value, results in a need to adjust the
Ai. This feedback effect, where the equilibrium probabilities must be
used to adjust the offered load, is a dominant feature in this type of
approach to dimensionality reduction. We will see shortly that this
interaction between the reduced state probabilities and the assumed
state-dependent offered load is even stronger for the retrial model
considered.

An important point to note is that, independent of the initial
motivation for the above approximations, they can all be interpreted
as attempting to approximate the conditional probability that the
primary group is busy, given that there are j busy on the secondary
group. This interpretation is important since it can often lead to insight
into the applicability of the resulting approximation.

Before proceeding we note that state-dependent birth rates have
also been used to study multilink systems offered overflow traffic and
to obtain approximations for the blocking seen by the various parcels
of traffic offered to an overflow group as depicted in Fig. 1."""

lll. APPLICATION TO THE WILKINSON-RADNIK RETRIAL MODEL

A diagram of the Wilkinson-Radnik (W-R) retrial model is given in
Fig. 2. The underlying offered load is assumed to be Poisson with rate
A. If these attempts find all ¢ servers busy, they may defect from the
system (probability D,) or they may wait a period of time and then
retry (probability R, = 1 — D,). Thus, the number of people ; waiting
to retry is increased by one with probability R,, whenever a first
offered attempt arrives to find the number of busy servers i equal to
c. When a customer retries, he either finds an idle server (i < ¢) and
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INFINITE NUMBER OF
WAITING POSITIONS

Ry=(1-Dy)

Oees s 0

Ry=(1-Dj}

A — POISSON FIRST OFFERED LOAD
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r — RETRIAL RATE (EXPONENTIAL DISTRIBUTION)

Fig. 2—Wilkinson-Radnik retrial model.

hence is carried by the system, or, if i = ¢, he may defect with
probability D, or again wait and retry with probability R, = 1 — D,.
With the assumption of exponential times to retry, this system is
completely characterized by the state (i,7), i = number of busy servers
(i=0, ---,c),j= number of customers waiting to retry (j =0, ---,
o).

Denoting the mean time to retry by 1/r and the mean server holding
time by 1/u, we can readily write the state equations for the probabil-
ities P;; = P* (i busy server, j waiting to retry). Assuming for simplicity
that R, = R, = R, we obtain:

A+ 1+ pi)Pyi = APy +r(j+ 1) Piyjn
+pn(i + 1)Pisry i<ce
(AR+rj(1=R)+pc)Pj=APcyj+r(j+ 1)Peyjn (6)
+r(j+ 1)(1 = R)Pjs1 + ARP. ;-
(P,;=0 if { or j<0).
While the W-R model is a reasonable one for the customer retry
phenomenon in telephone systems, eq. (6) quickly lead to numerical

problems, even for modest values of c. Here, as with the overflow
problem, we see that the dimensionality difficulty is caused by an

* P denotes probability.
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aspect of the vector state (i, ), namely j, that we often are not
concerned with, except as it influences i, the number of busy servers.
Hence, following the procedure outlined in Section II, we sum (6) with
respect to j and obtain

(A+rE(j|i) + pi)Pi= AP+ rE(j|i — 1) P,
+p(i+ 1) Py i#c (7)

and
(peYP.= APy + rE(j|c — 1) P.,,

where
P,' = Z Pu

7
E(j|i) =jP;/P,.

The term A; = rE(j| i) represents the mean input intensity associ-
ated with the retries. If this quantity were known exactly, then (7)
could be solved to yield the exact solution for the equilibrium state
probabilities P;. The use of (7) to compute other quantities such as
transitory probabilities would again be an approximation. However,
one would expect such an approximation to be good if in the two-
dimensional model, the value of j (number of retry sources) did not
vary much from its mean for a given value of i (number of servers
busy). This idea will be explored later.

Before discussing how to obtain an approximation for the A/ which
clearly depends on the unknown P(i), we note that direct balance of
flows across the (i, i + 1)-state boundary as before yields the simpler
(but equivalent to (7)) state equations

AP = ,U.(i + 1) Piyy, (8)
where
?\.-=:\+?\,'-=A+rE(j|i).

It is clear that there is a strong interaction between the state
probabilities P; and the retry intensity A;. We now turn our attention
to modeling this rather complicated relationship, and hence obtaining
a solution to (8) which will hopefully approximate the two-dimensional
W-R retry model adequately.

IV. SOLUTION OF THE ONE-DIMENSIONAL RETRIAL MODEL

The “solution” to a one-dimensional birth-death process is, of course,
well known, provided the birth (and death) rates are given. Thus the
main problem we are faced with is determining the A.’s for the one-
dimensional model so that they capture the essence of the two-dimen-
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Fig. 3—Necessary events for a retrial arrival in the interval (£, ¢ + A t) conditioned on
an inter-retrial time equal to 7.

sional model. As indicated earlier, A; is the sum of A (first offered traffic
intensity) and A/ (retrial intensity when i trunks are busy). We thus
have, to first-order in A¢, that the A/’s satisfy the relationship

AlAt = PV {exactly one retrial in (¢, ¢t + At]| N(¢) =i}, (9)

where N (t) is the number of busy servers at time ¢ and the superscript
(1) indicates that this probability is for the one-dimensional model.

What we would like is for P*" in (9) to be close (in some sense) to
P® the corresponding probability for the two-dimensional model.
Using the law of total probability, conditioned on the inter-retrial time
of the arrival under consideration, we have*

P (exactly one retrial in (£, ¢ + At]| N(t) = i)

=J’P{N(t— r)=e¢, al(t—17,At), r(r,dr)| N(t) =1}, (10)

T

where a(t — 7, At) is the event that an arrival occurs in (¢t — 7, — 7

+ At] and r (7, d7) is the event that he will retry if blocked within (7,

r + dr] time units. Figure 3 represents these events pictorially. (Note

that the assumptions made for the two-dimensional model imply that

each blocked arrival can be tagged with a time to retrial, 7, taken

independently from a distribution F. (1), at the time of his arrival.)
Using P(A|B) = P(B|A)P(A)/P(B) in (10) we obtain

P2 (.} =JP{N(£) —i|N(t—71)=c,a(t—r,At),r(r, dr)}

. P(N(t—1)=c,a(t—r1,A¢t),r(r,dr)} /P{N(t) =i}. (11)

Denoting the events {a (¢t — 7, At), r(7,d7)} by {A,} and using the law
of total probability conditioned on J(¢ — 1) and J(t), the number
waiting to retry at times ¢ — r and ¢, result in

* For simplicity, we omit all terms of higher order than At in egs. (10) to (16).
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P{Zl{.}= i i

L =0 =]
«P(N(t)=i,J(t—7)=j,J(t)=ja| N(t=71) =¢, A}

- P{A,}/p(N(t) =1}. (12)
Using P(A, B|C) = P(A|B, C)P(B|C), this becomes

PO (.} = i i «P{N(t)=1,J(t)

LS00 o=

=n|N(t=1)=c J(t—71)=/,A)}

cP{J(t—1)=h|N(t—-1)=1c A} P{A]} (13)
P{N(t) =i} '

Now the value of J (¢ — 1) represents the retrial intensity at (¢ —
7). In general, for the two-dimensional model, P{J (¢ — 7) = j,} does
indeed depend not only on the value of N(¢ — 1), but on the fact that
an arrival has just occurred. However, this latter dependence is incon-
sistent with the one-dimensional model. More specifically, we have
assumed that the retrial intensity depends only on the state of the
one-dimensional system, N(¢ — 7). Thus we are led to making the
approximation

P{J(t—=71)=5|N(t=71)=1¢c A}
=P{J(t—7)=j,N(t—71)=c}.

Note that this approximation should tend to underestimate the retrial
intensity A when there are ¢ busy servers and hence underestimate
the blocking, particularly as seen by the retrials.

Using this approximation, the formula P(A|B, C)P(B|C) =
P(AB|C), and noting that

PIN(t) =i, d(t) =js| N(t=1) =¢, J(t —7) =i, A,)
=P{N(t)=i Jd(t)=jo—1|N(t—1)=c, J(t—1) =),

we obtain

PY(.) = i g‘:P{N([)=1,J(t)=j-_',J(f—T)

7 =0 gy=0

=J|N({t—-1)=c}
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.P{N(t—1)=c})P{A,}/P{N(t)=1i)

=jP{N(t)=i|N(t-f)=c}P{N(t—-r)=c}

T

-P{A,}/P{N)t)=1i}. (14)
Thus we require that
AiAt = IP‘”[N(!} =i N(t—-r7)

=c)P"{N(t—1) =} P"(A}/P(N(t) =3}, (15)

where we have used the superscript (1) to emphasize that the proba-
bilities are for the one-dimensional model. Using the Markovian prop-
erties and independence assumptions for a birth-death process, (15)
can be written as

AilAt = J P.i(t) (\At)P.RdF, (1) P, (16)

where P.i(r) = P{N(r) = i| N(0) = ¢}, i.e,, the transition probabilities
A. = birth rate when N = ¢
R = Pr {a blocked attempt will retry}
F.(r) = distribution function for the time of retry
P.=P{N=c

_+ equilibrium probabilities.
P,=P{N=i

All are from the one-dimensional model.
Thus, finally, we have that the overall state dependent birth rates

are given by
A=A+ A, (17)

where from (16)

I

P.(r) dF.(r). (18)

Up to this point, we have not made any assumptions regarding the
retrial distribution F,. Before doing so, it is worth pointing out that eq.
(18) provides the correct answer for the two limiting values of the
retrial rate r. As r goes to infinity, retrials occur “immediately.” If we
represent this by setting F, equal to a unit step at zero, then (18)
reduces to

_PAR

Al = B 8., (19)
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where &.; is the Kronecker delta function. Combining eqs. (17) and (18)
we find that A, = A for i less than ¢, and A. = A/(1 — R). Thus, when
retrials occur immediately, they do not influence the state of the
system. With one or more servers idle, the load remains at A; with all
servers occupied, an arrival retries infinitely fast and (for R < 1) will
exit from the system before a server becomes idle.

In the other limiting case, as r goes to zero, customers “come back
in an uncorrelated stream.” Proceeding as above, and noting that

J’ P.(r)dF.(r) = P; asr— 0

(if we let F. approach a unit jump function at infinity), we find that
Ai=A+PA.Rforall i, and thus A, = A/(1 — P.R). That is, the traffic
intensity increases by a factor of (1 — P.R)”', independent of the
number of servers occupied. This is a familiar retrial model. In Section
V we see that there is a wide range of parameter values for which this
simple model is not a useful approximation for the proportion of
retrials blocked.

We now return to egs. (17) and (18), and use them to calculate
recursive formulas for the A/s. We assume, as in the two-dimensional
retrial model, that the time to retrial is given by a negative exponential
distribution with rate r, namely

F(ir)=1—-¢€", (20)
In this case, the equations become
P .
A(=A+ AR,_P”‘(’_) l‘=1;"')c! (21)

where " denotes the Laplace transform. In particular,
A

A =————,
1—-rRP..(r) (22)
If we let
A—A
5 =" f=1,-++,0¢, 23
=ya-n L.eryc (23)
then we can write
A=A )
A=A+ 18 J=1.-.-.,c. (24)
7

Substituting (17) into (19) and simplifying using A -, Pj-) = u;P;, we
obtain
wP.(r)

§=—2 27
T N Pyoa(r)

=1--+,c. (25)
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Using formula for P.(r) developed in the appendix,* we obtain a
recursion for §;:

Si=1+r/A and §;

Cr A g 1)8 =
Ai-16i-)

Combining (26) with (22), (24), and the formula for P..(r),

8.
(r+ p)be —pe)’

we get an iteration scheme for finding the ;i =0, - - . , ¢ which satisfies
the birth-death equations and is consistent with the derivation of the
S;i=0,.--,c.

Before leaving this section, we note that the above derivation holds
equally well if the underlying system (without retries) is characterized
by an arbitrary (finite) state-dependent, birth-death process. For ex-
ample, it applies to the loss delay system considered in Ref. 4, and to
overflow traffic characterized via state-dependent birth rates (as dis-
cussed in Section II). Moreover, using the results given in the appendix,
one can compute transition probabilities and other related quantities
for this system (e.g., correlation function).

for j=2,--+,c. (26)

P.(r) = 27)

V. NUMERICAL RESULTS

We assess the accuracy of the one-dimensional approximation by
comparing our results to those obtained from direct numerical solution
of the two-dimensional W-R model. The particular comparisons pre-
sented here were chosen to give the reader an understanding of the
value of the one-dimensional approximation for a wide range of param-
eter values. However, due to the difficulty of computing “correct”
values (i.e., from the two-dimensional model), the results may not
cover every possible region of interest. In particular, it is difficult to
analyze the convergence behavior of the two-dimensional algorithm
for large trunk groups or small retrial rates. This difficulty arises
because the number of waiting positions must increase to obtain a
good approximation to an infinite waiting room; in turn, the number
of states increases markedly and roundoff errors may become signifi-
cant. Fortunately (see Section VI), the two models give the same
results as r tends to infinity or zero. The approximation is worst for
values of r around 2 and gets progressively better as r gets larger or
smaller.

* The appendix shows that the P;;(¢) of a general one-dimensional birth-death process
may be obtained in precisely the same way they were obtained for a combined delay
and loss system in Ref. 4. This fact was recognized and used in Ref. 14 (Appendix B).
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We first look at retrial blocking, i.e., the proportion of reattempts
blocked. Figure 4 shows the retrial blocking for a system with two
servers, as a function of offered load. We assume a probability of R =
0.8 that a blocked customer will retry. As expected, the proportion of
reattempts blocked increases as r, the retrial rate, increases. For the
two cases shown, r equal to 2.0 and 0.5, the relative difference between
the two models is approximately 10 to 15 percent (as noted earlier,
this is the worst case). We also see that the retrial blockings for the
two retrial rates approach one another as offered load increases.

For comparison, we show similar retrial blocking curves for systems
with 5 and 30 servers, in Figs. 5 and 6, respectively. An interesting
phenomenon can be seen here, but first observe that the offered loads
in each of Figs. 4 through 6 correspond to values of call congestion
ranging from 0.01 to 0.30, without considering retrials. For a given
design load, without retrials, the percentage of reattempts blocked is
much higher for a smaller number of servers. In particular, at 1-percent
total blocking and r = 2.0, the retrial blocking is 51 percent for 2
servers and 17 percent for 30 servers. This poor retrial performance of
small server groups may be of importance in understanding customer
satisfaction (or annoyance). We make one last point regarding retrial

100

= = — 2— DIMENSIONAL MODEL

1- DIMENSIONAL MODEL

PERCENTAGE OF REATTEMPTS BLOCKED
o =
I

1 1 | | 1 | ] ] | ] 1 | |
0.1 0.2 0.3 0.4 0.5 0.6 0.7 08 09 1.0 11 1.2 1.3 1.4
OFFERED LOAD, ERLANGS

Fig. 4—Retrial blocking, 2 servers, retrial probability = 0.8.
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Fig. 5—Retrial blocking, 5 servers, retrial probability = 0.8.

blocking by referring the reader back to Fig. 6. The curve for r = 0
corresponds to the simply-computed “uncorrelated retrial” model. We
see that, for a high-design blocking, both the one- and two-dimensional
models are well approximated by this simpler model.

Figure 7 illustrates the dependence of retrial blocking and call
congestion on trunk group size. The proportion of retrials blocked
generally decreases as the group size N increases and seems to ap-
proach an asymptote. The total call congestion also decreases for small
to medium size groups, but then increases for N larger than 30 and
approaches the same asymptote. Notice that, if we restricted our
attention to the region where the two-dimensional model applies, we
would not get a good view of the limiting behavior. The reason for the
seemingly anomalous behavior of total call congestion is that the larger
and exceedingly efficient trunk groups are correspondingly more sen-
sitive to traffic above the design load. We now briefly discuss the
limiting behavior.

If we assume that retrials return in an uncorrelated Poisson stream
(r = 0 case), then the inflated load A is given by the solution (deter-
mined by iteration, e.g.,) to
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Fig. 6 —Retrial blocking, 30 servers, retrial probability = 0.8.

A

"1-B(N,A)-R’ (28)

A

where B(N, A) is the Erlang-B blocking function. The resulting
blocking (for both retrials and first attempts) is the lowest curve in
Fig. 7. For large values of N, we use the well-known approximation 1
— N/ for B(N, )) (see Ref. 15) in conjunction with (28) to obtain the
asymptote,

B

1-R(1-B)’ (29)

call congestion =

for a fixed design blocking B. In Fig. 7, the asymptote 0.048 is shown
by a dashed line.

Another way of obtaining (29) is to assume that, for large trunk
groups, A — N equals the traffic lost on first attempts, (A — N) R equals
the traffic lost on second attempts, - - - , (A — N) R*™' equals the traffic
lost on the kth attempts, etc. Then the total blocking is given by
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We close this section by pointing out that the one- and two-dimen-
sional models yield practically the same values for the call congestion
and the time congestion. A few sample values are shown in Table I.

VI. THEORETICAL ACCURACY—A NUMERICAL LOOK

As indicated in the derivation in Section III, the one-dimensional
state equations may be obtained by summing the two-dimensional
state equations over the number of waiting positions occupied. When
this is done, the arrival rate of retries (when i servers are busy) equals
the retrial rate times the expected number of waiting positions occu-
pied (given i servers busy). In equation form,

A= r-E(j|i). (30)
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If one knew the conditional expectations E (j | ) precisely, then all the
A/’s, and hence all the P/’s of the one-dimensional equations, would be
known exactly. The approximation occurs in the iteration procedure
for finding the A’s where we implicitly assume that the one-dimen-
sional equations actually come from a one-dimensional Markov model
that adequately describes the retrial situation.

Intuitively, if either (i) the standard deviation-to-mean ratio o,/
E(j|i) is very small, or if (ii) E(j|i)  ka;; is “equivalent” to E (j| i)
(for some reasonable k), then for practical purposes we have a proper
one-dimensional system; since knowing the number of busy servers i
implies that we know j {namely, E (f | i) }. Hence, if either of conditions
(i) or (if) above hold, then we expect the one- and two-dimensional
models to yield similar results. We look at a numerical example to
illustrate the point. Table II shows the effect of varying the retrial
rate, for five servers offered 2.22 Erlangs, while keeping all other
parameters fixed. As the retrial rate goes to zero, the ratio o;5/E (j|5)

Table I—Time and call congestion (r = 2.0, R = 0.8)

One-Dimensional Two-Dimensional
Model Model

Offered No. of Time Call Time Call
Load Servers Cong Cong Cong Cong
0.381 2 0.055 0.089 0.055 0.092
2.22 5 0.062 0.084 0.063 0.088
10.6 15 0.072 0.085 0.073 0.087
24.8 30 0.081 0.092 0.084 0.100
0.095 2 0.116 0.179 0.116 0.186
2.88 5 0.136 0.176 0.136 0.188
12.5 15 0.169 0.195 0.167 0.204
28.1 30 0.194 0.212 0.197 0.227

Table Il—Effect of retrial rate (c = 5 servers, offered load = 2.22

Erlangs)
Retrial ) )
Rate E(j]5) Na/r 0,|5 0,|5/E(j|5)
128.0 0.058 0.058 (0%)* 0.24 4.14
64.0 0.102 0.101 (1%) 0.32 3.14
320 0.166 0.161 (3%) 0.42 2.53
16.0 0.250 0.234 (6%) 0.52 2.08
8.0 0.349 0.316 (9%) 0.64 1.83
4.0 0.460 0.403 (12%) 0.76 1.65
2.0 0.577 0.499 (14%) 0.88 1.53
1.0 0.702 0.609 (13%) 1.00 1.42
0.5 0.856 0.758 (11%) 1.14 1.33
0.25 1.095 0.997 (9%) 1.31 1.20
0.125 1.527 1.440 (6%) 1.55 1.02
0.0625 2.398 2.300 (4%) 1.99 0.83
0.03125 4,107 4.010 (2%) 2.62 0.64
0.015625 7515 7.422 (1%) 3.55 0.47

* The number in parentheses is the relative difference between E(j|5) and our one-
dimensional approximation to it, A's/r.
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tends to zero [as do 0;;i/E(j|i),i=0,1,.-., 4—not shown in Table
II]. At the same time, our approximation A{/rconverges to E(j|5).

At the other extreme, as the retrial rate tends to infinity, Table II
shows again that Aj/r converges to E(j|5). However, the standard
deviation-to-mean ratio tends to infinity, proving that this is not a
sufficient condition for convergence. On the other hand, E (j|5) + ka5
= E(j|5), for any k. Intuitively, if we ignore the state [=c(=5),we
again have a one-dimensional Markovian system. Indeed, as r increases
retrials occur instantaneously and the probability of having anyone in
the waiting room tends to zero, if any server is free.

In summary, A./r converges to E (| c) as r tends to zero or infinity.
In these cases, the one-dimensional model gives the exact same answer
as the W-R model but is much easier to compute (especially for r small
since in this case a very large waiting room is needed). Unfortunately,
the approximation seems worst for values of r around 2.0. Nevertheless,
Table II shows only a 14-percent relative error in the approximation
for E(j|5) in this case.
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APPENDIX
Transition Probabilities of a One-Dimensional Birth-Death Process

We show that one may obtain a solution for the transition probabil-
ities for any finite-state, one-dimensional, birth-death process. The
solution is not original; it precisely follows the derivation of the
transition probabilities for the simplest combined delay and loss system
given by J. Riordan (Ref. 4, pp. 96-98).

Assume we have arbitrary state-dependent birth and death rates,
A; and p;, respectively. Further assume that A; = 0 for i = ¢ + 1 and
define p, = A-y = ge+1 = 0. Then one obtains the usual system of
ordinary differential equations

Pli(t) = Ao 1 Py—i(8) — (A, + ) Pit) + pji P (8)
ksj=0!1|"°:c- (31)

Since P;(0) = 0 for i # j and P;(0) = 1, the Laplace transform of
Pj;(#) is given by sPy(s) for i # j and by —1 + sPy(s) for i = J. Hence,
the Laplace transform of eq. (31) is

AoaPioi(s) — (s+ A+ 1) Pi(s) + pjsiPija(s) = 8
i,j=0,1,-+c. (32)
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Foranyi=0,1, ..., c we can write
DII; = §;, (33)

where §; is a ¢ + 1 dimensional vector whose ({ + 1)st component is 1,
with all other components equal to zero,

Piu .
IL=|Py|,
Pi('

and
[s+X —m 0 .. 0 0 7
=X s+ A+ =2 0 0
0 —A2 s+A:+ gz —ps 0
D —3
0
. 0 —Ac—z s+ Ac—l + He—1 —Hhe
| 0 0 0 =Ac-1 8 + fic]
If we define D;, A; via
Dy=1
Di=s+ A
Dr’+l = (s + I\i + #g‘)Dr’ - I\i—lﬂ-a'Difl 1= 2y ree,C
and
An=1
A =s+p.

AJ'+I = (s + )\1'—1 + #1‘7I)Ai - Ar—l{lr—iHAi—l.

then the transforms, P;(s), of the transition probabilities are given by

A,‘A,‘H e A_,;lD,'A(-j i <J’
Det(D)Py(s) = { wsrptjez +»» wDA—i  i>], (34)
DA, i=j

where the determinant of D can be written as
Det(D) = .D[-(S + P‘l) - A('—l”"('D('—l-

Equation (34) is the key formula used in Section IV.
We can go one step further and write down a “closed-form” solution
for the P;(t), namely,

Dir)Dr)
Pt =X 750

where
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Z[‘=A|‘j..' Al_l

M = #" TN ,u-f
< DXr)
Sdr = 2 7ot

and the sum is over the ¢ roots of det(D) = 0. Of course, the use of this
solution is limited by one’s ability to find characteristic roots.
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