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In this paper, we derive various integral equations related to the
scattering of time-harmonic electromagnetic fields by perfect conduc-
tors with 2-dimensional geometry. The fields may be expressed in
terms of two solutions of a scalar wave equation and decomposed
into E waves and H waves. We consider the case in which part, or
all, of each of the perfectly conducting cylindrical scatterers may be
infinitesimally thin, and show that a standard integral equation,
used in the case of H waves, does not determine the current density
on the infinitesimally thin parts of the scatterers. We derive an
alternate integral equation which does not suffer from this defect.
This equation has been used by J. L. Blue in the numerical solution
of the problem of scattering by an infinitesimally thin strip.

I. INTRODUCTION

In this paper, we consider the scattering of time-harmonic electro-
magnetic fields by perfect conductors with 2-dimensional geometry, in
which the boundaries are independent of the z-coordinate. The z-
dependence of the fields is assumed to be of the form exp(ik sin a z),
where k is the free space wave number and |a| < 7/2, so that the
scattering of obliquely incident plane waves may be investigated. It is
known' that the electromagnetic fields may be expressed in terms of
the longitudinal components, E, and H., and that each of these two
quantities satisfies the scalar wave equation, with wave number
k cos a. Moreover, since the boundary conditions on a perfectly
conducting surface imply that both E. and the normal derivative of H,
are zero, there is no coupling between E. and H., and we refer to E
waves and H waves, respectively.

Integral equations for scattering problems have been considered by
numerous authors. A relatively recent treatment of this topic is that of

409



Poggio and Miller,? but they give only a brief discussion of the 2-
dimensional case. A useful discussion of integral equations for the
scalar problem is given by Noble.’ Poggio and Miller state that the
integral equation which they derive for the surface current in the case
of H waves is useless when the scatterer is infinitely thin. Noble points
out that the corresponding integral equation, when applied to the
problem of scattering by an elliptic cylinder, degenerates as the eccen-
tricity tends to unity, so that the scatterer becomes an infinitesimally
thin strip.

In this paper, we consider the case in which part, or all, of each of
the perfectly conducting cylindrical scatterers may be infinitely thin.
We derive an alternate integral equation for the current density on the
scatterers, in the case of H waves, which does not degenerate on the
infinitesimally thin segments. We discuss the relationship between this
integral equation and one derived by Mitzner.* Our integral equation
has been used by Blue® in the numerical solution of the problem of
scattering by an infinitesimally thin strip. We also point out how the
integral equation which does degenerate may be used to calculate H.
on both sides of the infinitesimally thin segments, once the entire
current density on the scatterers is known. An integral equation which
degenerates in the case of E waves is also derived, and this may be
used analogously to calculate the values of the normal derivatives of
E_. on both sides of the infinitesimally thin segments, once the entire
current density on the scatterers is known.

In Section II we briefly derive expressions for the transverse com-
ponents of the field in terms of the longitudinal components E. and
H., and show that the latter quantities both satisfy a scalar wave
equation. We also derive the boundary conditions on a perfectly
conducting surface, and give an expression for the current density on
the surface. The total fields are expressed as the sum of the incident
and scattered fields. In Section ITI we derive an integral representation
for the scattered field in terms of the total field, and its normal
derivative, on the scatterers. A nondegenerate integral equation for
the current density on the scatterers is obtained in the case of E waves,
by using this representation as a point on the boundary is approached.
In the case of H waves, it is shown that the corresponding integral
equation degenerates on the infinitesimally thin segments, since it
contains an unknown quantity besides the current density.

In Section IV we derive representations for the transverse compo-
nent of the gradient of the scattered field. By using this representation
to calculate the normal derivative of the scattered field as a point on
the boundary is approached, we obtain a nondegenerate integral
equation for the current density on the scatterers in the case of H
waves. In the case of E waves, it is shown that the corresponding
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integral equation degenerates on the infinitesimally thin segments.
The implications of these results are discussed.

Il. THE ELECTROMAGNETIC FIELDS

We first write down equations which describe the electromagnetic
fields due to scattering by perfect conductors with 2-dimensional
geometry. If we suppress the factor exp(—iwt), where w is the angular
frequency, the divergenceless electric and magnetic fields E and H, in
free space, satisfy Maxwell’s equations®

VX E = iwpH, VX H = —iwgE, (1)

where p, is the permeability and e is the dielectric constant. The free
space wave number is & = w(oe)”>. We consider the case of a 2-
dimensional geometry in which the boundaries are independent of the
coordinate z, and assume that the 2-dependence of the fields is of the
form exp(ik sin « z), where || < #/2. This will allow us to consider
scattering of obliquely incident plane waves. Accordingly, we now
suppress the factor exp(ik sin « z), and write

V=V.+iksinai.,, E=E+ E.i.,, H=H,+ H.i., (2)
where i, is a unit vector in the z-direction, and the subscript ¢ refers to
the transverse components.

If we split egs. (1) into their transverse and longitudinal components,
we obtain

V.E, X i, = ik sin ¢ E; X i, + iwpoH,, (3)
ViH, X i, = ik sin a H; X i; — iweE,, (4)

and
Ve X E; = iwpoH:., V. X H;=—iweE.i.. (5)

It is convenient to define the transverse wave number k;, = & cos a.
Then, from (3) and (4), it follows that

kiE; = i(k sin a V.E. + wpoV.H, X i.) (6)
and
kIH, = i(ksin a V. H, — weV. E, X i;). (7)

Hence the transverse fields are expressed in terms of the longitudinal
components. If we substitute these expressions for E; and H; into (5),
we obtain

(Vi+k)DE. =0, (Vi+ki)H.=0, (8)
where we have used the relationships’
V.x (V.V)=0, V,x(V,VXi,)=-ViVi.. 9)
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Hence, as is known," the longitudinal components of the field satisfy
the scalar reduced wave equation.

The boundary conditions® on a perfectly conducting surface are that
the tangential components of the electric field and the normal com-
ponent of the magnetic field vanish, i.e.,

Exn=0, H.n=0, (10)

where n is a unit vector normal to the surface, directed into the
scattering region. Because of the 2-dimensional geometry, n-i. = 0.
From (2), (6) and (7), it follows that the boundary conditions (10) are
equivalent to

aH,
on

E.=0, =0 on a perfectly conducting surface. (11)
The current density on the surface® is K = n X H. We assume that t,
n and i, form a right-handed set of unit vectors. Then, from (2) and
(7) we find that

k? on

where s denotes arc length along the cross-sectional boundary curve,
and t is a unit vector tangent to the curve.
We write the total fields as the sum of incident and scattered fields,

E=E'+E, H=H+H" (13)
In the case of incident plane waves we have, in Cartesian coordinates
(x, ¥, 2),

K=Hzt+i (wf(] OF, —ksmaagz)iz, (12)

Ei = E, exp[ik.(x cos B + ysin B)], H:=0, (14)
for an E wave, and
H: = H, exp[ik:(x cos B + y sin B)], E.=0, (15)

for an H wave. The factor exp[i(k sin « z — wt)] has been suppressed.

Ill. INTEGRAL EQUATIONS DERIVED FROM REPRESENTATION FOR
THE SCATTERED FIELD

We first derive some integral representations for the scattered fields.
We suppose that

(Vi+ kDY =0, (Vi+kiW' =0, (16)

and set ' = E and ¢*° = EZ, or ' = H: and ¢* = H?, corresponding
to E waves, or H waves, respectively. We let

v=y'+ ¢ 17)
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and then the corresponding boundary conditions are, from (11),
Yy=0, or % =0, on a perfectly conducting boundary. (18)
We introduce the 2-dimensional Green’s function®
G(r, p) = £H3‘>(k,ﬁ), (19)

where H{" denotes a Hankel function® of zero order, and
r=xi,+yi,, p=¢i.+ni, R=r—p, R=|R|, (20)
where i, and i, are unit vectors in the x- and y-directions. Then®
(Vi+kH)G=0, R0, (21)

We consider the case in which part, or all, of each perfectly con-
ducting cylinder may be infinitesimally thin, and let the cross-sectional
boundary curve of the jth cylinder be denoted by C; =T;U L} U L7,
where L} and L; denote opposite sides of the infinitesimally thin
segment(s) L;. The segments L; may be disjoint, as may be I also, as
depicted in Fig. 1. The curves C; are assumed to be piecewise differ-
entiable. We consider a point r exterior to all the curves C;, and apply
Green'’s theorem' in the region A exterior to the curves C;, exterior to
|p — r| = ¢ and interior to | p| = 7, as depicted in Fig. 1. Then, with
C=U;C,

aG oy’
- ) —— G (P)] ds
fmlp—d-euw-r[ on an

{
= J’ (Y°ViG — GVIY*)dA =0, (22)
A

from (16) and (21). Because of our choice of n, the normal derivatives
are directed into the region A.
Now, from (19), since®

H(kR) = % log(k:R) + 0(1), for RR<1, (23)
it follows that
. ,0G a° s
h:_lg - (l.b I n ) ds = —{J*(r). (24)

Also, since'!

2 12 T
1) - ; =T
HY(kR) (wk,R) exp(t[k,R 4]), for ER>1, (25)
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Fig. 1—Cross section of cylindrical scatterers.

. G a\,b*)
lim —=-G ds=0, (26)
lpl=r (4} an

1w an

if the scattered fields satisfy the radiation condition™

lim pvz(% - iktl{/s) =0, (p=|pl), (27)

p—roo

which we assume to be the case. If we let €e » 0 and 7 — o in (22), it
follows from (24) and (26) that

o oy 8G 3y
lP(r)—J-C[#J(P)E G

on

(p)] ds. (28)

If we consider the incident field ¥‘, and apply Green’s theorem in
the region(s) enclosed by I';, and use (16) and (21), we obtain

iy 0G 8 B
L[‘H")E G- (p)]ds—o. (29)

J
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Also, because of the continuity of ¢’ and G, and their normal deriva-
tives, on L;, it follows that

i 3G ay B
f l:‘-P (p) n G o (P)] ds =0, (30)

LYuL
J 7

since the normals are reversed on opposite sides of L;. Hence, since
C=y;(T;ULf UL;),

i\ 0G &y B
L [lP (p) Y G o (p)] ds = 0. (31)
Consequently, with the help of (17), we may rewrite (28) in the form
"(r) = 9G _ o
Yi(r) = J; [#J(P) P Gan (P)] ds. (32)

The advantage of doing this is that, because of the boundary conditions
in (18), one of the two terms in the integrand in (32) vanishes.

We first consider the case of E waves. Then, from (11), (19), and
(32), we have

oE.
— (p) ds. (33)

Ei(r) = —i f HY (kR)
C

If we now let r tend to a point on C, we obtain

oE,
an

E:(r) =41J H{’ (k:R) (p)ds, reC, (34)
c

since EL + E2 = 0 on C. We may rewrite (34) in the form

aE.
re (p) ds

i N aE, aE,
+ ZLH& (k,R){l: — (p)j|+ + [ o (p)j| }ds, reC, (35)

Ei(r) =£I HY (k:R)
r

where I' = U;I'; and L = U;L,. This integral equation may be used to

determine the current density on I'" and the total current density on L,

which suffices to determine the scattered field from (33). However,

(35) does not yield the separate values of the normal derivative of E,

on either side of L. We will return to this point in the next section.
We now consider the case of H waves. Since®

d
EHB”(kaR) = —kH{" (kR), (36)

INTEGRAL EQUATIONS FOR SCATTERING PROBLEMS 415



it follows from (11), (19), (20), and (32) that

2 H.(p) ds. (37

Hir) = i ke f HP (&,
C

Let ro be a point on T, not at a corner, and let o be a small segment of
T" containing ro. Then, as seen from Fig. 2, by considering the angle
8¢ subtended by the element 8s of o, and letting s — 0, we obtain

dp R:n

PP (38)
Since, from (23) and (36), k. RH" (k.R) — —2i/m as k,R — 0, it follows
that

lim = k, J’ HP (keR) B2 H,(p) ds ~ 220 j db.  (39)
R 2 .

F‘l’g

But since we have assumed that r, is not at a corner, the angle
subtended at r; by o tends to 7 as the length of o tends to zero. Hence,
from (37), we have

Hi(l‘)=% z(r)+ikePJHi”(ktR)?Hz(p)ds, rel”, (40)
c

where P denotes the principal value of the integral, corresponding to
the limit of the integral over C — o as the length of o tends to zero, and
I'’ denotes I less its corners. Since H, = H: + HZ, we may rewrite (40)
in the form

% H,(r) = Hi(r) + i kP J' H{ (k.R) ? H.(o) ds
T

1 R
i L HPRE) Y - (. [H @)

+n[H.(p))} ds, rel’. (41)

Now let r; be a point on L;, not at a corner (or endpoint), and let o
be a small segment of L; containing ro. Then, from (38), if we let r
tend to ro from the L} side, we obtain

l""[PO]+

-k,J’Hi”(k, )— {n:[H:(p)]+ +n-[H. (p)]-} ds
"'5; {[H:(ro)]+ — [H:(ro)]-} J dp, (42)

since n- = —n... Hence from (37), it follows that
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Fig. 2—Angle s‘ubtended by an element of a cross-sectional boundary curve.

R:n
R

ék,j H{(kR) H.(p)ds
r

+ % "‘PJ Hs“(kfR)%- (n.[H.(p)]+ +n_[H.(p)]-} ds
L

- [H:@)). —% ((H. )]s — [H.(r)])

= (L@ +[H0]) - Hr), reL, (43)

where L’ denotes L less its corners (and endpoints). The same result
is obtained by letting r tend to ro from the L; side, as is evident from
the symmetry in (43). We have made use of the continuity of H:(r).

Now n;+ = —n- on L, but we note that the integral equations (41)
and (43) do not determine H.(r) for r ¢ IV, and {[H.(r)]+ —
[H.(r)]-} for r € L’, because of the unknown quantity [H.(r)]. +
[H.(r)]- on the right-hand side of (43). Moreover, if L consists of
segments of a straight line, then R-n=0forreL’,pe L’ and p #r,
and the second integral in (43) vanishes. If, in addition, I" is empty,
then (43) reduces to

[H.(r)]+ + [H.(r)]- = 2H.(r), rel’ (44)
This reduction was pointed out by Noble® in the case of an infinitesi-
mally thin strip and by Millar’® in the case of coplanar strips. In the
next section, we derive an integral equation which does not degenerate,
in the case of H waves, for r € L’. We remark that the integral equation
(35) does not degenerate for r € L, and this is presumably because it
was obtained by setting E5 = —E? on C. This suggests that we should
derive an expression for aH%/an on C’, and set it equal to —aH'/on.
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IV. INTEGRAL EQUATIONS DERIVED FROM THE GRADIENT OF THE

SCATTERED FIELD

We now return to the integral representation (32) for the scattered
field, and calculate the transverse component of its gradient. If we
substitute the explicit form (19) of the Green’s function into (32), and

use (20) and (36), we obtain

o) = L 1 R-n — HO id
Y (r)—4L[ktHi (ks R) —— ¥ (p) Hj (k:R) - (p)]ds. (45)

Hence, since®
iR [RH (k:R)] = k. RHS (kR),

it follows that

ana"(r)=§ IH&”(k,R)(R n)RM )ds

f HY (hR) [“ Ezaﬂ]wp)ds

: v (pR) B
+ y k. J;Hi (k:R) Ron (p)ds.
Now, since dp/ds = t, and t X i. = —n, we have

| RXi, n 2 .
5;[——] ——+F(R><12)(R-t).

R? R?
Also,
Rxi,)(R-t)=R-t)[(R-n)t — (R-t)n]
=(R-n)R - R’n.
Hence,

n 2R-n)R 49 (inz)

(46)

(47)

(48)

(49)

(50)

If we substitute (50) into the second integral in (47), and integrate by

parts, and combine terms with the help of (49), we obtain

Vol (r) = i k? j HE (k.R)ny(p)ds
c
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U
—k, j m[(nx )ﬂ 0 + Rﬂ (p)]ds 651)

This expression for the gradient of the scattered field is the 2-dimen-
sional analog of that derived by Mitzner* in 3 dimensions. We give an
alternate derivation of (51) in the appendix.

We are interested in calculating the normal derivative of the scat-
tered field in the limit as r tends to a point roe ' U L', i.e. V,d* (1) - Mo,
where n is a unit normal to I’ U L’ at ry. It will be seen that the
limiting value of this quantity may be calculated with the help of (51),
whereas the second integral in (47) has a singular behavior. However,
it is not necessary to integrate this second integral by parts completely
around C, as was done to obtain (51). If we let }, be a segment (or
segments) of I' U L which has r, as an interior point, then it suffices to
integrate by parts over Y. Since the second integral in (47) vanishes
in the case of E waves, because E. = 0 on the boundary, we now
consider the case of H waves.

We define
_ n(ro), roel”,
T n,(rg) =—n_(ro), roel’, (52)
and choose
n=n,=dp/ds=t=mn, X1i;, onlL. (63)
We also define the tangential component of current density
A T,
J(p) = H=lp), pe (54)

[H:(p))+ —[H:(p)]-, peL.

Then, from (11) and (47), after an integration by parts, and use of (46),
(49), and (50), we obtain

(R-mn)(R-no)

o J(p)ds

VH:®) o = k2 J HY (k.R)

ruL-Y,

. R,
+in J H{(k.R) [% —-(RRT“’R] o (p)ds
4 IUL-T,

LY. j H{" (k:R)n-nod (p)ds

+3 kf H“(ktR)g—‘x—“) o':—:(P)dS
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- i k: [Hil’(k:R) E;—;—lﬂ-llorf(lﬂ)]

%o (55)

The contributions from all the endpoints of Y, must be included in the
last term in (55). If ¥o = I" U L, then this last term is zero, and the first
two integrals in (55) are absent.

We now consider r — 1y, in a direction which is not tangential to
I’ U L’. Since 1, is an interior point of Yo, the first two integrals in
(55) are well-behaved as r — ry, as are the contributions from the
endpoints of Y, represented by the last term in (55). Also, it follows
from (23) that, for r = ro, there is an integrable singularity in the third
integral in (55). It remains to consider the fourth integral in (55). As
depicted in Fig. 3, we take

r = ro + €(cos xto + sin xno), (56)
where sin x # 0. Also, for convenience, we take s = 0 at r = 1y, so
that'

1 2 3
p=ro+8t0"§i€osno+0(s) (57)
for small | s |, where ko is the curvature at r,. Hence,
1
R=r—p=(ecosx—s)to+ (e sinx+§pmsz)no +0(s®), (58)
and
R*=|R|*=(s—ecosx)® +€’sin’x + O(es’) + 0(s*). (59)
From (52), (53), and (58), it follows that
(RXi:) m=—-R-to= (s —e€cos x) +0(s*). (60)
But®

Fig. 3—Coordinates of a point in the neighborhood of a cross-sectional boundary
curve.
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Hi”(k,R)=%+0[k,leog(k,m], for kR<1, (61)

and
’ (s — ecos x)ds
_,[(s—ecos x)? + € sin *x]

1 (8 — e cos x)® + €” sin *x
_EIOg[(8+ ecos x)’ + e sin’x | (62)

It follows from (59) to (62) that

(R X i)
R

&
lim {hmJ’ H{"(kR) noE (p)ds} = 0. (63)
80 (0 J o as

Hence the principal value of the fourth integral in (55) must be taken
in the limit r — ro.

Having shown that the right-hand side of (55) is meaningful in the
limit r — ro, we now note that the left-hand side tends to aHz/an, =
—aH:/ane, since aH./an = 0 on the boundary, and hence its value is
known. Hence the limit of (55) asr — ro e I’ U L’ leads to the desired
integral equation for J(p), as defined in (54). We remark that a.J/ds,
as well as <J, occurs in the integrand. We also remark that, when this
integral equation has been solved for J(r) for r € I'' U L', then (43)
may be used to calculate [ H.(r) ]+ + [}{z (r)]- forr e L', and hence the
separate values of [ H, (r) ]+ and [ H.(r) ]-. We comment that we could
presumably use the integral equation derived from (55) for ro € L’ only,
and combine it with (41) for r € I'’, to solve for JJ(r) forre I'" U L’.

We now consider the case of E waves. Then, from (11) and (47), or
equivalently (51),

. =£ 1) R-nydE.
V.E:(r)-mo 4k:J’rH§ (krR)—R n (p)ds
i » R.no | | 3E. oE.
+4k,£Hi (keR) —5— {[an (p)l+[an ) ) ds. (64)
But, from (58),
R-ng = e sin x + 0(s?), (65)

and, for 6 > 0,
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8
lim esin x ds
0+ V[a[(s—ecosx)2+ezsin2x]

&
= lim [tan-l (f—z-siu‘;‘;ﬂ)] = 7 sgn(sin x). (66)
-8

We first consider r — ry € I'’. Then, from (52) and Fig. 3, sin x > 0.
Hence, from (64), with the help of (59), (61), (65), and (66), we obtain

chan

—kc f H{"(k:Ro)

Ro .ng [ | 8E. dE,
1)
+ - kIHi (k:Ro) {[an p]++[an

aE'( )_la_E,(r)_lE oE:
0 2 a on

)] Ja

roel”, (67)

where Ro =1y, — p.

We now consider r — rg € L’. If the approach is from the plus side
then, from (52) and Fig. 3, no = n. (ro) and sin x > 0. Hence, from (64),
with the help of (59), (61), (65), and (66), it follows that

RO nanz

-k f H{" (k:Ro) — (p)ds

2 oE,
o] [] o

i . Ro-ng oF
+ZkzPLH5)(ktR°) Ro {[ on -
BE' BE ) + ok,
(ro) —E To an ~
-;{[z%r | -] -], e

On the other hand, if the approach to ro is from the minus side, then
n; = —n-(ro) and sin x < 0, and it follows that the left-hand side of

(68) is equal to

[ {5 <[]}
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1 ([ aE, oE. oE:
=§{[ n (I'o):|+— [ n (ro)] }+ [ P (ro)l. (69)

Since [3EL/an (ry)]- = — [8E%/an (ro) 1+, for xo € L’, we again obtain
(68).

We remark that when the integral equation (35) has been used to
determine 3E,/on (r) for r e "' and [3E./dn (r) ]+ + [9E./dn (r)]- for
r € L’, then (68) may be used to calculate [8E./dn (r)]+ — [9E./
an (r) ]- for r € L’, and hence the separate values of [dE./dn (r) ]+ and
[8E./on (r)]-. This is analogous to the earlier remark concerning the
use of (43). If L consists of segments of a straight line, then Ro-no =0
forroe L', p e L’ and p # ro, and the second integral in (68) vanishes.
If, in addition, I is empty, then (68) reduces to

[aE’ (ro)] —[aE” (l‘o)} =2[3E2 (m)] , roeL’.  (70)

on on on

This reduction was pointed out by Noble® in the case of an infinitesi-
mally thin strip.

It is of interest to note that (35), and the integral equation obtained
from (55) by letting r —» ry e I'' U L', are Fredholm equations of the
first kind. On the other hand, (41) and (67) which hold for r e I'’, and
Fredholm equations of the second kind, which is usually preferable
from the viewpoint of numerical solution. It is somewhat unfortunate,
in this respect, that the corresponding equations which hold forr e L’,
namely (43) and (68), do not determine [H.(r)]+ — [H.(r)]- and
[E./dn (r)]+ + [8E./on (r)]-.

NOTE ADDED IN PROOF

In the 3-dimensional case of an open thin shell, the use of a
degenerate integral equation, analogous to (68), to determine the
current densities on both sides of the shell, once the total current
density is known, was pointed out by Stakgold."®

APPENDIX

We here give an alternate derivation of the integral equation (51).
Let e be a constant vector. Then from (16), it follows that

(V: + kD) (e-Vay') =0, (Vi+ ki)(e-V)') =0. (71)

If we apply Green’s theorem, as in Section III, but this time to e.V*
and G, then, with the help of (21) and (27), we obtain

eV (r) =J {[e-v;¢ﬂ(p)]%§ - G% [e-VZx,b‘(p)]} ds, (72)

c
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where V; denotes the transverse component of the gradient with
respect to the coordinates of p. In a manner analogous to that used in

Section III, we also obtain
; aG a .
Vi ()] = — G [e-Viyi(p)] } ds = 0.
J;{[e W(p)] ™ Gan [e-Viy (P)]} s
Hence, with the help of (17), we may rewrite (72) in the form

e VHV(I') = f

c

LG 9.,
{[e-V:tP(P)] o GE [B-VzlP(P)]} ds.
Now

% (e-Viy) = n.Vi(e-Vip),

and’
H(e-Viy) = (e-Vi) (Viy) = eV — Vi X (e X Vi)
= — ekl — Vi X (e X Vip),
from (16). But’
Vi x [G(e X Vig)] = ViG X (e X Viy) + GVi X (e X Viy),

and, from Stokes’ theorem,'®
f n-{V; X [G(e x Vi)]} ds = 0.
c
Hence,

f Cn-[V; X (e X Vi)]ds = —f n-[ViG x (e X Vi¥)]ds
C

c

= —J’ (n X ViG). (e X Vhb)ds=f e-[(n X ViG) X ViY]ds.
c

C

It follows, from (74) to (76) and (79), that

G
e-{VnV (r) — j [13; Viy + k2 Gny(p)
c
+ (n X ViG) x vw] ds} =0.

(73)

(74)

(75)

(76)

(77

(78)

(79)

(80)

Since e is an arbitrary (constant) vector, the expression in the curly

brackets in (80) must vanish. But

(V:G-n)Vip + (n X ViG) x Viy
= (Viy-n)ViG + (n X Vi) X ViG,

(81)
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and n X Vi = —i, #/ads on C. Hence, we obtain

s —_ 2 ’ ﬂ ’ : ﬂ
Vo)’ (r) = J; [kt Gny(p) + (ViG) - + (Vi G X 1.) -

}ds. (82)
If we substitute for G from (19) and make use of (20) and (36), we
obtain (51). The representation (82) for the gradient of the scattered
field is the 2-dimensional analog of that derived by Mitzner* in 3
dimensions. We remark that the above derivation differs from his in
that we used Green’s second identity, whereas he used Green’s first
identity, and consequently some different transformations to reduce
the result to the form corresponding to (82). Mitzner derived his result
for the field inside a bounded volume, whereas we are considering
scattered fields outside bounded cross-sectional curves, and have used
Green’s second identity so that we could make use of the radiation
condition.
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