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Limit cycles oscillations often occur in recursive digital filters due
to the quantization of products in the feedback section. A new and
interesting class of limit cycles has been discovered and categorized
for second-order sections that round either sign-magnitude or twos-
complement products. These limit cycles are named rolling-pin limit
cycles. They are completely defined by three integers and a simple
construction rule and exist for B, — B: pairs lying within small
rectangular regions in the B, — B: (coefficient) plane. Each set of
integers completely defines the peak amplitude, the length, and the
region of existence. The amplitude of these limit cycles can be made
close to but does not exceed three times the Jackson peak estimate.
Rolling-pin limit cycles often occur in filters with high @ poles located
near dc or half the sampling frequency. When these large amplitude
limit cycles occur, the idle channel performance of a filter is often
unacceptable. Specialized techniques, requiring extra circuitry, can
be used to suppress them. Alternatively, it may be less costly and
more efficient to avoid the small rectangular regions within which
the rolling-pin limit cycles exist in the B, — B. coefficient plane.

. INTRODUCTION

Oscillations often occur in recursive digital filters as a result of the
nonlinear action of quantizing the products in the feedback sections.
These oscillations occur in the least significant bits of the data and are
called limit cycles.* These limit cycles influence the required internal
data word length and hence the cost of the filter.!

This paper describes a new and important class of limit cycles that
exist in second-order recursive digital filters. These limit cycles often
occur in filters with high @ poles located near dc or half the sampling

* These limit cycles are to be distinguished from the large limit cycles caused by
overflow.
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frequency. They are called rolling-pin limit cycles and derive this name
from their characteristic shape when plotted in the successive value
plane (Fig. 2a). The second-order section under consideration employs
rounding of both feedback products in either sign-magnitude or twos-
complement number format and is shown in Fig. 1. The rolling-pin
limit cycles are defined by three integers, K, L, and M, and a simple
construction rule. As seen in Fig. 2b, K is the constant step size in the
handle of the rolling pin, L is the constant step size in the body of the
rolling pin, and M is the number of steps of step size L. For each value
of K, L, M, a unique set of limit cycles is completely defined. In this
paper, emphasis is on the simplest case of K = 1.

This class of rolling-pin limit cycles is important because of its
unusually large amplitude. Unusually large amplitude limit cycles can
lead to severe distressing tones in idle channel conditions. It will be
shown that the peak amplitude approaches three times Jackson’s peak
estimate.* The concept of regions of the B; — B; plane within which
complicated limit cycles exist is important. The existence of these
isolated areas within which the various K, L, M limit cycles exist
presents an interesting “patchwork quilt” look in the B; — B plane. A
point of practical importance to note is that a small change in binary
coefficient values (producing a pair of coefficients just outside the
region of existence of rolling-pin limit cycles) can result in a 3:1
reduction in ac limit cycle amplitude. By ac limit cycles, we mean limit
cycles with period >2.

Specialized techniques requiring extra circuitry”® can be used to
suppress rolling-pin limit cycles. These specialized techniques may
increase the roundoff noise in the presence of a signal. Alternately, it
may be less costly and more efficient to avoid rolling-pin limit cycles
altogether, by avoiding the small rectangular regions within which
they exist in the B; — B: (coefficient) plane.

In the sections that follow, we develop the explicit formulas for the
peak amplitude, length, and regions of existence for the 1, L, M rolling-
pin limit cycles. The various amplitude bounds and estimates that
have been derived”'? in the past are examined relative to our exact
peak values. A spectral analysis of rolling-pin limit cycles is also
presented. A comparison of the roundoff noise and limit cycle power
of a second-order section is made.

Il. PROPERTIES OF 7, L, M ROLLING-PIN LIMIT CYCLES

It is important to get an overall view of the nature of this class of
limit cycles before examining their detailed properties. For each value
of L, M (the 1 will be omitted hereafter), a known number of rolling-
pin limit cycles exist with identical bodies but handles that differ in

* Jackson’s estimate (Ref. 7) is the integer part of [0.5/(1 — B3}].
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Fig. 1—(a) Second order pole section. (b) Quantization characteristics.

amplitude by one and overall length by four. For example, with L, M
= 3, 4, there are three rolling-pin limit cycles with identical bodies but
different peak amplitudes of 13, 14, and 15 and overall lengths of 34,
38, and 42, respectively. The successive value plane plots (hereafter
called the D, — D, plots) for these three limit cycles are shown in
Fig. 3. Each has its own cell of existence in the B, — B. plane. The
three cells are horizontally contiguous as shown in Fig. 4. The bound-
aries on B, are

1-(1/2)(1/9) > B>=1 - (1/2)(1/8), (1)
and on B, are

2 — (3/2)(1/15) > |B:| = 2 — (3/2)(1/14) (amplitude 15)
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Fig. 2—(a) Successive value (D, — D) plot. (b) Time sequence for K, L, M = 1, 3, 4.

2 — (3/2)(1/14) > | B:| = 2 — (3/2)(1/13) (amplitude 14)

2 — (3/2)(1/13) > |B,| = 2 — (3/2)(1/12) (amplitude 13).

2)

In Fig. 4, only negative values of B, (low-frequency poles) are shown;
however, positive values of B, also produce related? limit cycles. For
convenience, we shall emphasize negative values of B,. The boundaries
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Fig. ——Region of existence (B, — B: plane) for L, M = 3, 4.

defined in eqs. (1) and (2) are rational decimal (and rarely binary)
numbers; however, in any implementation, the coefficients are binary.
Accordingly, the equality signs in these constraints are usually not

applicable.

For other values of L, M, similar sets of nearly identical limit cycles
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exist with either 3(L — 2) or 3(L — 3) contiguous cells of existence
depending on whether the product L, M is even or odd. For each L
there is a minimum value of M (but no maximum value) below which
a type of degeneracy occurs in which the handle disappears into the
body. Figure 5 shows the regions in the B; — B; plane for which each
set exists for L = 3, 4, 5, 6 and four values of M for each L. In each
case, the boundaries on B; are of the form:

1-1/[2(Q@+1)]>B:=1-1/(2Q), 3)

and the boundaries on B, are
2—-3/(2P) > |B:| =2 - 3/(2P;1) (4)
fori=1,2, ..., (L —2) or (L — 3). Both @ and P; are defined in terms

of L and M in Section III. P; is the peak amplitude of the limit cycle.
The allowed B, and B: values always correspond to complex conjugate
poles. This can be proved using egs. (3), (4), (6), and (12).

Whenever either B; or B, is varied so that the outer boundary of a
set of limit cycles is crossed, the rolling-pin limit cycle disappears and
is replaced by a “normal” ac limit cycle with a smaller amplitude. The
magnitude of the limit cycle is predicted by Jackson’s estimate.” This
effect should be borne in mind during the design of recursive filters, as
an infinitestimal (binary) change in coefficient (and hence transfer
function) can result in dramatic changes in the ac limit cycle properties.
However, dc limit cycles larger than Jackson’s estimate can still exist.

This class of limit cycles has the unique feature that, given L, M, all
states and properties are completely defined. In the following sections, .
the construction rules for rolling-pin limit cycles are given and formulas
are derived for their peak amplitudes, length, and B, — B boundaries
in terms of L and M.

lll. CONSTRUCTION RULES FOR L, M ROLLING-PIN LIMIT CYCLES

The construction rules for rolling-pin limit cycles are best under-
stood by reference to Fig. 6, where a time sequence of an arbitrary
rolling-pin limit cycle is shown. The 1, L, M rolling-pin limit cycles
have amplitudes with half-period odd symmetry, i.e.,

Y (n + %’) - —Y(), (5)

where N is the period (or length) of the limit cycle and is an even
number. The rules differ slightly for even and odd values of the product
L, M; thus they are discussed separately.
3.1 EvenL, M

As evident in Fig. 6, a rolling-pin limit cycle consists of sections of
constant slope (i.e., constant first difference) separated by smooth
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Fig. 6—Time sequence of 1, L, M limit cycle.

transition regions (of constant second difference). Due to the odd
symmetry, we need consider only half a cycle of the time sequence.
Starting from the positive peak, we find that a zero crossing occurs
during the decreasing section of constant step size L. This section has
exactly M steps and is preceded and succeeded by smooth transitions
to sections of constant unit step size. The transition section is of length
L — 2. The handle and the body of the rolling pin are pictorially
obvious in the D, — D; plot in Fig. 2a; however, certain ambiguities
arise in the discussion of the time sequence. First, every point in the
D, — D; plot corresponds to a pair of values in the time sequence.
Second, the transition region may be associated with either the handle
or the body. The following convention will be used. The transition
region is in the body of the rolling pin. The intersection of the handle
and the transition region is also on the body. A value in the time
sequence will be referred to as being on a certain part only when it is
unambiguous. This would occur when both D; — D: points associated
with the sample values were in the same part.

For a given L, M, the bodies of all the constituent limit cycles are
identical. It is the handle that varies in amplitude. Any single point on
the body can be used to start the construction. We choose a value, @,
which is associated with the intersection of the handle and the body
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(state A in Fig. 7). This value @, labeled in the time sequence in Fig.
6, is the next to last point on the unit step section immediately after
the positive peak. For all even L, M,

Q=LM/2+L(L-1)/2-1 (6)

The point @ defines the B; bounds within which the limit cycle exists
by
1 1
—————>B,=1——.
1 20+ 1) 2 20 M
Thus, for any even L, M we have defined the body of the rolling pin as
well as the values of B, for which it exists. Continuing on the decreasing
portion of the limit cycle, the intersection of the body and the handle
reoccurs at point B in Fig. 7. The Dy, D, values of B are —Q -2, —Q
—1. To verify this, we start at A, with D{ = @ — 1 and counting to B
using the construction rule just outlined, we have

Df=D{-2-3...—(L-1)—-LM
—-(L-1)—-(L-2) - —2—-1

i=1

L-1
D§=Q—1(—2 ) i)+1—LM

Flg 7—-—D1 - Dz plﬂt.
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ppIM LE=D o iM-L@L-1)

2 )
pr=—m-LE=D
Df=-@-2.

By symmetry, the states A’ and B’ also defined in Fig. 7 are —@Q + 1,

—@ and @ + 2, @ + 1 respectively. For the case of L, M = 3, 4 (the

smallest set of rolling-pin limit cycles), @ = 8 and the bounds on B; are
1-%>B;=1— Y%e.

The common partial sequence in descending order is:

Q
12,11, 10,9, 8,7, 5, 2, -1, —4, -7, —9, —10, -11, —12.
state A state B

Having defined the body, we now define the allowed lengths of the
handle (which fixes the peak amplitude of the limit cycle) and the
bounds on B,. We do this by introducing the index J;. JJ; varies by unit
steps from Jimax t0 Jmin inclusively, where

L(L-1)

Jmin=LM-'-T"'3L+5 (8)
J,.,,,=LM—@—2. ©)
The peak amplitude of the limit cycle is given by
P;=Q+dJ. (10)
The number of nearly identical rolling-pin limit cycles is:
Jnax — Jmin + 1 = 3(L — 2). (11)

Equation (11) has to be positive for a rolling-pin limit cycle to exist;
hence, the minimum value of L is 3. The range on the peak amplitude
P; is between Ppax and Py,in, where

Pmax=Q+Jmnx=3(%l_1) (12)
Prin =@ + Juin
=3%—3L+4. (13)

For L, M = 3,4
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b=Jd;i="7

13=P;=<15.
The bounds on B, for each of the L, M rolling-pin limit cycles are
2_2iﬂ>—3122_2P¢—1 for i=12 ...,3(L-2), (14)
where
P,=P,+1i (15)
and
P,=3(LM/2-L +1). (16)

Crossing either the bounds on B; or the outer bounds on B, results in

elimination of the rolling-pin limit cycle. The amplitude of the resulting

largest ac limit cycle will then be predicted by the Jackson estimate.
The length of the limit cycle is N, where

N = (4J; + 4L — 6 + 2M). (17)

Since N contains the term 4¢J; and ¢J; varies by 1 for each sucessive
limit cycle in the set, N varies by 4.

The example used throughout this section has been for L, M = 3, 4
(the smallest of the set of the rolling-pin limit cycles). An example of
a larger rolling-pin is L, M = 7, 8. This set has 3(L — 2) = 15 possible
rolling-pin limit cycles. The peak amplitudes vary from 67 to 81. The
values of @ and P, are 48 and 66 respectively. The index J; varies from
19 to 33. Figure 8 shows a magnified portion of the B; — B; plane
where this set exits, and in Fig. 9 the time sequence of the largest and
smallest constituent limit cycles are tabulated.

3.2 Summary of construction rules and properties of the rolling-pin limit
cycles

3.2.1 EvenL, M
The results for even L, M rolling-pin limit cycles can be summarized
as follows:
(i) There are 3(L — 2) distinct limit cycles for any even L, M. Each
has a time sequence with a half-period odd amplitude symmetry

Y(n +I§V) = —=Y(n).

(ii) On the descending* half of the time sequence, there are
(a) J: + 1 steps of unit step size.
() A smooth transition region (i.e., constant second differ-
ence).

* Le., we start from the positive peak and scan the limit cycle.
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Fig. 9—Time sequences of L, M = 7, 8.

(c) M steps of step size L.
(d) A smooth transition region (also constant second differ-
ence).
(e) oJ; — 1 steps of unit step size.
(iif) The peak amplitudes of the limit cycles are given by

P, =J;+ @,
390 THE BELL SYSTEM TECHNICAL JOURNAL, FEBRUARY 1979



where
Q=LM/2+L(L-1)/2-1,

Jmin=LM —L(L-1)/2—-3(L—2) — 1,
Joax = LM — L(L — 1)/2 — 2.

(tv) The region of existence of even L, M rolling-pin limit cycles in
the B; — B; plane is defined by:

1
l‘ﬁ”’ﬂal‘ﬁ'
.‘?.—i>—B122—i for i=1,2...,3(L—2),
ZP,' 2Pa‘71
P;=P,+1,
where

P, =3(LM/2 — (L —-2) - 1).

3.2.2 OddL,M

Similar construction rules and bounds on B; and B: exist for odd
values of L, M. These are simply summarized below.
(i) There are 3(L — 3) distinct limit cycles for any odd L, M. Each
has a half-amplitude period odd symmetry,

Y(n + g) =-=Y(n).

(if) On the descending half of the time sequence, there are
(a) J; + 1 steps of unit step size.
(b) A smooth transition region (i.e., constant second differ-
ence).
(c) M steps of step size L.
(d) A smooth transition region (i.e., constant second differ-
ence).
(e) Ji; — 2 steps of unit step size.
(iti) The peak amplitude of the limit cycle is given by

P=dJ + Q,
where
Q=(ILM-1)/2+L(L-1)/2-1 (18)
Jm=(LM—1)—£2_11—3(L—3)—1 (19)
Jome = (LM — 1) — # —9 (20)
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(iv) The region of existence of odd L, M rolling-pin limit cycles in
the B, — B; plane is defined by

! >B:=1
2Q+1) T 2@’
3 3
2—ﬁ>—3122—§:-’:,
fori=1,2, ..., 3(L — 3), where
P,=P,+1,
S 2 A N

A point to note is that, for an odd L, M rolling-pin limit cycle to exist,
we must have L = 5.
The length of the limit cycle is N where

N = (4J; + 4L + 2M - 8). (22)

Comparison of the equations for L, M odd with the equations for L,
M even shows that the basic forms of the equations are identical if we
interchange the following two quantities:

LM ILM-1

—_—

2 2
3(L - 2) & 3(L — 3).

An example of odd L, M for L, M = 5, 7 is given. A magnified portion
of the region of existence of this set in the B, — B; plane is shown in
Fig. 10. The time sequences of the largest and smallest members of
this set are tabulated in Fig. 11.

0.9815 sy
1
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48 47 46 45 44 43
0.981 -
1
(1-5—2}
o~ - e
o ]
1 1
I | 3
3 3
0.9805 —(2-gg) —(2—-g3)
0.980 1 L | 1 | |
-1.970 —1.969 —1.968 —1.967 —1.966 —1.965 —1.964 -1.863

B,

Fig. 10—Region of existence of L, M = 5, 7.
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Fig. 11—Time sequences of L, M = 5, 7.

IV. ADDITIONAL PROPERTIES OF 7,L,M LIMIT CYCLES

4.1 Peak amplitude comparisons

In this section, the ratio, p, of the peak amplitude of a rolling-pin
limit cycle and Jackson’s peak amplitude estimate’ are determined. In
addition, the actual peak amplitudes of the L, M =3,4and L, M = 3,
12 rolling-pin limit cycles are compared to other calculated amplitude
bounds or estimates.”"'

The peak amplitude of all rolling-pin limit cycles exceeds Jackson’s
estimate. It is now shown that the peak amplitude of a rolling-pin limit
cycle approaches three times Jackson’s estimate.* For convenience,
we consider only even L, M.

Jackson'’s estimate is

1 1

ATy %)

(23)

Since this depends only on B,, we can maximize p by minimizing JE.
To do this, we pick the smallest value of B; that will cause the rolling-
pin limit cycle to occur. This value is given by

1
By=1-— 50 (24)

so that
JE=Q=%+£L2-_—U—1. (25)

For a given L, M and a fixed B, = 1 — 1/2Q), a set of rolling-pin limit
cycles exist. To maximize p we pick the largest amplitude case [eq.
(12)],

* Parker and Hess conjectured in Ref. 8 that the limit cycle amplitude bound is three
times the Jackson estimate.
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Prax=3 (ﬁl— 1). (26)

2
Then
JE 1
"—Pm_?"HL(L—n‘ 27)
LM -2

For a fixed L, p may be made arbitrarily close to 3 by increasing M.
For the two examples, L, M = 3,4 and L, M = 3, 12, p is 1.875 and 2.55
respectively.

Table I shows a comparison of the peak amplitudes for rolling-pin
limit cycles of L, M = 3, 4 and L, M = 3, 12 with the bounds and
estimates given by various authors.”! As seen in this table, the actual
peak amplitude is far less than the bounds predicted in Refs. 8 to 11.
The Lyapunov bound® is the most pessimistic. The Sandberg-Kaiser
peak amplitude estimate is +2/2 times their rms bound.® It is the best
estimate for these examples. But even this bound is a factor of 6 higher
for L, M = 3, 4 and a factor of 14 higher for L, M = 3, 12.

4.2 Mean-square-value comparison

Since all the states of the 1, L, M limit cycles are known, it is possible
to develop an exact expression for the mean square value of the limit
cycle sequence. The resulting expression is unfortunately complicated.
The exact mean square value will however be compared to the Sand-
berg-Kaiser mean square bound for a number of examples. We define
the ratio v,

v = Sandberg-Kaiser rms bound/actual rms value for various values
of L and M. The Sandberg-Kaiser rms bound is

K = 1 i 4B, >
(1 — B) Y1 - B%/4B, (1 - By
For P; = P..,, the above inequality on B, and B; reduces to
12Q>4P+3 or 2L(L—1)>1, (29)

which always holds for rolling-pin limit cycles. Using the values of B,
B in the lower left-hand corner of the rectangle where the limit cycle
exists, we have

B.. (28)

2 _ 2(2P)*(2Q)*(2Q — 1)
(SK) = 52P)2Q) - 9Q — 2@P)" )
The ratio y was calculated for the largest limit cycle in the set 1, L, M
for values of L = 4, 6, 8, 10, and 12 and values of M = Mp, to ( Mmin
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+ 10).* The results are plotted in Fig. 12. It can be seen that the SK
rms bound is too high by a factor between 7 and 30. As either L or M
is increased (the poles approach the unit circle), y increases approxi-
mately linearly (pessimistically).

4.3 Comparison of roundoff noise and limit cycle power

In this section, the formula for the roundoff noise power from an
isolated second-order section is derived in terms of P; and §. A
comparison between this noise power and the limit cycle power is
given for L = 3, 4, 5, and 6 and four values of M for each L. It is
concluded from the results of the comparison that the limit cycle
power is likely to dominate.

The average roundoff noise power at the output of the second-order
filter section shown in Fig. 1 is given by

- E} —dz
o%—ZEJH(Z) . H(Z)f. (31)

H(Z) is the transfer function of the second-order section. H(Z) is the
complex conjugate of the transfer function. The quantization of prod-
ucts in the presence of a signal is modeled by two white noise sources
and is accounted for by the 2E2/12 term where E, is the quantization
step size of the filter. Evaluating the contour integral of eq. (31), we
obtain

E% (1 + By) 1
2 =9"° ) 2
=12 U —B) 1+ B’ - B} .
Expressing eq. (32) in terms of P; and @, we have
E: 4P? @*
2 922 - - .
k=275 4Q-1) PX(1 — 8Q) + 3Q*(8P; — 3) (33)
The limit cycle power is defined as
N D2
2 _ 2oy
gL Eo igl N » (34)

where D; are the values of the limit cycle.
A useful comparison is to calculate

B =10log (a3 /0%). (35)

This gives an estimate of the relative importance of errors in the
presence of a signal and errors in idle channel conditions. This is only
an estimate, since the limit cycles have specific frequencies while the
roundoff noise has a flat spectrum. In a cascade of sections, for

* Mo is the minimum value of M for which the rolling-pin limit cycles exist in their
nondegenerate form. See Section V.
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example, succeeding poles and zeros may completely eliminate or
amplify one or more of the limit cycle frequencies. Spectral analysis of
the rolling-pin limit cycles has been carried out. Figure 13 shows a
typical result. These results indicate that several frequencies are
present. Accordingly, the estimate B is likely to be useful. In Table II,
the value of #8 in decibels is calculated for L = 3, 4, 5, and 6 and four
values of M. In each case, the limit cycle noise power is larger. On the

35
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Fig. 12—Ratio of rms bounds.
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Fig. 13—Spectra of limit cycle.
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Table l—Comparison of roundoff noise power and limit cycle power for
various values of L, M

7
Roundoff Noise Limit Cycle - oL
LM Power o% Power o, B=10 i°g&"£ dB
3,4 35.9 108.6 4.8
3,6 108 264.8 39
3,8 240.2 488.6 3.1
3,10 450.3 780.1 24
4,4 66.3 228.24 5.4
4,5 113.1 365.5 5.1
4,6 177.3 533.5 48
4,7 261.5 732.4 4.5
5,5 162.6 582.4 5.5
5,6 269.8 915.8 5.3
5,7 361.6 1173.3 b.1
58 533.9 1624.9 48
6,5 262.9 993.4 5.8
6, 6 388.2 1424.4 5.6
6,7 545.9 1924.8 5.5
6,8 739.6 2496.1 5.3

basis of these results, it is expected that limit cycle behavior will
dominate in establishing the internal data word length of digital filters
that generate rolling-pin limit cycles.

4.4 DC and the small ac limit cycles

A number of dc and small ac limit cycles are produced by the same
second-order sections that produce the rolling-pin limit cycles. These
small ac limit cycles are not accessible in the sense of Claasen et al.'?
and their peak amplitudes do not exceed the Jackson estimate. The
states and form of these small ac limit cycles can also be characterized
by integers. Each of these small ac limit cycles has no handles. They
only have a constant step-size body* with smooth transitional paths to
their peaks. These smaller limit cycles can be constructed using the
method outlined in Section V for rolling-pin limit cycles.

The total number of these small ac limit cycles is (@ — P,/3 — 1),
where @ and P, can be obtained from egs. (6) and (16), respectively.
The peak amplitude of the smallest ac limit cycle is ( P,/3 + 1). The
largest amplitude of the small ac limit cyclesis (@ — 1). For L, M = 3,
4 we have @ = 8 and P,/3 = 4. Therefore, there are three small ac
limit cycles. The smallest has a peak amplitude of 5 and the largest a
peak amplitude of 7.

The D, — D, plot of all the small ac and dc limit cycles for B, =
—1.875 and B; = 0.9375 (binary coefficients within the region for L, M
= 3, 4) is shown in Fig. 14. The three large rolling-pin limit cycles are

* For these various small limit cycles, the constant step size ranges from 1, 2.. . {_L
- 1]), where L is the constant step size of the body of the associated rolling-pin limit
cycle.

398 THE BELL SYSTEM TECHNICAL JOURNAL, FEBRUARY 1979



4 16 DC LIMIT CYCLES
11, 2,13, t4, 19,
10, 11, #12,
6 AC LIMIT CYCLES
X=——x PEAK AMP 5
O=—0 PEAK AMP 6
o — -8 PEAK AMP 7
o——0 PEAK AMP 13, 14, 15

-+ 15
Fig. 14—Successive value (D, — I);) plot small and large limit cycles.

also shown in Fig. 14. The regions of existence of these small ac limit
cycles together with the three rolling-pin limit cycles are shown in Fig.
15. The rolling-pin limit cycles exist in a relatively smaller region. The
small ac limit cycles exist in regions all the way up to the stability
boundary B, = 1.* We see from Fig. 15 that, as the rolling-pin
boundaries are crossed, the larger rolling-pin limit cycles disappear.
However, the small ac and dc limit cycles still remain.

The number of small de limit cycles can also be evaluated. This
number is equal to 2P,/3. Any state which satisfies the equation

P, P,

is a dc state. These states represent the small dc limit cycles. The
larger dc limit cycles can be evaluated from the following equation:

Q+1=D=D. =P, (37)

For B, = —1.875 and B; = 0.9375, we have ¢ = 8 and P, = 12,
Therefore, there are 8 small dc limit cycles, £1, £2, £3, and 4, all

* Other limit cycles may also exist in the region outside the region of the rolling-pin
limit cycles. No inference should be drawn on the existence of other limit cycles.
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Fig. 156—Region of existence of small and large limit cycles.

satisfying eq. (36). In addition, there are 8 bigger dc limit cycles, +9,
+10, +11, and +12. These values can be obtained from eq. (37). These
16 dc states are shown in Fig. 15. The state =[@, @] = %[8, 8], which
should normally correspond to the Jackson estimate is not on any
limit cycle. The next state after the state +[8, 8] is on a bigger limit
cycle with peak amplitude 13. This state £[@, @] is unique because it
is a state from which one can spiral out onto a bigger limit cycle.

V. REGIONS OF EXISTENCE IN THE B, — B, PLANE

Each member of a set of rolling-pin limit cycles exists in a rectangular
region. The boundaries of the regions are rational numbers. As seen in
Fig. 5, the members within a set exist in horizontally contiguous
regions. In any real implementation, the coefficients are binary.
Strictly, all statements refering to regions of existence should refer to
the binary valued points within (and occasionally on the boundary of)
the regions. For simplicity, we refer only to the continuous regions to
demonstrate why the regions are rectangular; we develop the explicit
boundaries for rolling-pin limit cycles. We now construct the values of
Q, J,, and P;, which were stated and used earlier. These variables,
interestingly, depend on and follow from the assumed form of the body
of the limit cycle which was constructed in Section III. The critical
observation to make is that any state Dy, D, which generates the
output Y [ie, (D), D;) — Y] defines a region in the B, — B; plane.
This region is an unbounded staircase of rectangles if D, D, # 0, or is
a semi-infinite slab if D or D, # 0. The rectangles for the case of (3, 2)
— —1 or (—3, —2) — 1 are shown in Fig. 16. The height and width of
each rectangle is |1/D.| and |1/D,|, respectively. The center of each
rectangle lies on the line defined by
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Fig. 16—Region of existence of a transition. Regions of existence include the solid,
but not the dotted, boundary.

B:;D; + B,D, = -Y, (38)

with slope —D,/D. and B, intercept —Y/D,. The B, and B:; intercepts
of this line are both centers of rectangles. If D, = 0, there is a horizontal
slab of height |1/D:| centered on B, = —Y/D.. For D; = 0, there is a
vertical slab of width |1/D;| centered on B, = —Y/D.. This construc-
tion was done for sign-magnitude products for the circuit shown in Fig.
1. The rectangles include the solid boundaries but not the dotted
boundaries since +£1/2 rounds to +1. For twos-complement rounding,
the same figure applies with minor changes in the dotted and solid
lines since, in twos-complement, —1/2 rounds to 0. Since any limit
cycle is a sequence of transitions, the resulting region of existence is
the region of the B; — B, plane common to all the transitions. This
region must be a rectangle. (When independent stability arguments
are applied, the stability triangle is superimposed, which may further
reduce the common region. This is the only condition that can cause
other than a rectangular region.)

Armed with this information, rolling-pin limit cycles were studied to
determine the boundaries of their existence and to locate the critical
transitions that set these boundaries. What was discovered was that
the same transitions (relative to the overall shape of the successive
value rolling-pin plot) always defined the B; — B; regions. Small
differences exist depending on the evenness and oddness of L and M.
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For convenience, we consider M even. Since for sign-magnitude round-
ing the states ( Dy, D;) — Y and (—D,, —D;) — —Y result in the same
B, — B; region, we need only consider the half of the limit cycle from
the positive peak to the negative peak. For M even, the state —1 always
occurs on the limit cycle. The body of the limit cycle is symmetrical
with respect to this —1 point. The critical transitions that set the B:
boundaries are shown in Fig. 17a. Two transitions ( T, and T.’) set the
maximum value of B; and one transition ( T.) sets the minimum value
of B:. The D, and D states in these transitions are defined in terms of
Q@ = LM/2 + L(L — 1)/2 — 1. The two transitions in the four
consecutive states @ + 1, @, @ — 1, @ — 3 completely determine the B,
boundaries.

The boundaries on B; are more complex since a horizontally contig-
uous set of rectangles exist within each of which a separate rolling pin
limit cycle occurs. The outer boundaries of this set of rectangles are
determined by the two transitions T, and T shown in Fig. 17b. The
value of D, in the transition that sets the upper limit on B, is —(1 +
ML/2 — L). The value of D, in the transition that sets the lower limit
on B, is ML/2 — 1. The inner B; boundaries that separate the nearly
identical limit cycles in a set are fixed by the transitions at the peak of
the limit cycle. Figure 17c illustrates this for a typical limit cycle in a
set. As can be seen, the pair of consecutive transitions at either peak
serves to set the inner boundaries on B;. The peak transition of the
largest limit cycle in the set sets the minimum bound on B,. This

-—(Q-1) J---a+2
|
Q=LM/2+L(L-1)/2—1
L= T fmdeesau

B —l@+1) TL/cZi-'---:---n b
(a) ™, L : (b)

1
1
,q(—--,---:-- ~a+2) ,?4----:---,---,--- a-1
] ] 1 1 ] ] '
—(Q+3}—(Q+2) —{Q+1) a-3 Q-1 Q Q+1
/:l-- —LM/2 + (3L-1) Ce=(LM/2-1) + (2L-3)
Tu pf| i
—--—:--—Aszszfn T, FFemgmm w2-1)+ (L-1)
1
(© /1 i (d)
femb oo em — M2+ (L-1) )?{“‘:“'T“ (LM72-1)
1 1
Mz A —LM2+ 2L-1) (LM/2-1)-L A (LM/2-1) + (L—1)
I I
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T
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]
1
1
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1
L

T v Il

L
&L _ » ! (N
—P —Pi-1) P—2 P—1 P,

Fig. 17—Ciritical transitions.
402 THE BELL SYSTEM TECHNICAL JOURNAL, FEBRUARY 1979



bound is identical to the minimum bound on B,; determined by the
body. In fact, this is how the peak limit cycle of the set is defined. The
peak transition of the smallest limit cycle in the set sets the maximum
bound on B,;. This bound is identical to the maximum bound on B,
determined by the body. All peaks are possible between and including
these two. The number of limit cycles in the set is determined in this
way.

When it is known which transitions set the boundaries and the
values of the states in those transitions, the resulting boundaries are:

1 1
-  S>By=1-—
12+ " 2Q
3 3
2- >—B=2-
2P ' 2P,
foralli= 1,2, ..., 3(L — 2), where i indexes the consecutive states
and
LM
PD=3(T_L+ 1)
P;=P, +1i.

Since @ and P; are integers, the boundaries are rational. The existence
of the 2 in the denominator is expected since the boundaries must be
associated with rounding products which are an integer +1/2. The
derivations of these boundaries is in principle possible by considering
each transition in the body and locating a common region in the B,
— B; plane. In practice, this is not accomplished; rather, the boundaries
have been located using programming techniques. Insight into the
process can be gained using the following approach. Assume for the
critical B, transitions in the body that B is effectively unity. (This
must be rechecked later, but is in fact true.) The state equation for the

circuit in Fig. 1 is then
1

The subscript R signifies sign-magnitude rounding. For the lower B,
bound, the values of D;, D, Y are

LM M LM
—+ L -2 L?—I, —2——(L+1).

~Dy + =Y. (39)

R

2
Using these values, eq. (39) becomes
1 (LM
IM-2-— (== - =LM-3.
s (20) |
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This nonlinear equation due to the rounding is valid for the interval

3 = i ﬂl -1)> 1
272X\ 2 2
The lower B, bound corresponds to the minimum algebraic value of

[2 — (1/2X)] which occurs for the maximum value of X = (LM/2) — 1.
This lower bound on B, is approachable but not attainable:

3 1
Bl lower = _2 +-——

In a similar fashion, the values of D, I)s, Y are

s (-1 (-2

This transition leads to the attainable bound:
3 1

'é .
(2 1)

Using a B, between these limits and considering the two transitions in
Fig. 17a, the bounds on B; are found to be:

Bl upper — -2+

1 1
1-—————>By=1——.
2Q+1) " 7 2Q
Checking back on the assumption that B; is effectively unity, for
Dom—1— LM
2= 2 ’

o) -28) (-2
(-2

2(9-4+—L(L_1) —1)
R

2 2

Since the minimum L is 3, the R’ operation yields a zero result and
therefore B; is effectively 1. The R’ operation is rounding except +1/2

rounds to 0.
The quantity P; is the peak value of the ith limit cycle. The

remaining unknowns are JJmin and /max. They follow from @ and P..

Jun=Pi-Q=Ly-FLD
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me=P3(L_2) - Q=LM—£(L-—2-—1)_2.
There are Jimax — Jmin + 1 = 3(L — 2) limit cycles in each set.

This discussion can be extended to the cases “M-odd, L-even” and
“M-odd, L-odd.” The minor differences that occur arise from the
following. For “M-odd, L-even,” the value —L/2 — 1 is on the body of
the limit cycle. This, however, leads to no changes in the equations
just developed. For “M-odd, L-odd,” the value —(L + 1)/2 — 1 is on
the limit cycle. This causes the minor variations in the equations
summarized in Section 3.3.

The final issue discussed in this section is a degeneracy that can
occur for the smallest M for a given L. Essentially what happens is
that the handle disappears into the body for some of the B, rectangles
nearest the origin. T'o determine if degeneracy occurs, the equation for
/min must be examined. For a given L, since there are .J; — 1 steps in
the negative handle, if JJmin > 1, no degeneracy occurs. If Jpax > 1, but
Jmin i8 not, degeneracy occurs for that value of M. Figure 18 shows a
plot of Jmin and JJm.x as a function of M for L = 4 and L = 5. As can be
seen, degeneracy occurs for L, M = 4,3 and L, M = 5, 4.

VI. GENERALIZED K,L,M ROLLING-PIN LIMIT CYCLES

Only the simplest class of rolling-pin limit cycles (1, L, M) has been
analyzed in this paper. Other classes exist with values of K larger than
1. The difference between the classes is K, which is the step size in the
handle. The construction rules for the transition regions and the body
are similar for all the classes. The other properties such as (i) regions
of existence, (if) peak amplitudes, (i) mean square value, (iv) number

}JMAX
}JMIN

DEGENERACY
\ ———LM=54

20

DEGENERACY

—~10 —
O 0— L =4

—{—{—L=5

Fig. 18—Degeneracy criteria.
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of cells, and (v) length can all be derived in terms of K, L, and M. The
D, — D, plots, regions of existence, peak amplitudes, and number of
cells for K, L, M =2, 6, 6 and K, L, M = 3, 8, 5 are shown in Figs. 19
and 20, respectively.

VI. CONCLUSIONS AND EXTENSIONS

A unique set of unusually large limit cycles has been discovered and
catalogued and are called rolling-pin limit cycles. The set exists for
second-order feedback sections with two quantizers that round sign-
magnitude or twos-complement products. The limit cycles are com-
pletely defined by three integers K, L, and M, and a simple construction
rule. The peak amplitude approaches three times Jackson’s peak
estimate. The limit cycles exist for B, — B, pairs lying within rectan-
gular regions in the B, — B; plane. They occur often in filters with
high @ poles near dc or half the sampling frequency.

Specialized techniques requiring extra circuitry can be used to
suppress rolling-pin limit cycles. These special techniques may also
increase the roundoff noise in the presence of a signal. Alternately,
these limit cycles may be avoided by making small changes in the
binary coefficient values to produce a pair of coefficients just outside
the region of existence of rolling-pin limit cycles and yet meet specified
filter characteristics.

60

D,

S=-K=3,L=8M=5

~—_-K=2,L=6,M=6

10

30 40 50 60

Fig. 19—Successive value plot for generalized K, L, M limit cycles.

406 THE BELL SYSTEM TECHNICAL JOURNAL, FEBRUARY 1979



K=3L=BM=5

0.989 S
54 51 (-
LENGTH = 48 LENGTH = 44 1oy
0988 - | I Ve
| 1 |
| 1
3 3 3
—(2-=5) —(2-35) —(2-3¢)
36 ]
oos7 |- 02 0
0.986 |—
o~
[-+]
0.985 |-
1
{1—=3)
K=2 L=6 M=6 64
49 a7 45
0.984 |- .
(1—5—03
LENGTH=66 | LENGTH=62 | LENGTH=58 |
! [
I 1
0.983 |- i |
3 | _(9_3 |
~(2-gg! | (2-g) ‘
3 3
—(2—921 —[2—341
0982 L ! L 1 L L L
—1971 -1970 -1969 1968 —1967 -1966 1965 —1.964 —1.963

B,

Fig. 20—Region of existence of generalized K, L, M limit cycles.

At present, these limit cycles are the largest (relative to Jackson’s
estimate) known in the region of the B, — B plane where | B;| > 1.875.
For other regions, relatively large limit cycles have been found, but
not systematized. It is expected that an approach similar to that
presented will be useful. Other potentially useful extensions are for the
cases of one quantizer and of truncation of products.

At present, these results can be useful to digital filter designers,
whenever poles with | B;| > 1.875 occur. Each design problem must be
individually examined, however. A desirable goal is to incorporate
these results into an automated design technique.
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