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An analysis is made of the degree of precision required in a
digitally implemented adaptive equalizer to achieve a satisfactory
level of performance. Considering both the conventional synchro-
nously spaced equalizer and the newer fractionally spaced equalizer,
insight is provided into the relationship between the tap-weight
precision and the steady-state, mean-squared error. It is demon-
strated why the number of adaptive tap weights should be kept to a
minimum (consistent with acceptable steady-state performance), both
from convergence and precision requirements. A simple formula is
given that displays the tradeoff among the equalizer mean-squared
error, the number of taps, the channel characteristics, and digital
resolution. For typical basic-conditioned voiceband channels oper-
ating at 9.6 kb/s, and neglecting the effects that limited resolution
might have on timing and carrier phase tracking, analysis and
simulation both indicate that the required tap-weight resolution is of
the order of 11 or 12 bits. Moreover, the minimum precision is only
weakly dependent on the quality of the channel.

I. INTRODUCTION

State-of-the art adaptive equalizers for voiceband modems are digi-
tally implemented and strive to minimize the equalized mean-squared
error.' An important consideration in assessing the complexity of such
an adaptive digital equalizer is the number of bits required to represent
the stored signal samples and the equalizer tap weights. Gitlin, Mazo,
and Taylor® have shown that the precision required for successful
adaptive operation, via the estimated-gradient algorithm,’ can be
significantly greater than that required for static or fixed equalization.
The purpose of this paper is to determine the precision required in the
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tap-updating circuitry so that the equalizer mean-squared error can
attain an acceptable level.

In the well-known estimated-gradient tap adjustment algorithm,’
the tap weights are incremented by a term proportional to the product
of the instantaneous output error and the voltage stored in the corre-
sponding delay element. When this correction term is less than half a
tap-weight quantization interval, the algorithm ceases to make any
further substantive adjustment. To determine the minimum number
of bits needed to achieve an acceptable performance level (mean-
squared error), an appropriate proportionality constant, or step size,
must be determined for use in the algorithm. From pure analog, or
infinite precision considerations, a relatively large step size is desirable
to accelerate initial convergence,”® while a small step size is needed to
reduce the residual mean-squared error (that part of the error in excess
of the minimum attainable mean-squared error). If the channel is
stationary, then in the converged mode the analog algorithm should
use a vanishingly small step size to provide almost no fluctuation about
the minimum obtainable mean-squared error. However, in a digitally
implemented algorithm, a decrease in the step size can actually degrade
performance unless there is a compensating increase in the precision
of the tap weights. This occurs when the error is so small that an
increased number of bits are needed in order that the proportionately
smaller corrections be “seen” by the equalizer.

A useful compromise is to choose a step size that provides a slight
increase in the steady-state mean-squared error to a level which can
be attained by a digital equalizer of reasonable precision. This pre-
cludes the choice of an unrealistically small step size—with its concom-
itant requirement of excessive precision—and provides a mechanism
for the analytical determination of the necessary level of precision. Our
objective, then, is to be able to directly calculate the precision required
to achieve an acceptable performance level.

In Section II, assuming parameters with infinite precision, we deter-
mine the step size which produces a specified increase in the mean-
squared error. This result is combined in Section III with digital
considerations to determine the precision required in the equalizer
coefficients. Simulation results are presented in Section IV to illustrate
our results for both the conventional synchronous and the newer
fractionally spaced equalizers.*”’

Il. ANALOG CONSIDERATIONS

In this section, we review the basic equalized data communications
system in an analog, or infinite precision, environment and determine
the steady-state step size associated with a fractional increase in the
residual mean-squared error above the minimum attainable error.
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2.1 System model

For simplicity, we consider the baseband-equivalent data transmis-
sion system of Fig. 1 with received samples

rinT')A r, =Y aux(nT — mT) +v(nT), (1)

where {a,} are the discrete-valued data symbols, x(-) is the pulse
shape at the receiver input, {#(nT’)} are independent noise samples,
1/T is the symbol rate, and 1/7" is the receiver sampling rate. For the
conventional synchronous equalizer, T’ = T, while for fractionally
spaced equalizers®’(FsEs), 1/T” will exceed twice the highest frequency
component in x(¢). The equalizer output is computed only
every T seconds and is given by

N
u(nT)= Y cur(nT —mT'), (2)
m=—N
where the equalizer has (2N + 1) tap weights. The standard perform-
ance measure is the mean-squared error (MsE) at the equalizer output,
& = (w(nT) - a.)® = ((c'rn — a,)?), (3)

where () denotes the ensemble average, ¢ and r, are, respectively,
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iLo);/o_ Xew) il PLLLIN EQUALIZER »—o/)/o—b

T uT” T
TRANSMITTER
FILTER/CHANNEL

vit)
NOISE T=TIME BETWEEN DATA SYMBOLS

T'=RECEIVER SAMPLING RATE

(a)

r(kT’)

70%/0 u(nt) f an

SLICER

(b)

Fig. 1—(a) Simplified baseband-equivalent PAM data transmission system. (b) Tapped
delay line equalizer.
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the vector of equalizer tap weights and the vector of samples stored in
the equalizer at the nth output sampling instant, and the prime
denotes vector transpose. Carrying out the indicated expectation in (3)
for binary-valued independent data symbols gives

F=cdc—2c'x+ 1, (4)

where A = (r,r;) is the channel correlation matrix and x = (@.r,) is
the truncated channel-sample vector; minimizing & with respect to the
tap weights gives the familiar optimum quantities:'~

Copt = A7x (5)
Fop=1— XA X, ©)

2.2 Estimated-gradient algorithm

A well-known, and frequently implemented, algorithm for the iter-
ative adaptive determination of the optimal tap weights is

Cn+M = Cn — Anenrm n= 0, MI 2MI ] (7)

where e, = u, — a. is the error signal,* A, is the step size, and Cn+u is
the vector of tap weights at time (n + M) T. The algorithm is obtained
from the (gradient) steepest-descent algorithm by replacing the gra-
dient of &, with respect to ¢, by the convenient unbiased estimate, e,rn.
The scaling of the correction term is provided by the step size A,.

Under the assumption of tap-weight adjustments infrequent enough
(i.e., M large enough) so that the tap-voltage vectors {r,} are mutually
independent, egs. (4) to (7) can be used to show that

(an = gopt + (é&AEﬂ))

here
whe €, = Cn — Copt (8)

is the corresponding tap-weight error. In practice, it is observed that
adjustments at the symbol rate (M = 1) result in a comparable mean-
squared error, even though the independence of the {r.}, used in
deriving (8), is clearly not valid.f

If we let

gn = (€ A€r) 9

denote the excess mean-squared error, then it is known’ that g
decreases as A. decreases, while the rate of convergence (rRoc) in-
creases as A, increases up to half the stability limit. Thus, from analog
considerations alone, the choice of step size is important in achieving
a balance between rate of convergence and the steady-state error.

* It can be assumed that an initial training data sequence is known to the receiver.
1 Current work by J. E. Mazo appears to explain this anomaly.
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Previous studies®® have concentrated on finding the best sequence
{A.} to maximize the rate of convergence. However, the choice of the
final A, appropriate for the steady state has not received much
attention, perhaps because from analog considerations alone it is clear
that A. should be as small as possible consistent with a moderate
tracking capability. Difficulties can ensue, however, in a digitally
implemented equalizer, where too small a value of A, can result in an
increased steady-state mean-squared error.’ With this in mind, a
reasonable compromise is to accept an &. which is somewhat larger
than &,,; it will be shown that this implies a finite value of A.. from
which the required tap coefficient precision can be determined.

2.3 An iterative relation for the residual MSE

As a compromise, the step size can be selected such that the residual
excess mean-squared error (9) is an acceptable fraction of the minimum
attainable steady-state error, (6); i.e., let

Qu = -Y%gupt: (10)

where 0 = y = 1. With this range for y there is at most a 3-dB increase
in the steady-state MSE, due to a finite value of A. T'o proceed further,
we diagonalize the channel-correlation matrix and write

A=PAP, (11)

where A is a (2N + 1) by (2N + 1) diagonal matrix whose entries are
the eigenvalues, A;, of A, and P is an orthogonal matrix composed of
the eigenvectors, p;, of A. If we denote the rotated tap-error vector by

¥a = Pep, (12)
then

N
gn = (€ A€) = (yrAYn) = 3 Adyni), (13)

i=—N

where y,; is the ith component of y,.

Using the above definitions, we can investigate the dynamic behavior
of the rotated tap-error vector, y., by subtracting ¢, from both sides
of (7) to obtain

€n+M = € — Arn (G.lnrn + c:)ptrn - ﬂn)
= €, — Ar, [€.r, + e(opt)]
= [I — Ar,r,] € — Ar, eq(opt), (14)

where e,(opt) = cpT» — a. is the instantaneous error when the taps
are at their optimum settings. From (14) we obtain

Ynim = [I = APr,r,P'] y. — Aen(opt) Pr,, (15)

as the iterative equation satisfied by the rotated tap-error vector.
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For small M, determination of the behavior of the residual MsE,
using (15), remains one of the most difficult and frustrating problems
in data transmission. We shall avoid this problem by making the
following assumptions:’

(i) The interval M (in symbol intervals) between equalizer adjust-
ments is large enough so'that the received vectors {ra+,u} are mutually
independent.

(ii) The minimum error e,(opt) is effectively statistically indepen-
dent of all received vectors rm.

The support for these assumptions is the following: If the channel
memory is less than M symbol intervals (MT seconds), then successive
received vectors stored in the delay line will be independent, since they
depend upon totally disjoint data symbols. Since we are concerned
with steady-state equalizer properties, rather than convergence rate,
infrequent adjustment does not adversely affect our results. The in-
dependence of e,(opt) and rn+.u is supported by the following obser-
vations. First,

(ex(opt)ry) = ([¥rCopt — @nlrn)
=(rnA'x) —x=(rr)A'x—x=0. (16)

This equation expresses the well-known fact that, at the optimum tap
setting, the error signal is uncorrelated with the current received
sample vector. Using the assumption of independent sample vectors,
and since (r,) = 0, it follows that {(e,(opt)ra.+.n) = 0 for any . The
statistical independence of e,(opt) and r, depends on their higher
order moments as well but simulation results indicate that the steady-
state squared error is a rathfer insensitive function of the received
samples.

To determine the steady-state step size, we use the above assump-
tions to derive an iterative relation for g, = (¥ A y»). We first present
results for a synchronous equalizer and then modify those results for
a fractionally spaced equalizer. From (13) and (15) with the rotated
received vector, s,, defined by

8, = Pr,, 17n
we have
Qnim = Ynem A Ynim
= ([yn (I — As,s,) — Aeq(opt)s;]
A [(I — As,8,) y. — Aen(opt)sa]). (18)

To simplify (18) and to obtain a first-order linear recursion, we note

the following:
(iii) By virtue of the definition of e.(opt), (e.(opt)rs) = 0, so that

(ex(opt)sn A (I — A8r8.)yn) = 0. (19a)
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(iv) By using the familiar eigenvalue bounds* and (), we have

(¥n8:8n A 8,8,¥n) < AM {¥nSn8n8nSn¥n)
=Am(2N + 1) (rz) {yn A yn), (19b)

where (r;) is the variance of any element in the vector r,, and the
automatic gain control is accurate enough, so that s/s, = (2N + 1)
(ra) is a good approximation for any data sequence.

(v) By virtue of (it), we have

(en(opt) sp A 8,) = Eop (ThAY,) = Ay &ope 2N + 1) (r2).  (19¢)

The bounds (19b) and (19¢) are relatively tight, since the bulk of the
eigenvalues will, in practice, be comparable to Ay.
(vi) The term in (18) which contributes a negative sign,

N
(ynSnSh A Yn) = (yn A® yu) = _ZNA? (yaihs (19d)

has a very significant influence on both convergence and steady-state
behavior and must be treated more delicately. What is needed is a
good lower bound on (19d); however, the most direct lower bound,

(Yn A2 ¥a) = A (Yo A ¥0), (20)

which involves the minimum eigenvalue, A, is (in general) too loose,
since just one small eigenvalue will drastically reduce the magnitude
of this term.

There is, unfortunately, no tighter lower bound, since if the only
significant component { y};) is associated with the smallest eigenvalue,
as is possible when there are no restrictions on these components, then
the bound (20) can be achieved. In practice, this is an extremely
unlikely event (the mean-squared tap errors, { y;;), are pretty much
equal in value), and (20) is unduly pessimistic in suggesting the choice
of a steady-state step size.

We therefore choose to approximate rather than (lower) bound
(19d). If, as suggested above, the ( yx;) are relatively uniform for all i,
then a reasonable approximation is

(Y0 A% yu) = M(¥h A ya) = Aga (21)
where ) is defined as either the average eigenvalue
— 1 N
A= N T 1 r=Z—N A, (22a)

* If A is a symmetric matrix, then A,z'z = 2’Az < Ayz'z, where A, and Ay are the
minimum and maximum eigenvalues of A respectively, and z is any vector.
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or the RMs eigenvalue

_ 1 N 1/2
A= ?
(2N+1-§;~rA ) (22b)
Using (19) to (22) in (18), we have the key iterative relation,

Gneme S [1 = 2AN + AuA*(2N + 1)(r7)1ga
+ AN + 1)(r2) A% op, (23)

for the excess mean-squared error.

To apply the above equation to systems which use a fractionally
spaced equalizer (FSE), some of the terms appearing in (23) must be
appropriately interpreted. In systems which use a FsE, the received
signal is sampled at the rate 1/T", where 1/7" is greater than twice the
highest frequency component of the baseband signal. Note that if the
time span of an FSE is kept constant, the number of tap weights is in
inverse proportion to T". The channel correlation matrix, A, which is
Toeplitz for a synchronous equalizer, is no longer Toeplitz for a FSE. It
is shown in the appendix that, for 7" = T/2 and an infinitely long FsE,
half the eigenvalues are zero and the other half tend to follow a
uniform sampling of the aliased magnitude-squared channel charac-
teristic. The ith eigenvector corresponding to the nonzero eigenvalues
is given approximately as a sinusoid of frequency w;: = [2i/(2N + 1)]
(#/T), i=0,1, ---, N. The eigenvectors corresponding to the zero
eigenvalues have most of their spectral energy concentrated near
1/T Hz.

In the light of this information, we wish to determine if the bounds
(19b) and (19¢) are still reasonably tight for a suitably long FsE. Recall
that (19b) was obtained by using the bound

N N
z A.-s?='Ass}\M z S;g.
-N -N

Since half the eigenvalues will be quite small, we have as a tight bound
that

N N2 N2
S ANsiz Y NsisAu Y s?,
oyt N2 Ny2

where the indices greater than N/2 will be associated with the zero
eigenvalues. We can, however, recover the full summation by noting
that s;, a component of s = Pr, is given by the convolution of the input
samples and the ith eigenvector. For |i| > N/2, this convolution is
equivalent to passing the received bandlimited signal through a nar-
row-band filter centered at 1/T Hz, and is thus close to zero. We can
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conclude that
N N/2
Y Asi =My Y 87 =Aus's =Aurr,
N Ny2
and hence (19b) and (19¢) remain valid. We now reconsider the
discussion which precedes (20) and consider the term
N/2

N
(¥ A’y) =§VA?(y?) = ¥ A(¥)

N/2
_ N2

=AY N(yD)

N/2
_ N — _
ZA_ENM(J'?) =My Ay) =Aq, (24)

where A is an average eigenvalue over the set of significant eigenvalues
of the channel covariance matrix. In obtaining (24), we have again
assumed that the { y?) are fairly uniform (in contrast to the sf, which
depend critically on the index i), and we interpret A as the average of
the “nonzero” eigenvalues of the channel correlation matrix.

In practice, it is not difficult to estimate A for a FsE, as the
eigenvalues, A;, tend to approach zero quite rapidly. A reasonable
criterion is the average eigenvalue over the partial set of eigenvalues
containing all but a small fraction (perhaps 5 percent) of the eigenvalue
mass. With this discussion in mind, we can apply (23) to both synchro-
nous and fractionally spaced equalizers.

2.4 Choice of initial and steady-state step sizes

We first investigate the conditions under which the excess MsE will
decrease with time. Now in order for the mean-squared error to decay
it is clear from (23) that

|1— 28X + AwA2@2N + 1)(r2)| < 1
or
2X 1 1
A (2N + 1) (ra)

A =Amax = (25)

Even with all the bounds and approximations which have been made
in reaching (23), a significant difference is readily apparent in the
maximum allowable step size for the known-gradient™* algorithm and
the estimated-gradient algorithm. From Refs. 2 and 3, we know that,
for the known-gradient algorithm to converge, it is required that | 1 —
AMi| < 1, or equivalently 0 = A = 2/Ay. The fact that the maximum
step size for the estimated-gradient algorithm is considerably smaller
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than that for the known-gradient algorithm is deduced from (22a) and
(25):

2 A 1

Awax =3 @GN+ 1) (%)

L .
Y AN +1)°
MZM a( )

=N

(26)

Thus the maximum permissible step size for the estimated-gradient
algorithm is reduced, by a factor on the order of the number of tap
weights, from the maximum step size permitted in the steepest descent
(known-gradient) algorithm.

By differentiating the right-hand side of (23) with respect to 4, we
obtain the step size, A%, which provides the maximum rate of conver-
gence (relative to the bound (23)):

_ Xq,. 1

AN + 1)(r2)  [gn + &opt]
Note that A} is a function of time, n, and the generally unknown (to
the receiver) quantities g, and &p.. During the early stages of conver-
gence, q. > &opt, 80 that (27) becomes the constant value

A 1

T AN + 1)(r%) = Bmax, (27b)

An

(27a)

A%

and g, converges exponentially towards a steady-state value. Thus a
useful rule is: The initial step size should be half the maximum
permissible step size. Equatioﬁs (25) to (27) are similar to those
proposed by Ungerboeck,” except for the channel-dependent factor,
A/Au, appearing in our equations. This factor suggests a reduction in
the step size for most rapid convergence with highly distorted channels.

As convergence nears completion, the steady-state step size, A,
resulting in a specified mean-squared error, &, + @=, is found by
equating the two sides of (23). Substituting the constraint, (10), into
this relation gives

A_gi 1 Q-
AMm ' (2N + 1)('32:) Qo + &opt
by 1
=2 A Y = Y Amax, (28)

-5\—;4.1+y‘(2N+1)(ri) 1+vy

+ We use the fact that the trace of A = (2N + 1)(r) = 3% A..
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as the formula for the steady-state step size. Thus the steady-state
step size ranges from 0 to %2 Amax as y varies from zero to unity. Ideally,
the step size should vary between the initial value, A} = Y2Amax, and
the steady-state value, A = [y/(1 + y)] Amax < A%, in accord with
(27a). In practice, the step size is generally changed in discrete steps
between A§ and A.

In summary, (28) provides an approximation to the required steady-
state step size in terms of the number of taps, the effective eigenvalue
ratio (which depends implicitly on the number of taps), the power of
the received samples, and the acceptable residual mean-squared error.
Note that, as y — 0, we require a vanishingly small step size, and that
increasing the number of taps (to achieve the desired level of &.p) also
requires a diminished A.

lil. DIGITAL CONSIDERATION

In this section, we first review” the effects of digital implementation
on the estimated-gradient tap-adjustment algorithm, and we then
combine our analog and digital results to compute the minimum
precision necessary to achieve acceptable performance.

3.1 Digital cutoff of the algorithm

In Fig. 2 we sketch the evolution of the mean-squared error in high-
and low-precision equalizers. In the low-precision equalizer, the steady-

-6

QUTPUT MEAN-SQUARED ERROR IN DECIBELS

8 BITS
_20H
-25
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-30 | L 1 | 1
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ITERATIONS

Fig. 2—Evolution of mean-squared error for 32-tap equalizers with tap weights of 8
bits and 14 bits resolution. Steady-state step size = 0.00021.
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state, mean-squared error is constrained by the impossibility of chang-
ing a tap weight when the correction term in (7) decreases below half
a quantization interval. Some corrections will be possible until the
peaks of the correction terms fall below the critical level, i.e., until

|Aeara| < %8, (29)

where § is the interval between quantization levels, or conversely, the
algorithm continues to adapt if

|Aenr,| = 128 = 27 5a, (30)

where B is the number of bits (including sign) used to represent the
equalizer tap weights and (—a, a) is the range covered by the (uniform)
quantizer.

The above stopping condition can be approximated by replacing the
magnitude in (30) by its peak value which is assumed to be V2 times
its RMS value, i.e., adaptation continues if

V2A - V(eky - J(rk) =278 (31)

where the MSE which satisfies (31), with equality, will be called the
digitally limited MSE. In a passband equalizer for which (30) applies
separately to the in-phase and quadrature parts of the tap increment,
the condition equivalent to (31) is Av(]|ex|?) (| r=|?) /2= 2 %a.

Two important consequences of (31) are:

(i) Any attempt to make A arbitrarily small, for the purpose of
reducing ¢, will ultimately increase the steady-state MSE so that (31)
is satisfied.

(i) The ratio of the mean-squared error of an adaptive digital
equalizer to the MSE due to quantizing the {c,} to within a LsB of their
optimum values in a non-adaptive equalizer grows linearly with the
number of taps and the “effective” eigenvalue ratio (see Appendices II
and III in Ref. 2). In other words, considerably more precision is
required for adaptation of the tap weights than for filtering the received
signal (performing the equalizer convolution).

Some further observations follow immediately from the above dis-
cussions and from numerical substitutions in (31):

(i) The number of adaptive parameters should be kept to a mini-
mum consistent with achieving the desired steady-state MSE, since an
increase in the number of taps calls for a decreased A, which in turn
increases the precision required [from (31)].

(ii) The excess MSE (associated with a finite step size) evaluated in
the last section can be traded against the required precision.

(iit) Highly dispersive channels have a larger eigenvalue spread
than do good channels and thus require more precision to achieve the
same MSE. However, the increased precision will be shown typically to
be only 1 bit for channels of moderate distortion.
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(iv) Digital word size will be restricted to a reasonable value if the
digital equalizer is designed to allow an appropriate excess MSE on the
Drder Of gopt .

3.2 Required precision

We now presume that the steady-state step size A, determined from
(28), is used in a digitally implemented equalizer. The analog param-
eters are assumed such that the steady-state MSE is equal to the
digitally limited MSE. Thus performance will be determined by the
available precision. Hence the digital word length, B bits, needed in
the tap weights to achieve &, can be determined by substituting (28)
in the digital stopping condition (31):

A 1 1
Y 5 5 5
T+ N+ (Ve (=2 ()

which reduces to the important relation

A

1 1
2 Bg<2——T . : : 33
“ AMml+y (2N +1) VSNR:p (33)
where
SDU
SNR = (e—z‘) (34)
is the (equalized) output signal-to-noise ratio, and where
(ra)
= 35
P=- (35)

is the ratio of input signal power to output (baseband) signal power.}
Note that the equalized mean-squared error appearing in (32) can be
written as (e5) = &t + = = (1 + Y)&ope = (1 + ) [1 — XA 'x],
where the last equality follows from (6). Thus for a given (or known)
channel, all the terms (33) can be readily computed. We now use (33)
to estimate the required digital word length under various conditions
typical of 9.6-kb/s data transmission.{

() Operation on a Good Channel (Fig. 3a). A good channel is one
for which A/Ay = 1, and the number of equalizer taps can be quite
small. In practice, however, a synchronously spaced equalizer will have
a fixed number of taps, typically 32. With a passband equalizer' having
32 complex tap pairs, the effective eigenvalue ratio is 0.93 for the

T For the complex passband equalizer, the factor on the right-hand side of (33) is
V2 instead of 2, and ( |, |?) replaces (r2) in (34).

11t should be noted that the word lengths derived in the following examples are

considerably longer than the precision indicated from using a variance equal to ¢® =
§%/12 for the quantization error in each tap weight.
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“good” channel using a near-optimum sampling epoch. We assume
that the maximum quantization level is a = 1, that y = % (correspond-
ing to a 1.1-dB degradation in output s/n ratio), and an output s/n
ratio of 25.7 dB is observed (down 1.1 dB from that observed with
effectively infinite resolution and vanishing step size). An AGC setting
is assumed such that p = 2. We find from (33) that B = 11 bits.

(ii) Operation on a Severely Distorted Channel (Fig. 3b). This
severely distorted channel, which just meets the requirements of basic
voice-grade line conditioning, has been found to have an effective
eigenvalue ratio A /Ay (for the best sampling phase) of 0.5. Using this
latter value and with the parameters of the previous sample, except
for an output s/n ratio of 23.4 dB associated with the distorted channel,
we find that B = 11.5 bits.

(iii) Operation with a Fractionally Spaced Equalizer on the Dis-
torted Channel. With channel samples taken at 7/2 intervals, where
T is a symbol interval, a 64-tap equalizer is appropriate. The effective
eigenvalue ratiot is 0.58, and we find that B = 12 bits for the same 1.1-
dB degradation used in the above examples.

In the next section, the precision predictions of these three examples
are compared with simulation results.

IV. SIMULATIONS

The same channels for which eigenvalue ratios were derived for the
examples of the last section were used in a simulation program for a
qQaM data communication system' operating at 9600 bps with a baud
of 2400/s. Only the tap weights were quantized (rounded to the nearest
quantization level); all other variables had the IBM 370 single-precision
resolution of roughly 24 bits. The magnitude of the largest real tap
weight was about 0.5 in a full quantization range of (—1, 1). Timing
and phase references were ideal and not subject to statistical fluctua-
tion. The steady-state step size used in each case was computed from
(28). The equalizer was either a 32 (complex) tap synchronous (tap
spacing = T = symbol interval) structure, or a 64 (complex) tap 7/2
structure.

Some simulation runs were made with a gear shifting sequence of
adaptation step sizes* to reach convergence within a reasonable num-
ber of iterations. However, great care was taken to reach the smallest
(steady-state) step size well before complete convergence. This is
because, with a larger step size, digital equalizer performance can
possibly be better for a transient period than that corresponding to
the chosen steady-state value. Deterioration of this “good” perform-
ance, once it is achieved, depends upon large signal and/or noise

1 The “average” tap weight was the average over the 26 tap weights which collectively
contained 95 percent of the tap-weight mass.

314 THE BELL SYSTEM TECHNICAL JOURNAL, FEBRUARY 1979



values, and may not be observed over the short duration of a simulation

run.

Curves A in Fig. 4, for operation with the synchronous equalizer on
the “good” channel, indicate a degradation of about 1.5 dB for the step
size of 0.001 calculated from (28). This is not far from the 1.1 dB
(y = 0.5) used in that formula; however, the s/n ratio degrades another
0.6 dB when the predicted digital word size of 11 bits is used instead
of infinite resolution. The source of this additional degradation has not
been investigated, but ordinary quantization noise will make a contri-
bution, and probably also a slowed rate of adaptation, just before the
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Fig. 3—(a) “Good” and (b) “distorted” channels used in analytical and simulation

examples.
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Fig. 4—Measured output s/n ratio vs digital word length (of equalizer tap weights)
for (A) a “good” channel (eigenvalue ratio = 0.93), A = 0.001; and (B) a distorted channel
(eigenvalue ratio = 0.5), A = 0.0005. A 32-tap synchronous equalizer was used in both

cases.
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digital stopping condition prevails. Curve B, for operation on the
distorted channel, is down 1.1 dB for a digital word length very close
to the predicted 11.5 bits.

Figure 5 illustrates a similar curve for operation on the distorted
channel with the 64-tap T/2 equalizer, as described in example (iii).
The digital resolution of about 12 bits predicted from (27) for 1.1-dB
degradation is consistent with the simulation results. Figure 6 presents
another view of the performance of the T/2 equalizer on the distorted
channel. This is a curve of output s/n ratio vs adaptation step size for
the 12-bit resolution determined from (33). The step size of 0.0003
determined from (28) and used in the experiments represented as
points on the curve of Fig. 4, corresponds to a near-peak value of
output s/n ratio. This again supports the analysis of Section III as
providing a useful formula for deciding on the steady-state step size to
be used in a digitally implemented equalizer.

V. DISCUSSION AND CONCLUSIONS

We have proposed a criterion for determining the number of bits
needed to represent the tap weights in a digitally implemented equal-
izer. For a given steady-state adaptation step size, with its attendant
increase in steady-state mean-squared error, this criterion is that the
word size used be just large enough to “match” this increase without
further degrading performance. The word length is a function of the
output s/n ratio (the ratio of output signal power to steady-state mean-
squared error), the fractional increase in the mean-squared error over

26
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Fig. 5—Output s/n ratio vs digital word length (of equalizer tap weights) for a 64
T/2 tap equalizer operating on the severely distorted channel of Fig. 1, with step size
= (.0003 determined from (28).
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that of an ideal infinite-resolution receiver, the number of taps, and
the effective eigenvalue ratio of the channel-covariance matrix.

For data transmission at 9.6 kb/s, it can be concluded, on the basis
of the representative voice-grade channels simulated in this study and
neglecting the effects of limited tap-weight resolution on timing recov-
ery and carrier phase tracking as well as the (relatively minor) degra-
dations resulting from limiting the resolution of variables other than
the tap weights, that a digital word length of 12 bits is adequate to
represent the tap weights for updating purposes in a 32-tap synchro-
nous equalizer or a 64-tap T/2 equalizer.

APPENDIX

Asymptotic Eigenvalue Distribution for the Correlation Matrix of
Synchronous and Fractionally Spaced Equalizers

In this appendix, we describe the eigenvalues of the correlation
matrix for infinitely long synchronous and fractionally spaced equal-
izers.

A.1 Synchronous equalizer

From the definition A = {r.r,), we note that A is a T'oeplitz matrix,
and that the eigenvalue equation is given by

N
Y Awpr=Apr —N=<k=<N, (36)
£=—N
>
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Fig. 6—Output s/n ratio vs adaptation step size for 64 T/2 tap equalizer, tap weights
quantized to 12 bits, and severely distorted basic-conditioned channel.

TAP WEIGHT PRECISION FOR EQUALIZERS 317



where A, . is the k#th element of A, A is an eigenvalue, and p’' =
(p-n, *++ , Do, =+ + , Pn) is the associated eigenvector. As N — , taking
the Fourier transform of both sides of (36) yields

A(w)P(w) = AP(w), lw| = (37)

z
T’

+o%= | Xeq (r.o)[2 + a2,

|ms%.(%n

For very large N, the discrete asymptotic approximation to (37) is

_ 271
TN+ 1T’

Unless A (w;) has the same value for two or more values of the index
i, the only way (39a) can be satisfied is for P(w) to be concentrated at
a single frequency, i.e., be a sinusoid. Repeated values of A (w;) corre-
spond to repeated eigenvalues and an eigenvector subspace which can
be spanned either by distinct sinusoids or by combinations of sinusoids.
Then the solution to (37) is

A= A(w)

Awi) Plw) =APlwi), o —-N=i=N. (39a)

-N=i=N.
Pi(w) = 8(w — w;i) + 8(w + wi) (39b)
Thus for a synchronous equalizer, the asymptotic (N — ) eigenvalues
uniformly sample the folded-channel-plus-noise spectrum, and the
eigenvectors are the corresponding sinusoids.
A.2 Fractionally spaced equalizers

Here the channel-correlation matrix while symmetric is not Toeplitz;
thus Fourier transform techniques do not yield the eigenvalues and
eigenvectors in the above short order. For convenience, we consider
the noiseless situation, and the eigenvalue equation is

N
Y ART,ZT)pT')=Ap(RT") —N=k=N, (40)

¢/=-N

T The Nyquist-equivalent spectrum, X.q(w), is defined as X.((w) =¥, X[w + k(27/T],
k

where the receiver sampling phase is incorporated into X (w).
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where the 2/th element of A is given by
ART', ¢T') =Y x(mT — kT )x(mT - £¢T"). (41)

With T" = T/2, we write (40) for even and odd values of %,

PRIC RN CIPRICEES)

|¢|=N |¢|=N

=)\p(k%‘), keven (42)

LG5 D)+ 1 AT Dele3)

1£|=N |¢I=N

=?\p(k-§), kodd. (43)

Now (42) and (43) can be written as

N/2 Ny2 T
Y ART,¢T)pl¢T)+ ¥ A(th’T+2) (ZT+§)

¢=—N/2 ¢=—N/2

= Ap(RT), —N/2< k< N/2 (44)
N/2 T N/2
¥ A(kT+ ,(T)p(fT)+ )
/=-N/2 =—N/2

A(kT+ (T+T) (ZT+§)=Rp(kT+§), (45)

respectively, where both equations hold for N integer values of k, and
more importantly the various component matrices are now all Toe-
plitz. If we consider the situation where X(w) has less than 100
percent excess bandwidth,® then it is useful to introduce the four
spectra

eq(t.\.v)‘3X(t.u)+X(f...)—2?)+X( 2,;)

Xoolw) & X () - X(w - 2—;) - X(w + 2—,;,’) lw| =< % (46)
Pyy(w) & P(m)+P(w—2T) +P( 2—;)

T For example, A(RT, T + (T/2)) = ¥m x(mT — kET)x(mT — ¢£T + (T/2)) =3a
x(nT)x(nT+ (k= )T + (T/2)).
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P.y(w) & P(w) — P(w —-2-;;) - P(m +2—;), |w]| 5;—‘, (47)

where we note that the discrete Fourier transform of the eigenvector
p(£(T/2)), P(w), is given by

N T )

P(I’.d) é 2 P(f ___) efjw,f(Tf'ﬂ

f=—N 2

= Pog(w;) + e 7' 72D, (w)) wj= PATE -N=j=N.

q Aty eqituly J N T L] — (48)

Taking the synchronous Fourier transform (i.e., with respect to the 7-

sec sampling interval) of (44) and (45) gives as an approximation (exact
as N — «)

IXeq(wj) |2 eq(wj) + Xeq(‘d})m‘q(wj )Peq(wj) = Aqu(Wj)

wj = (2—;7) (%) -N/2=j=N/2

Ko@) X2(w)) Peg(w;) + | Xeg(@w)) P Peg(wj) = APy (w)). (49)

Note that p(RT + (T/2)) has the discrete Fourier transform exp
(=jw;i(T/2) Peo(w;)), where the synchronous transform of p(kT) is
P.q(w;). Arguing as we did for the synchronous equalizer, we see that
the ith eigenvectors Pi{w;) and P:(w;) must again be delta functions at
wi = (2i/N)(m/T). Consequently, the eigenvalues, A;, must satisfy

A — M| Xeq(wd) |2 + | Xe(wi) | ] =0, (50)
and thus the eigenvalues are
AV =0
k2
)\121 |XEQ(“J!) IZ + |Xeq(wt)| E ’ X(O-’r +—W") B
N N
-3 == R (51)

In contrast to (38), which applies to the synchronous equalizer, half
the eigenvalues are exactly zero, while the other half are samples of
the aliased magnitude-squared channel transfer function. Not surpris-
ingly, the eigenvalues are independent of both the channel phase
characteristics and the receiver sampling phase, and if | X(w)|* is
Nyquist, then all the eigenvalues are unity. Since the eigenvalues are
determined, we can now solve for the eigenvectors. Since p(¢T) has
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the transform Pe(w) and p(£T + (T/2)) has the transform
P.o(w) e7' 7/ the eigenvectors associated with the zero eigenvalue
are constructed as

T\  [Xq(w)e™'™,  neven
b (n E) N {—Xeq(w,)ef"""‘”" 2 nodd, (52)
while the eigenvector associated with the nonzero eigenvalue is
T\ _ [Xeg(w)e™ "™, neven
p.(n -2_) B {Xeq(w;)ef“'”‘T’ 2 nodd. (53)

At this point, we remark that when w; is not in the rolloff region,
then Xuq(w;) = Xeq(ws), and (53) describes a sinusoid of frequency wi,
since the even and odd portions of p;(n(7/2)) mesh together in a
continuous manner (ie., p;(n(T/2)) = Xeq(w)e™" 7’?). However, (52)
describes a function which changes sign and oscillates almost a full
cycle in T seconds. Consequently, p:(n(7/2)), as given by (52), will

have most of its spectral energy concentrated near 1/T Hz. When w; is
in the rolloff region, the frequency content of (52) and (53) will differ
somewhat from the above extreme cases, but the general results will
still be as above. Numerical evaluations have confirmed the above.

This completes our discussion concerning the nature of the eigen-
values and eigenvectors for a fractionally spaced equalizer.
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