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There are several instances in a data network where a communi-
cation line is shared by two or more types of data. In this paper, we
analyze the performance of a buffer used to multiplex two types of
data. Sporadic short messages, like inguiries from terminals, share
the same channel as relatively steady synchronous data, like trunk
traffic or long messages from computer data bases. To the authors’
knowledge, previous studies have been limited to an ad hoc approx-
imation to the probability distribution of interest. We solve for the
equilibrium distribution of number of units of data in the buffer. The
delay distribution easily follows. Numerical results are also presented
which can be used as a guide to determining how much of each type
of traffic can be sustained simultaneously.

. INTRODUCTION

We analyze the performance of a buffer that is used to multiplex
two types of data. Sporadic short bursts of data, like inquiries from
terminals, share the same communication channel with relatively
steady streams of data like digitized voice, lengthy messages from
computers, data bases, or traffic from a busy trunk. A line-switched
network, one that provides a dedicated channel for each connection, is
preferred for lengthy steady messages. A packet-switched network, on
the other hand, is efficient for messages that are short and bursty. In
a packet-switched network, messages are forwarded from node to node
in the form of packets of data that include addressing information. In
such a network, there is no necessity for a dedicated channel for each
connection.
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A data network could accommodate both types of traffic by dividing
the transmission facilities into two fixed parts—one part exclusively
for line-switched traffic, the other for packet-switched traffic. The
subframe switching concept introduced in Ref. 1 is an example of a
temporal division of capacity. The model developed here can be used
for the analysis of such a system. In any system where a resource such
as a transmission line is shared between two or more types of users,
the performance guaranteed to each individual type of customers has
to be met. Packet delay and the probability of losing packets are the
two measures of performance we consider.

Kummerle? proposed a model for multiplexing line and packet-
switched data and derived, using an ad-hoc approximation, formulas
relating the performance measures to the traffic intensity and trans-
mission capacity. A similar problem was analyzed using a diffusion
approximation in Ref. 3. In Ref. 4, an M/D/N model is used for an
approximate analysis. Reference 5 looks at a related continuous-time
problem where the arrival mechanism (rather than the service) has a
periodic component. An integral equation is derived that can be solved
using Wiener-Hopf techniques. In this paper, we formulate a model
for the multiplexer and solve it exactly. We then describe the compu-
tational method used to derive the numerical results and display them
to illustrate the tradeoff involved in performance and line utilization.

Il. DESCRIPTION OF THE MULTIPLEXING SYSTEM

The sources of data that are connected to a generic node in the
network are divided into two groups—synchronous sources and asyn-
chronous sources. Both these sources generate messages randomly.
However, when a synchronous source generates a message, the mes-
sage is generated at a constant rate and is much longer than the
messages generated by asynchronous sources. To describe the system,
we use an example. Let sources A, B in Fig. 1 be two synchronous
sources transmitting at % and % the line (marked LINE in Fig. 1) rate,
respectively. Packets are assumed to be of fixed size, and the unit of
time is normalized to be the time required for the line to transmit one
packet. The output of source A is assembled into packets by the line
buffers as shown in Fig. 1. Then the output of this buffer, connected to
source A, will produce one packet every two units of time. As soon as
these packets are ready, they are transmitted by the line even if
packets from asynchronous terminals, marked 7' in Fig. 1, are waiting
to be transmitted in the packet buffer. Similarly, the output of the line
buffer connected to source B produces a packet every six units of time.
However, the output of B is so synchronized that A and B packets do
not have to be transmitted at the same time on the line. The asyn-
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Fig. 1—Example of multiplexing system.

chronous sources have their own line buffers doing the packet assem-
bly, but the output of these buffers are not necessarily synchronous
with the line. As soon as these sources produce packets, they are
inserted into the packet buffer and there await transmission on the
output line. Notice that this synchronous method of transmitting
sources A and B allows us to discard addressing information in all
except the first packets of a message from these sources. In practice,
if a packet from an asynchronous source arrives at the buffer when it
is full, the packet is lost. In order to guarantee satisfactory performance
for the asynchronous sources, we must keep the probability of such a
loss small (requirements in the 107> — 1077 range are typical). It is
mathematically convenient to work with an infinite rather than a finite
buffer model and solve for the probability that queue size exceeds a
given threshold. The probability that queue size in such a buffer
exceeds a level B is an upper bound for the probability that a finite
buffer of size B overflows.

. THE MATHEMATICAL MODEL

The model considered here applies to systems where there are one
or more packet buffers (associated with asynchronous sources) and, of
course, many synchronous sources. The packet buffers and synchro-
nous sources may be served by the line (it is available to accept a
packet for transmission) in any fixed periodic pattern. The distribution
of the number of packets in any given packet buffer is only influenced
by the asynchronous traffic connected to it and the pattern in which
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the line becomes available to it. During the time slots that the line is
not available to the given packet buffer, it is immaterial whether
another packet buffer or a synchronous source is being served.

Hence, the mathematical model described below analyzes a single-
server queue in discrete time with the server being absent according to
a fixed periodic pattern.

The number of packets in the packet buffer at the end of nth unit
of time is denoted by b,+:. The number of packets that the asynchro-
nous sources collectively generate in the nth unit of time is denoted by
x. The sequence of integers {x.} is assumed to be samples of inde-
pendent, identically distributed, random variables. The frame length
denoted by M is the period of the pattern of serving packet buffers
and the synchronous sources. In the example of Fig. 1, the frame length
is 6. There are 6 slots per frame and slots 1, 2, 4, 6 are dedicated to
synchronous sources A and B. Slots 3 and 5 are used for transmitting
packets from asynchronous sources whenever there are any to be
transmitted. In general, let . denote the set of indices of slots in which
the given packet buffer is not served. In the example of Fig. 1, & = {1,
2, 4, 6}. Then b1, the number of packets in the buffer at the end of
the (n + 1)* unit of time, is given by

bn+1 = (bn - un)+ + Xn, (1)"l

where
= 0if n = (M)
"~ 11 otherwise.

Whenever n = ¥ (M), no packets from the packet buffer can be
transmitted in the nth unit of time. Therefore, for such an n,

bn+1 = bn =+ xn.

On the other hand, if n # . (M), a packet from the packet buffer can
be transmitted in the nth unit of time (if there were any left at the end
of the (n — 1)st time interval). Hence,

bri1=(bn—1)" + x,

if n # % (M). Because of the time-varying nature of u,, it is clear that
{bn} itself has no stationary distribution. However, the vector process
bm = (Bmass1, Bmpss2, +++ Bmenm)’ indexed by m has a stationary
distribution because of the periodic nature of u,. We will show that we
can find a relationship between the marginal distributions of the
components of b,, that uniquely specify the equilibrium distribution of
the bnpsi, 1=1,2, -+ M.

The process {bn} is Markov process with the state space being the

*xt=2ifx>0,x*=0ifx <0, n =% (M) if n = i mod M for some i € .
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nonnegative integers. The transition probability matrix P, at time n is
determined by whether n = ¥ (M) or not; P, = P, if n = m mod M.
Let P: denote Pnaasi, £ = 1, 2, ---, M. For each i, the process bma+i,
indexed by m, is again a Markov process with the associated transition
probability matrix

Qi=Pi-1 |'72"'P1PMPM71“'PJ'+1PI-

It is easily shown that the Markov chain associated with @; is aperiodic
and irreducible. We will now show that, if the average number of
packets arriving in the packet buffer is less than the number of slots
available for transmission during a frame, this Markov chain is positive
recurrent and hence, for each i, b has a limiting stationary distri-
bution as m 1 «. Let J denote the number of slots in a frame during
which no packets from the packet buffer can be transmitted.

Lemma 1: Foreachi =1, 2, ..., M the Markov chain associated
with @, is positive recurrent if

MEx, <M —J.
Proof: Repeated application of (1) shows that, form =0,1,2,...,
binsymri = (== ((Bmpei — 81) + Xagsi — 82) 7o+

+ Xmenmriz — Om) " + X(mrnymeio1,

where §;, = 1 if j # ¥ (M) and § = 0 otherwise. Therefore, if bna+:i =
M, then

M+1
biminyM+i = Ommei + 1 Y Xmvive | — (M = J);
=0
hence,
E (bm+vymsi| bmpsi = J) = bopsri + MEx,, — (M = J)

for all j = M. Let Q.(#,j)be the (£, j)th element of @; then, if MEx,
<M-J

Y Qut,j)f<j for j=M.

=0

Hence, using Theorem 2 of Ref. 6, the Markov chain corresponding to
Q. is positive recurrent.

IV. CALCULATION OF STEADY-STATE DISTRIBUTION

In this section, we show how to calculate the steady-state distribu-
tion of the components of b,... As we mentioned earlier, the distribution
of b, has no limiting value as n tends to «. However, we showed that
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the distribution of bmas: for i = 1, 2, -+-, M approaches a limiting
value when MEx, < M — J, which is obviously the condition for
stability of the queuing process. Let ¢i(s) denote the generating
function corresponding to the limiting distribution of b+ for i = 1,
2, +++, M. Then
$i(s) = lim Es®+ {=1,2,... , M.

Calculating the generating functions of both sides of (1) and then
letting m tend to o, we can derive equations for ¢:(s). Let x(s) =
Es* and note that x(s) factors out on the right-hand side of (1) since
X is independent of b,. Then we have fori =0, --- , M — 1,

dir1(8) = Ppi(s)x(s)  for 1= S(M)
dir1(s) =[s7'0i(s) + (1 = s o Ix(s) for i# S(M), (2)
where
Ppio = lim Pr{b.m+i =0} and ¢o = ¢m. (3)

We can write the above equations (2) in matrix form as follows. Let
€, 8; be s and 0 respectively if i = S(M). For i # S(M), let & = §; = 1.
Then

[0 0 --- 0 en _
[61(s)] €0 -0 0| [or(s)
P2(s) 0Oe---0 0 ¢2(8)
. _Xx(s) .
8
_¢M(S) . 0 0 I_(,bM(S)J
- __00 vee EM710~
[~ paodu 7]
pl,081
+(1—sY)x(s) (4)
_pM—l,oaM—l_

Using the symbol ¢ for the vector (¢1, + -+, ¢u)’, p for (8upmo, -+,
Sm-1Pm—10)", A (s) for the matrix consisting of entries either 1, 0, or s,
and 7 for the identity matrix, we can rewrite (4) as

s

[I—X(S)A(s)]qs(s)=(1—s")x(s)p. (5)

For every s such that the matrix on the left is invertible, let B(s)
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denote its inverse. Represent B (s) by its rows Bi(s) fori=1,2, ...,
M. Then we can derive the following equation for B,.

sM*J
B~ Ty
M . M .
X I:]--H [%]XM_I(S),.-- ’,H [E]x2(s);£—ux(s):|- (6)
Jj=2 j=M-1| 8 S

The other rows of B can be recursively computed as follows: Let ¢; =

(0,0, ...1o0 .--,0) then

B,-+.=/,-+1+x(s)§Bi i=1,2 .-, M—1 (7)

Since x(1) = 1, s/ — x*(s) = 0 for s = 1. It can be shown by
Rouché’s theorem that s™ 7 — x*(s) has M — J — 1 distinct roots
strictly inside the unit disk.” Each of the generating functions ¢:
satisfies

$i(s) = (1 —s")x(s)Bp 8

for every s for which B;(s) is well defined ( B;p is the product of B; and
p viewed as matrices). Since ¢;(s) is analytic on the unit disk, the
representation (8) extends to the roots of "~/ — x*(s) that lie within
the unit disk if p is such that the singularities of [~/ — x"(s)]™" are
removed. We illustrate this in detail by using an important special case
of the model presented here. This is the case when, out of the M slots,
the last J slots are needed for line switched or steady traffic. Only the
first M — oJ slots are used for transmitting asynchronous traffic. In this
case, the matrix A (s) has the form:

[0 0 0 s
1 0 00
0 1 00
0 1 00
0 s 00
0 s 00
u.O ‘e cee 8 O_
and the vector p = (0, pro, P20, =+ , PM-10,0, + -+, 0)".
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Let & = 1, &, &, -+ - , £m—s denote the roots of s™ 7 — x¥(s) that
are in the unit disk. At these roots, the first row of B, excluding the
scalar multiplier in (6), can be expressed as

M-1gg.
[lyxw—'j(l—&T)’ b !XJ(gi)! xJ—l(gi), e :Xz(‘fl):x{g‘)] *

Hence a choice of p that will cancel the singularities of the scalar
multiplier in (6) satisfies the following equation

1 x(6) /6 x*(E)/E -~ xiy? 1T
1 x(&) /& x*(&)/E .- X7 /!

- ) DPM-J0 p
0
=] @
P20
P1o 0

where = Y77 pio. Except for the first equation, the relations in (9)
express the fact that the numerator of (8) vanishes at 1, &, -+« &u-u.
The vector (pio, P2o, *++ Pm-J0)' appears reversed in (9), so the
coefficient matrix can be written as a Vandermonde matrix, which we
denote V = V(&1 &, - -+ &y—s). The nonsingularity of V follows from
the distinctness of the (£}

Therefore, if the scalar p is known, the vector p is determined

uniquely from (9). Differentiating (2) with respect to s and letting s
approach 1 gives p = (M — J) — MEx,. Hence p and then ¢(s) can
be determined uniquely from (5).
Theorem 1: Let MEx, < (M — J), then there always exists constants
{pio} X, such that the functions {¢i(s)}¥, are analytic in the unit
circle. Moreover, these constants are uniquely determined by the
condition ¢, (1) = 1.

In the general case, the components of p that are zero depend on
the set .&. Let i, < iz < ... < iy_s represent the indices not included
in .#. By definition, §; = 0 whenever j # some i,,. Hence the unknown
constants in eq. (8) are p; o, m = 1,2, ..., M — J. Once again, using
the arguments above, we can arrive at the (M — J) equations that the
Di, o satisfy in order that ¢;(s) have no singularities inside the unit
circle. These correspond to (9) and will be denoted by (9'); however,
the matrix appearing on the left-hand side of (9') is no longer Vander-
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monde. Let V’ be the matrix associated with (9'):
M-J

z Vim Pi,o=7¢

m=1
M-J
Y Vimpino=0 for M=J=¢>1 ()

m=1

and the elements V/,, are

M . _
Vim = [ 11 —’] x(s)M = m=1,2..., M.
J=in §

There must be at least one solution for these equations whenever
MEzx, < M — J, since the invariant distribution corresponding to @;,
which exists by Theorem 1, satisfies (9') and ¢:(s) has no singularities
inside the unit circle. Moreover, we will show that any solution of (9')
gives the unique invariant distribution corresponding to @ Corre-
sponding to any solution of (%), we can find functions ¢.(s) from (8)
such that the associated sequences {p;} with ¥j-0 pys’ = ¢i(s) are
absolutely summable, since ¢:(s) will have no singularities inside the
unit disk. Inspection of (2) shows that the vectors 7; = {p;}osatisfy

w1 = Pimni i=1,2 .., M—1

and
m = PumM.
Hence, from the definition of @i,
i = QuTri.

Since the Markov chain corresponding to @; is positive recurrent, the
(¢, m) element of @, the nth power of @, tends to pi the ¢th
component of the invariant distribution corresponding to @:. From the
above equation,

Dic = X QI(£, m)Pim.
Since the sequence {p;} is absolutely summable taking limits of both
sides and interchanging limits, we have
pil’ =pit’ Y, Pim.
However, from the first of equation of (9°) we can show that
Yim=0 Pin = 1. Hence pis = pir, the unique invariant density correspond-

ing to @. Hence we have shown that (9') has a unique solution
whenever MEx, < M-J. Q.E.D.
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Remark: Usually, the queue size 8 at a “random” time is of interest.
The generating function of 8, denoted by Y((s), is the average of ¢s,
ie.,

M
U(s) =M™ 21: ¢i(s).

V. SOME SPECIAL CASES

In the special case J = 1, M = 2, it is easy to express ¢:(s) in closed
form. For Poisson arrivals, we have

['1’1(3)] (s — 1)(1 — 2)) [e“-n]

¢2(S) s — 821\(3—1) 1
So
1-2)\) e (s—1
oy =LA LDy gy,
The probability of an empty buffer is
o=y =12 14 o

and, of course,
lim po and lim po = 1.

A=(1/2) A—0

The mean buffer content

. 3
A=vo)| =gr+iy

s=1
As is intuitively obvious,
lim B = and lim 8 = 0.

AT(1/2) AlO
For the variance of the buffer content, we have

Var (B) = ¥/(s) + ¥/(s) — (¥/(5))° o1

5, 18 A o, =
=t icatasay A A
and again
lim Var (8) = o
AT(1/2)
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while
lim (8) = 0.

Ao
Another simple case is when M — o with J fixed, so the relative
time when the server is absent tends to zero. Asymptotically, the
system behaves like a discrete time M| D |1 queue with time quantum
equal to one service time. The analysis of this queue is given in the
excellent survey paper of Ref. 8. The generating function of f is

s—1
[s_—x('s-;]x(s)(l =A).

So, for the Poisson case,
Po= (1 = A)s

— A
B=A [1 +__2(1—J\}]'

and

a4 N A = _ 72
Var 8= A +§[—1-7\]2(1—?\)2+ﬁ B-.

A related queuing problem is introduced in Ref. 7. They undertake
a discrete time analysis of the waiting room occupancy in a situation
where a shuttle visits every M time units, whereupon up to a maximum
of K occupants are removed. If less than K occupants confront the
arriving shuttle, all are removed. As in our analysis, the arrivals are
arbitrary i.i.d. variables. The generating function £(s), of the equilib-
rium density of waiting room occupancy as seen by the arriving shuttle,
is determined (see Ref. 9 for more detail). In the special case where K
= 1, if we set J = M — 1 in our analysis, then £(s) is the same as ¢o(s).

Another variation of the process analyzed in the last section occurs
when the synchronous packets are also queued and hence are subject
to delay and loss. Let the resulting buffer process be denoted by b, .
Then

b= (brn—1)" + x, + (1 — un).

Starting with by = b5 = 0, we can show by induction that for each
arrival stream realization, b, and b, agree to within one packet, that
is, with probability one | b, — b | = 1 uniformly in n. Thus the analysis
in the previous section aids in estimating the jitter suffered by the
synchronous input stream. Such jitter considerations, which are basic
to the emerging topic of packetized speech, will not be explored here.
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VI. EXTENDING THE RESULTS
6.1 Obtaining delay densities from the buffer densities

So far in this paper, we have focused on the problem of obtaining
the buffer density; however, in many applications the density of delay
is also of importance. It is reasonable to expect several system require-
ments to be in effect, as, for example

Pr{buffered packets > 32] < 1077
Pr[waiting time > 500 ms] < 10~!
E[waiting time] < 250 ms.

In some applications, satisfying the first objective obviates the other
two. However, when the delay requirements are more crucial, it is easy
to obtain the delay density numerically as it is simply related to ¢(s),
as we now show.

Since we are using a discrete time model, we consider all arrivals to
occur at integer times. The discrete time model of arrivals can be
considered to arise from a continuous-time arrival process in which all
arrivals on Jn, n + 1] are associated with a time of arrival n + 1. For
the purpose of computing delay, it is essential to retain an order
relationship for the arrivals at time n.

The packets to be served ahead of a typical arrival y in ]n, n + 1]
can be partitioned into three groups:

(i) The packets already in the buffer at time n.

(i) The number of asynchronous packets arriving in |n, n + 1] ahead
of y, denoted by x%. For example, if x; is Poisson, an arrival occurs
according to a uniform distribution so the generating function of
xr is

' V-1
* = 7(z—1) =

x(z)—J;eA dT_Mz—-l)'
(iii) The synchronous packets arriving during the transmission of
asynchronous packets in the system before the transmission of y.
Let E. denote the sum of (i) and (if) above. Note the generating
function of E, is the product of the generating functions of b, and
x%. The delay caused by interruptions, as mentioned in (iii) above,
can be derived easily from the nature of . and depends only on E,
and the slot in the frame that corresponds to n. For a “random” arrival,
the delay density is found by averaging over the densities correspond-
ing to the M slots. Of course, an additional delay unit must be included
to account for the service of the packet whose delay distribution is
being calculated. In conclusion, when delay performance is a dominant
consideration, the delay density functions can also be computed from

o(s).
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Once the delay density and/or the density of buffered packets is
computed for the parameter range of interest, the network designer
can determine the tradeoffs among

Delay and/or buffer size.

Trunk capacity.

Average packet arrival rate.

Percentage of transmission facilities devoted to line switching (or
batch service).

Such information, along with market and revenue forecasts and re-
source cost estimates, allows the designer to determine an optimum
packet service-line service mix for the projected environment.

6.2 Extension to batch arrival model

The process{x,}=. of packet arrivals on the nth time interval can
be considered to be realized from an underlying message arrival process
{mn}>. where each message contains a random number of packets
{1,}. So both {m,}Z. and {I,}Z. are processes of ii.d variables
independent of each other and with (different) underlying densities
with values in the nonnegative integers. If M(z) and L(z) are the
corresponding generating functions of m, and /,, then M(L(z2)) is the
generating function of x,.

In some applications, fast switching may be employed so that a
fraction of a packet is the basic unit switched (e.g., a byte in a system
employing fixed-size 1024-bit packets). To analyze such situations, one
can take the basic time quantum in the mathematical model to be the
time required to transmit a subpacket. Then a packet corresponds to
a message and a subpacket to a packet in the above discussion. For
the example cited, L(z) = 2'*.

So the model is accommodating whether we view arrivals as single
packets or batches of packets. The most useful case is when the
arrivals are Poisson and a geometric number of packets is associated
with each arrival. In this case,

M(z)=expA(z—1) and L(z)=2(1-p)/(1-p2).
So
x(2) =exp A[(z — 1)/(1 — pz)].

The mean number of arrivals per time slot is A(1 — p)~". For purposes
of obtaining the delay density in the Poisson case, we need x*(z)
which, by a straightforward integration, is

(1-=p2) sz-na-
* — (z=1)/(1—pz) _
x(2) AMz—1) ¢ L
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6.3 A more general problem

Here our objective is to point out a seemingly more complex queuing
situation where our methods still apply. The type of queuing situation
we discuss plays an important role in the analysis of subframe packet
switching in Ref. 2.

Consider the situation in Fig. 2. The server visits the various queues
according to some fixed periodic pattern. The input to various queues
are independent. During every visit, the server completes servicing one
job if there are any jobs waiting. Each input stream represented by an
arrow can have batch arrivals according to any arbitrary distribution
function (it is permissible for different distributions to correspond to
different inputs). The question is: What is the buffer and delay distri-
bution as perceived by one of the inputs (indicated by the only dashed
arrow inputting the starred queue)?

A little reflection reveals that, from the perspective of one input, the
problem is no different than the one we have already solved. The
equivalence would be immediate if the dashed arrow denoted the sole

—_—
—
—
—
=
STOCHASTIC -{  _i_
.
.
—_—
-
\ -
( —————7
— !
_____ J
————— -
I
- |
PERIODIC — J
.
H
.
_____ -
— I'
J

Fig. 2—Generalized system.

292 THE BELL SYSTEM TECHNICAL JOURNAL, FEBRUARY 1979



input to its queue. After all, from the perspective of the input in
question, the structure of what the server does while he visits the
unstarred queues is irrelevant to the buffer and delay performance. All
that matters is the periodic pattern of the service availability and
unavailability to the starred queue. When the starred queue has other
inputs, there is no real complication. To obtain the buffer density,
simply replace the parallel inputs by a single input stream choosing a
single batch density representing the various batch densities with their
corresponding frequencies. A similar method accommodates delay
with the adjustment that the time the batch, whose delay is being
computed, spends in service is represented as a random choice from
the distribution of batch sizes from the dotted input.

Paul Lue of Bell Laboratories in Holmdel, who had an earlier version
of this paper, has formulated a further generalization involving multi-
ple periodic parallel servers for Fig. 2. He plans to report his successful
analysis in the future.

VIl. DISCUSSION OF NUMERICAL WORK
7.1 The computer program
For input distributions which have a generating function of the form

X(S) = e[i\(s—l),c‘l—pn],

a program for obtaining the equilibrium density of buffer size and
delay as a function of (A, M, J, p) was developed. The core of the
program is the computation of (¢:i(s), ¢2(s), ---, ¢m(s)) and a gener-
ating function inversion routine.

Double precision was used throughout the program since at the
present time overflow probabilities of the order of 107 are of interest.
The determination of the ¢,(s) includes finding the location of the
“apparent” poles in the unit disk. While a straightforward search of
the disk for poles does the trick, the Newton Raphson routine sug-
gested in Ref. 2 is preferred for its speed.

For inverting a generating function, we employ a fast Fourier trans-
form (FFT) program. The use of the FFT in this situation stems from
the observation that, if we replace s by e”, the generating function is
then a Fourier series on the boundary of the unit disk. The Fourier
coefficients are the probabilities of interest. In using the FFT, the
generating function is represented by its values at the discrete sample
points

{e\/——uzn(,.'u} }__ 0
where L is taken to be sufficiently large to obtain the accuracy
required.
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As indicated in the previous sections, once the ¢n(s) are known, the
analytical determination of the delay distribution is also possible.
Programmed implementation of the procedure for obtaining the delay
distributions from the {¢,}¥ is straightforward.

Usually the program output routine is set only to provide the
densities (buffer or delay) averaged over an entire frame as the more
refined intraframe densities are of secondary interest.

7.2 A peculiarity of the numerical data

With each irreducible fraction r = p/q in (0, 1), associate a frame of
size ¢ in which the first p time slots for asynchronous data are followed
by g — p time slots for synchronous data (see Fig. 3). Let r. = p./g. be
such that lim, ... r, = 1/2 and lim,_.. g» = . Mean buffer size # and
mean delay & are discontinuous functions of r. Indeed, the buffer size
and delay of those packets arriving in the first half of the last ¢, — p»
slots are going to infinity since they receive no service in the second
half of the last g. p. slots.

The above argument points out that two frame organizations can be
arbitrarily close in terms of the relative number of time slots devoted
to packet switching yet the mean delay and buffer sizes of both systems
can differ by an arbitrarily large number. The preceding discussion
also shows that interpolation of statistics to an intermediate r value is
a perilous calculation. However, interpolation to an r point from points
with the same denominator (frame size) can be reasonable.

7.3 Numerical results

The program for determining the distribution of 8 was exercised for
numerous cases with M = 16 and peq AAM/(M — J)(1 — p) < 1, the
latter inequality being required for stability. For illustrative purposes,
Tables I and IT summarize the statistics associated with a wide variety
of examples. The parameters for Tables I and II differ only in that, in
I, single packet messages are assumed, while, in I1, the messages are of
random (geometric) size with mean five (i.e., p = 0.2). The 10" headers

3
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Fig. 3—Discontinuity of buffer and delay statistics.
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of the columns refer to an upper bound on the probability that the
random variable (buffer size or delay) takes a value larger than the
number entered in the column. For example, in the first subtable

Pr{delay > 5 packets] < 1072
and

Pr{buffer size > 11 packets] < 107",

We use “packets” as the unit of delay since this is readily converted to
time, because in our model we assumed that the duration of one time
slot is the transmission time for one packet.

To emphasize that more refined statistics are easily obtained, Table
III presents the intraframe details for a specific case.

Figures 4 and 5 stem from Tables I and II and are used below in a
pair of hypothetical examples we include to show how a designer could
make use of the available numerical capability.

Example I. Consider a situation in which a 56-kb/s trunk is available
for transmission of 1024 bit packets. The packet arrival process is
Poisson, and one packet is associated with each arrival. A 32-packet
buffer is available. It is required that the probability of a lost packet
not exceed 107%, If A = 0.4 (23 packets per second), the question is how

Table Il—Second-order statistics for buffer and delay for cases
where all slots but one in a frame are allotted for asynchronous data.
Multiple packet messages of mean size five (p™")

A A A
T 0.2 =" 0.4 == 0.6
Mean Var Mean Var Mean Var
M =2 Buffer 3.072 35.4 119 13.75 Unstable
J =1 Delay 12.3 132.7 176.2 227.8
M =3 Buffer 2.02 21.6 6.53 86.5 12.7 223.5
J =1 Delay 8.85 76.5 13.1 146.5 11.6 230.8
M =4 Buffer 1.74 18.1 5.17 65.5 12.0 176
J =1 Delay 7.58 61.5 11.2 114 14.8 203
M =5 Buffer 1.60 16.5 4.59 56.7 10.6 151
J =1 Delay 6.95 53.1 10.1 97.9 14.5 177
M =6 Buffer 1.52 15.6 4.27 51.9 9.76 137
J =1 Delay 6.58 48.2 9.45 88.2 13.8 161
Table lll—Intraframe buffer size statistics (frame size six, server
absent for four slots, A = 0.2, p = 0.6)
Time Slot
1 2 3 4 5 6 M|D|1
Mean 1.361 0.850 0.561 0.761 0.961 1.161 1.05
Var 1.712 1.331 912 1.112 1.312 1.512 1.43
107¢ 15 15 14 14 15 15
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much capacity can we devote to line switching. Figure 4 shows that
the answer is 50 percent. If, at a subsequent date, we have that A has
increased to 0.6, then only 25 percent of capacity can be devoted to
line switching.

Figure 5 shows that, in the case A = 0.6, the 99-percent delay is about
250 ms, while the mean is about 55 ms.

Example II: The ability to compute the density of 8 (J, M, A, p)
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Fig. 4—107" loss threshold for various mixes of packet and line switching.
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Fig. 5—Delay (mean and 99-percent point) for various mixes of packet and line
switching.
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also offers useful information relating to switching considerations. To
see this, consider a hypothetical situation in which a designer wishes
to devote 50 percent of capacity to packet switching and the remaining
for line switching. The question of organizing the frame arises. Any of
the patterns shown in Fig. 6a will suffice. Intuitively, one would expect
buffer occupancy statistics to degrade as one moves down the list. Yet
the reduced load on the processor for attending to switching among
the two types of customers would make the longer frames attractive.
For A = 0.4, the degradation is illustrated in Fig. 6b. The numerical
capability reported here enables one to determine the optimal oper-
ating point on the basis of projected switching costs and sensitivity of
revenue to performance.

This example and the discussion in Section 7.2 point out that the
amount of trunk capacity devoted to asynchronous traffic of a specified
intensity is not enough information for one to determine the buffer
and delay distributions. The details of frame organization can be
essential for obtaining accurate statistics.

7.4 The role of an M | D | 1 model in computations

Previous analysis of such systems used simulation or approximation
to obtain buffer and delay statistics. Yet simulations are usually too
expensive for obtaining the extremal statistics preferred by the require-
ments engineer. On the other hand, the accuracy of “approximations”
such as using an M| D | 1 model could not be appraised. It is reasonable
to require that the M| D |1 model have the same utilization p., = [M/
(M—J)] A and the same throughput as the hybrid model. Indeed, p.q
and throughput uniquely determine an M| D | 1 model.

With the hybrid multiplexor golution in hand, one can evaluate the
above nonexact methods in the parameter range of interest. While a
thorough exploration of this issue is beyond the scope of this paper,
we shall include some comparisons that were made for the = 1 case.
For M = 2, the errors range as high as 28 percent and then decrease as
M increases, as one would expect. It appears that, insofar as the tail
probabilities which only register order of magnitude are concerned,

J=im=2 [ 1 [ 1 [-- Jim

/2 2/4 3/ 48 5/10
J=2,m=4 [ | | [T 1= MEAN | 2.200 ( 2.265 | 2.351 | 2.450 | 2.557
i=am-6 [T T 1 [~ VAR | 2.126 | 2.173 | 2.243 | 2.341 | 2.453

(a) (b)

Fig. 6—(a) A sequence of possibilities for attaining a 50-percent mix (J = M/2). (b)
Central moments of buffer size vs frame length for 50-percent mix (J = M/2).
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one might as well use M|D|1 formulas. Of course, if a much more
finely resolved graph is meaningful, the M |D|1 approximation may
no longer suffice. In initial stages of the evaluation of computer
networks, it is unusually unrealistic to expect to know the arrival rate
to a tighter tolerance than 10 percent, and so the M| D |1 analysis of
overflow for the 1 out of M cases provides a useful simplified
model.

Nonetheless, there are parameter ranges where the M | D | 1 approx-
imation is useless. To see this, fix A and take J = M/2. Consider what
happens as M increases. Note the M| D| 1 approximation has peq = 2A
and the throughput is independent of M. For the hybrid model, the
packets arriving in the third quarter of a frame must wait out at least
the last quarter before they are eligible for service. So, as M — o, the
mean buffer size and mean delay increase without bound and the error
in using an M | D| 1 approximation goes to infinity. This example is by
no means pathological, as it addresses precisely those cases that arise
in the switching study mentioned in Example II. The dotted line in
Fig. 7 gives the M| D| 1 result.

The M| D |1 model is useful in comparing the hybrid system with a
system providing separate dedicated facilities for synchronous and
asynchronous data. For example, Fig. 7 compares the performance
between hybrid and dedicated implementations, and an M | D | 1 model
is used to provide numbers for the latter. With reference to Example
II in Section 7.3, the dotted line of Fig. 7 indicates the average delay
performance of a competitive system using dedicated trunks. In Fig. 7
we see a region where dedicated trunks of a given capacity do not
perform as well as a hybrid system that devotes the same capacity to
asynchronous traffic.

PACKETS
o
I

0 2 4 6 8 10 12 14 16
FRAME SIZE

Fig. 7—Mean delay for various realizations of a 50-percent packet service rate.
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