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A multiconnection network deals with the connections of pairs
{(X, Y)} where X is a subset of the input terminals and Y is a subset
of the output terminals. We study the conditions under which a three-
stage Clos network is nonblocking for such connections. We show
that the number of middle switches needed for nonblocking depends
on the routing strategy. Therefore the networks satisfying the condi-
tions are networks nonblocking in the wide sense. We also derive
formulas for computing the minimum numbers of crosspoints required
by such networks.

I. INTRODUCTION

A three-stage Clos network, denoted by v(m, n., ri, ns, r:), consists
of r, rectangular (n, X m) input switches, m rectangular (r, X r»)
middle switches and r: rectangular (m X n.) output switches. There is
exactly one link connecting each input switch to each middle switch
and one link connecting each middle switch to each output switch. The
n.ur inlets of the input switches are called input terminals and the nor»
outlets of the output switches are called output terminals.

Let I denote the set of input terminals and O the set of output
terminals. A connecting pair in the classical sense is a pair (x, y): x €
I, y € O requesting to be connected. Masson and Jordan' generalized
the definition of a connecting pair to be a pair (x, Y): x €1, YC O
such that x is to be connected to every output terminal in Y. This
definition was further generalized in Ref. 2 so that a connecting pair is
a pair (X, Y): X C I, Y C O such that each terminal in X is to be
connected to every terminal in Y. A network dealing with this type of
connecting pairs is called a multiconnection network.” In practice, we
often need only consider X and Y with limited cardinalities. Let | S|
denote the cardinality of a set S. Then in a (g, g2) multiconnection
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network, we are only concerned with connecting pairs (X, Y),|X| =
qi, I Y | = Q2

A multiconnection network is nonblocking if, regardless of what
state the network is currently in, a connecting pair involving only idle
terminals can always be connected by a subgraph of the network which
is link-disjoint to all subgraphs connecting previous pairs. A multicon-
nection network is nonblocking in the wide sense, following Benes’
definition® for the classical single-connection case, if it is nonblocking
when a particular routing (connection) strategy is followed. Practical
networks which are nonblocking in the wide sense for classical assign-
ments rarely exist. In this paper, we show that such networks exist for
the multiconnection case.

Il. FOUR ROUTING STRATEGIES

Suppose (X, Y) is the current pair to be connected. It is commonly
assumed’? that the rectangular switches have the fan-in, fan-out
property, i.e., any subset of inlets can be connected simultaneously to
any subset of outlets. Therefore, it suffices to consider the pair (X, Y)
consisting of at most one terminal from each input switch and at most
one terminal from each output switch. For, if we can connect one input
(output) terminal to Y (X), then all terminals in the same input
(output) switch can be connected to Y(X). Therefore we may assume
ry = ¢ and r; = g. without loss of generality. We now discuss four
possible routing strategies.

Strategy 1: Find | X|| Y | middle switches each connecting a distinct
pair (x,y),x€ X,y Y.

Strategy 2: Find | X | middle switches each connecting a distinct pair
(x, Y), xe X

Strategy 3: Find | Y | middle switches each connecting a distinct pair
X,y),yeY.

Strategy 4: Find one middle switch connecting the pair (X, Y).

We now compute the number of middle switches needed under each
strategy so that the pair (X, Y) can always be connected. To avoid
discussions of uninteresting modifications, we assume r, = qg2n; and
rz = q1qQana.

Theorem 1. v(m, ni, ri, ny, r2) is nonblocking as a (q,, q2) multicon-
nection network under Strategy 1 if and only if m = gqan, + qne — 1.
Proof: Consider the connection of the pair (x, y), x € X, y € Y. The
input switch which contains x can be already connected to at most
nig: — 1 distinct middle switches under Strategy 1. This is because
there are only n, inlets in the switch and each inlet has at most g
connections except that x can have at most g — 1 connections.
Similarly, the output switch which contains y can be already connected

2184 THE BELL SYSTEM TECHNICAL JOURNAL, DECEMBER 1979



to at most n.q; — 1 distinct middle switches under Strategy 1. In the
worst case, the gan; — 1 middle switches and the gin; — 1 middle
switches are disjoint. However, if we have (gany — 1) + (qunz — 1) + 1
middle switches, then one middle switch must be available to connect
the pair (x, y). Since it is also clear that the worst case can happen, the
“only if”” part of Theorem 1 is also proved.

Theorem 2: v(m, n., r, na, r2) is nonblocking as a (q\, q:) multicon-
nection network under Strategy 2 if and only if m = n, + q1q2n2 — qo.
Proof: Consider the connection of the pair (x, Y). The input switch
which contains x can be already connected to at most n, — 1 distinct
middle switches under Strategy 2. Each output switch in Y can be
already connected to at most (n2g, — 1) distinct middle switches under
Strategy 2. Since |Y | = g2, Theorem 2 follows from a worst-case
argument similar to the one given in Theorem 1.

Theorem 3: v(m, ni, r1, nz, r2) is nonblocking as a (q, g2) multicon-
nection network under Strategy 3 if and only if m = qigan1 + nz2 — qu.

Proof: Analogous to the proof of Theorem 2.

Theorem 4: v(m, n., r, na, r2) is nonblocking as a (q., q:) multicon-
nection network under Strategy 4 if and only if m = qin, + gan2 — qu
— Qg2 + 1.

Proof: Consider the connection of the pair (X, Y). The input switches
in X can be already connected to at most |X|(n, — 1) = qi(ny — 1)
distinct middle switches under Strategy 4. Similarly, the output
switches in Y can be already connected to at most | Y |(na — 1) =
g»(n» — 1) distinct middle switches. Theorem 4 follows immediately
from a worst-case argument.

We note that, for g, = g2 = 1, Theorems 1, 2, 3, and 4 are all reduced
to the famous Clos Nonblocking Theorem.*

The existence of networks nonblocking in the wide sense can now
be easily shown. For example, assume gan, + qin: — 1> m = qiny +
g:n2 — qi—q2 + 1. Then the network is nonblocking under Strategy 4
but not necessarily nonblocking under any other strategy, for instance,
Strategy 1.

. COMPUTING THE NUMBERS OF CROSSPOINTS

For given numbers of input terminals and output terminals
N, = nyr1, N» = nora, we would like to determine n,, n» and m such
that »(m, n,, r1, n2, r2) is nonblocking in the wide sense for (g, g»)
multiconnection networks and has a minimum number of crosspoints.
The optimal solutions for n,, n: and m, of course, depend on which
routing strategy we adopt. However, we will give a mathematical
formulation general enough for all four cases.
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Let @ be the number of crosspoints for (m, n,, ri, ns, r:). Then
® = rimim + mrira + ramns
N, N.
=M(N1+—l-—2+N2).

n, n»

Assume
m=un; + vn; — w,

where u, v and w are nonnegative constants. Setting the first partial
derivatives of @ with respect to n, and n. to zero, we obtain

a N, N, N,N.
£=u(N,+——]—'+Ng)—(un1+un2—w) L 2=0
an, n, n; nin:

N, N. P
ig= v(N; +—=24 Ng) — (un, + vn: — w) N]N;l =0.
an; ny n nin;

Solving for n, and n., we obtain
n = nw/u

and n, is the unique real root (easily verified by standard methods) of
the cubic equation

UZ(N] + N_g)n_} - MUN:Ngnz + uleNz =0.

Let @, i = 1, 2, 3, 4, denote the minimum @ under Strategy i,
namely, m is replaced by g.n, + gin, — 1, ni + q1g2n2 — q1, quqan, +
n: — @2 and qin1 + gan: — (g1 + g2 — 1), respectively. Then we will
select Strategy j such that

Q=@ = min Q.

i=1,2,3,4

For example, let @, = min;-; 234 @;. Approximating m by g.n, +
qin2, we obtain the solution

ny = QleNz o = Q’|N1N2
" Na + Ny ’ (N, + N)

Substituting back in @, we obtain

q\N,N: \/W
=192/ +
? (qz q:(N1 + N») 7 q1(N, + N.)

NN,

N, + + N-_g)
\/ qN\N: q:2NN:
g:(Ny + N3) NV qi(N, + N,)

= 4Vq:1g:NiNs(N, + N») .
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IV. SOME CONCLUDING REMARKS

Strategy 1 has been adopted in previous works on multiconnection
networks'? and Theorem 1 was proved in Ref. 2 with the special case
¢, = 1 and g2 = r. first proved in Ref. 1. A (I, r2) multiconnection
network under Strategy 1 was called an expansion network by Masson.”
In Ref. 6, Masson considered (1, r;) multiconnection networks under
a routing strategy which is a weakened version of Strategy 2, namely
to use Strategy 2 whenever possible. Under this strategy, he stated the
result that (n,, ni, r1, ns, r:) is nonblocking if r» = (2n,/ns) where
[x] is the smallest integer not exceeding x. However, the following
example shows that this result is incorrect. Consider a network »(3, 3,

2, 2, 3). Then
2n
n

satisfying the condition of Masson’s result. However, »(3, 3, 2,2,3)1s
not nonblocking even as a classical single connection network, since it
does not satisfy the necessary and sufficient condition m = n, +
n» — 1 of the Clos Nonblocking Theorem.
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