THE BELL SYSTEM
TECHNICAL JOURNAL

DEVOTED TO THE SCIENTIFIC AND ENGINEERING
ASPECTS OF ELECTRICAL COMMUNICATION

Volume 58 December 1979 Number 10

Copyright © 1979 American Telephone and Telegraph Company. Printed in US.A.

The Packing Problem for Twisted Pairs

By E. N. GILBERT
(Manuscript received June 26, 1979)

When wires are packed together in a bundle, as in a cable or on a
shelf of a main distribution frame, the packing fraction f is the
fraction of cross-sectional area of the bundle occupied by wire. With
wires all the same radius, packing fractions as high as 0.90690 can
be achieved. However, when the wires are pairs that have been
twisted to avoid crosstalk, the packing fraction is much smaller. The
largest obtainable packing fraction depends on other properties of
the packing. For example, with pairs twisted by machine, all pairs
twist at the same rate, and that influences the packing fraction.
Several packing problems are considered, but most attention is given
to a particularly regular kind of packing in which pairs twist about
straight parallel axes located in a lattice arrangement. The densest
lattice packing has packing fraction 0.56767. The densest lattice is a
complicated one in which each wire touches 10 wires belonging to 6
other pairs. The numbers 10 and 6 cannot be increased even with
nonlattice packings of pairs with straight parallel axes. These other
packings are also conjectured to have packing fractions less than
0.56767, although only f < 0.62240 is proved.

. INTRODUCTION

Pairs of telephone wires are often packed closely together in large
numbers. These wires may belong to a cable or lie together on a shelf
as jumper wires of a main distribution frame. To avoid inductive
coupling, which produces crosstalk, the wire pairs are always twisted.

A twisted pair packing problem arose with a proposal for monitoring
the accumulation of inoperative jumper pairs on a main distribution

2143



frame. Robert Graham of Western Electric has developed a technique
for measuring the cross-sectional area of a bundle of jumper wires.
Telephone company records determine the number of working jumper
pairs in the bundle. The total number of pairs, working or inoperative,
could be estimated from the measured area if the density of pairs in
the bundle were known.

If each wire has radius r, a twisted pair has cross-sectional area
Ap = 2qr®. The number N of pairs in a bundle of area Ap is then

N = fAs/Ap, (1)

where f is the packing fraction (or density) of the bundle, the fraction
of cross-sectional area filled by wire. Graham’s measurements on
spools of twisted pair wire suggest a value of f near 0.5. That is a much
smaller packing fraction than could be achieved with single wires or
untwisted pairs. To show that twisting the pairs reduces the packing
fraction, this paper looks for packings that are as dense as possible.
The problem takes several forms, depending on what regularities the
packing may be assumed to have. For instance, do the pairs all twist
around parallel, straight-line axes? If so, do they all twist at the same
rate (in turns per foot)? The most regular packings are the “lattice”
packings described in Section IV. The densest lattice packing will be
found to have f = 0.56767.

The same mathematical problems arise in a different setting as
follows. Suppose each dancer on a ballroom floor occupies a circular
region. Dancing partners form pairs of circles in contact, and each pair
rotates as the dance progresses. How densely can the floor be packed
without causing couples to collide with one another?

Il. PACKINGS

The pairs on the main frame are randomly packed, but there are
several reasons for studying deterministic packings that maximize the
fraction f. One reason is that the simplest mathematical models of
random packing' produce low packing fractions. A more complicated
random model will necessarily use some other special random process.
But the random process that truly describes the main frame packing
is not well understood; no special random model can be trusted
completely. A packing that maximizes f, although special, has the
virtue of giving a firm bound on the packing fraction actually achieved.

Another argument for maximizing f recognizes the tendency of
gravity forces to pack the wires tightly. Indeed, the gravitational
potential energy of a bundle of wires is minimized when the wires are
packed as densely as possible. Of course, the bundle will usually have
a different gravitationally stable configuration, but each time the
bundle is disturbed, it tends to assume a new configuration of lower
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potential energy. This phenomenon may be illustrated by filling a jar
with beans by pouring them in gently; then, shaking the jar will settle
the beans and make room for more. Routine main frame maintenance
includes “feathering” the wires, which probably helps to make the
packing more dense.

Wires are assumed to be so nearly parallel to one another that they
all appear as circles in any plane transverse section through the bundle.
The two wires of one pair will always be represented as circles that
touch. Figure 1 shows the well-known densest packing of circles in the
plane.>* The circles in this packing occupy a fraction f = #/12"% =
0.90690 of the plane. The circles within each horizontal row in Fig. 1
can be grouped into pairs of circles that touch. Thus, Fig. 1 can
represent one cross section through a bundle of pairs of wires if the
pairs are not twisted.

Arrangements like Fig. 1 often appear when circular disks are
squeezed together on a flat tray. For twisted pairs, Fig. 1 would be
very unlikely. The pairs must somehow twist so that they do not
penetrate one another in moving from Fig. 1 to other cross sections
farther along the wires.

Strictly speaking, it is possible to achieve f = 0.90690 in all cross
sections, even with twisted pairs. Let Fig. 1 rotate bodily about some
fixed center O to represent other cross sections. One full rotation of
Fig. 1 then gives each pair one full twist. Of course, each twisted pair
then forms a helix spiraling around an axis through 0, and so the pairs
intertwine each other. Indeed, this intertwining cancels the crosstalk
reduction that twisting the pairs tried to achieve.

Fig. 1—The densest packing of nonoverlapping circles in the plane, f = 0.90690.
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Very little intertwining occurs between different jumper pairs on the
main frame. One way to prevent intertwining is to assume that the
pairs twist about parallel straight-line axes. In a cross section, each
axis appears as the point where the two circles of the pair touch.
Requiring twisted pairs to have straight axes is a severe restriction.
For example, it rules out Fig. 1 as a possible cross section; any rotations
of pairs about the axes of Fig. 1 will cause some wires to intersect.

After assuming straight axes, one must make further assumptions
about how pairs twist. One possibility is that all pairs twist at the same
rate, in turns per foot. That assumption is reasonable if the pairs are
cut from a reel of wire that has been twisted automatically by machine.
Packings of wires that twist at the same rate will be considered in later
sections. An opposite extreme is to assume that different pairs twist at
rates that are not only unequal but incommensurable. Under that
assumption, no two pairs can have axes lying within distance 4r of
each other because two pairs with closer axes would overlap in some
cross section. When axes are separated by at least 4r, circles of radius
2r and centered at the axes do not intersect. The densest packing of
such circles is again Fig. 1, now with circles of radius 2r. In Fig. 2,
these are the larger circles. Each contains two circles of radius r which

Fig. 2—The densest packing of twisted pairs with straight parallel axes and incom-
mensurable twisting rates, f = 0.45345.
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represent individual wires. The pair of circles of radius r fills exactly
half the area of a circle of radius 2r. Then Fig. 2 is exactly half as
dense as Fig. 1; f = 7/(48)'/* = 0.45345 is the greatest packing fraction
obtainable with incommensurable twist rates and straight parallel
axes.

In this paper, pairs are always assumed to twist in the same sense,
say, as a right-handed screw. Packings with pairs twisting in both
senses can achieve other packing fractions. One can achieve f = #/4
= 0.78540 with half the pairs twisting in a right-handed sense and half
twisting at the same rate in a left-handed sense.

IIl. EQUAL TWIST RATES

In a given cross section, each pair can be assigned a phase angle 8
measured from the horizontal to a line between centers of the two
wires. Figure 2 shows pairs of different phases. If all pairs twist at the
same rate, the difference in phase between two pairs remains constant
as one moves along the wires. It is no longer necessary to separate pair
axes by distance 4r. Theorem 1 below shows that the minimum allowed
distance depends on the phase difference ¢ between the two pairs.

Figure 3 shows two pairs with axes at distance a apart. The constant

phase difference for the two pairs is ¢; one pair has a phase 6 and the
other has phase 8 + ¢.
Theorem 1: Suppose two pairs, with phase difference ¢ as shown in
Fig. 3, twist about their straight parallel axes at the same rate. The
smallest distance achieved between centers of wires in different pairs
is a — 2rM(¢), where

M(¢) = Max{|sin 4¢|, | cos $¢ [},

r is the radius of the wires, and a is the distance between the axes of
the pairs.
Proof: The theorem is proved simply if Fig. 3 is regarded as the
complex plane. Take the origin to be one pair axis. The other pair axis
is at a exp(iy), where ¢ is an angle from the horizontal to the line
between axes. The two wires of the first pair have centers P, and P_
with

P. = +r exp(if).
The centers @. and §- of wires of the second pair are

Q. = a exp(i}) £ r exp{i(0 + ¢)}.

One of the four distances to consider is | @+ — P+ | = |a exp(i}) + r
expif(expi¢p — 1) | . Write
E=exp{il@ -y + ¢ + im)
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Fig. 3—Two twisted pairs with phase difference ¢.

so that
| @+ — P+| = |a + 2rf sin {4 |, (2)
and likewise
| Q- — Pi|=|a— 2rf cos 14|, (3)
| @+ — P_| =|a + 2rf cos 43|, (4)
|Q- — P_| = |a — 2ré sin $¢. (5)

As @ varies, £ moves on the unit circle |£| = 1. The four distances
(2), ---, (5) have their maxima and minima at £ = £1. The smallest
value attained by any of the four distances is either @ — 2r|sin 4¢| or
a — 2r| cos 1¢ |, as the theorem states.

Theorem 1 shows that the distance a between axes of two pairs with
given phase difference ¢ can be only as small as

a=al(p) =2r{1 +M(g)}. (6)

This separation can be less than the 4r used in Fig. 2. The smallest
allowed separation is obtained with ¢ = +£90°;

a(+£90°) = (2 + 2V%)r = 3.4142r.

For a given wire, say the one with center P., the closest approach to
another wire center @, or @_ occurs when { = +1, i.e.,, when

6 —  + 3¢ = 90° or 270°.
Ordinarily | @+ — P:| and | @- — P, | have different minima and then
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the minimum distance a — 2rM(¢) is attained at only one of the two
angles 6. If a = a(¢), each wire at 0 touches only one wire of the other
pair. If ¢ = +£90°, |sin %¢| = | cos %¢| and | @+ — P.| has the same
minimum value as |@- — P.|. If a = a(¢) = a(90°), each wire at 0
touches both wires of the other pair.

Corollary: If pairs have straight parallel axes and twist at the same
rate, the packing fraction cannot exceed

27/ {27"% + 24'%} = 0.62240.

Proof: Let 2R denote (2 + 2'/*)r. In any packing of twisted pairs, the
distance between two pair axes is at least 2R. Then circles of radius R,
centered at the pair axes of a packing, do not overlap. The number p
of circles per unit area, in any packing of nonoverlapping circles of
radius R, satisfies

p < po = 1/(12"2R?).

The maximum po would be attained with Fig. 1 again, now with circles
of radius R. Each circle of radius R represents one twisted pair of area
27r.% Then the packing fraction is f = 27r’p < 2mr®po. The bound
simplifies to the number stated by the corollary.

One might try to achieve density 0.62240 by arranging pair axes in
the same pattern as the centers in Fig. 1. Each pair would then be
required to differ in phase by +90° from each neighbor at distance 2R.
But that arrangement contains triples of pairs, each pair a neighbor of
the other two. There is no way to assign phases to the pairs of such a
triple. Packing fractions near 0.62240 are probably not obtainable. The
more special packings in the next section have maximum packing
fraction 0.56767.

IV. LATTICES

A point lattice is a discrete set of points forming a group under
vector addition. Thus a point lattice must contain the origin 0 and the
sum P + @ of each pair of lattice points P, §. Two-dimensional point
lattices, the ones of interest here, can all be generated from pairs u, v
of linearly independent vectors. Lattice points are then linear combi-
nations

P;=1iu=xjv (7)

of the generator vectors u, v, the coefficients i, j ranging over all
integers. For example, circle centers in Fig. 1 form a point lattice with
generators u, v both of length 2r and 60° apart.

A point lattice in a plane 7 can be used to construct a lattice of
twisted pairs. Arrange pairs, all twisting at the same rate and having
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parallel straight axes normal to 7, with a pair axis passing through
each point of the point lattice. Let 8( P) denote the phase of the pair
with axis at point P of 7. The phases will be required to satisfy

P+ Q)=06(P)+ Q).

Then #(0) = 0 and all phases can be expressed in terms of two
parameters ¢ = #(u), v = 6(v). At Py in (7), the phase 8; = 8(Py) is

8; = 0(iu) + 8(jv) = 1o + jr. (8)

In a point lattice, each point P is like every other point @. Adding
P — @ to every point merely translates the point lattice rigidly onto
itself and carries @ to P. The lattice of twisted pairs has symmetries
which are only slightly more complicated. The translation that carries
@ to P need not leave the lattice of twisted pairs fixed because the
phases 8(P) and 6(Q) may differ. However, (8) shows that the lattice
of twisted pairs regains its original appearance if this translation is
followed by turning every pair through a constant angle 8( P) — 6( Q).
With pairs that all twist at the same rate, rotating pairs through a
fixed angle is equivalent to taking a different cross section through the
wires. Thus the twisted pairs do have translation symmetries, although
the translations have axial components.

A point lattice determines a tessellation of the plane into congruent
parallelogram cells (for a detailed explanation, see Ref. 4). Each lattice
point P determines a parallelogram cell with vertices P, P + u, P + v,
P + u + v. A cell has area

A=|u||v]||sin «|, 9)

where « is the angle between u and v. The lattice points have density
p = 1/A points per unit area. Then a lattice of twisted pairs has
packing fraction

f=2nr/A. (10)

To find a lattice of twisted pairs that maximizes f, one must find
parameters |u|, |v|, a, o, 7 that minimize A. These parameters are
allowed only values that keep wires from intersecting. For each pair
P, P’ of lattice points, with phases 6, #’, the separation | P — P’ | must
be at least a(f — #') as given by (6). That optimization problem has
the following solution.

Theorem 2: The maximum packing fraction of lattices of twisted
pairs is
f=14n/(2 + 32/%)1/2 = 0.56766836 - - - .

It is obtained with o = 0°, 7 = 90°, |u| = 4r, |v| = |v — u| =
(2 + 2Y%)r, and cos a = 1/(1 + 272), i.e., a = 54.14143°,
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The proof is long and will be deferred to the appendix. Figure 4
shows one cross section through the maximizing lattice of twisted pairs
given by Theorem 2. Figure 4 also shows the parallelogram cells,
determined by the generator vectors u and v. The vertices of par-
allelograms form the point lattice, representing the axes of the twisted
pairs. The generators used in Fig. 4 are u = (4r, 0), v = (2, (2 +
301/2)2)p = (2r, 2.7671r). The cell area is A = 4(2 + 32"%)"*r" =
11.06841r°,

In Fig. 4, certain wires touch. These contacts occur at midpoints of
half the horizontal sides of cells. At two other places in the interior of
each cell, wires almost touch. The very short gap between these wires
is not apparent in a small drawing.

One of the parallelograms is shaded. Figure 5 shows what happens
in this shaded cell as pairs rotate. The rotation angles, 9.141°, 80.859°,
90°, etc., were chosen to show contacts that occur between wires.

([ y N VWV N vy

a
\ u+vy
/]
o}~

A A A A A /

Fig. 4—One cross section through the densest lattice of twisted pairs, 8 = 0°.
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Again there are some near misses (at 90°) and so Fig. 5 marks each
point of true contact by a dot. A 180° rotation interchanges the wires
in each pair and so Fig. 5 does not go beyond 180° rotation. Because
of the lattice symmetry, each cell of the lattice goes through the same
cycle as any other cell, but perhaps with different phase. In this special
lattice, half the cells are in phase with the shaded cell and the rest are
90° out of phase.

Another view of the packing follows a single wire as it makes one
full turn about its pair axis. Figure 6 shows the successive positions a,
b, c, - -+, J of the center of one wire as it comes into contact with other
wires. Thus, a, b, c, - - - lie on a circle of radius r at the angles 9.141°,
80.859°, 99.141°, etc. The wire itself is not drawn but the wires it
touches appear in their positions at contact. Each point a, b, ¢, -+ is
connected by a line to the center of the contacted circle. The second
wire of the chosen pair makes another contact whenever the first wire
does but from a point 180° away. Thus the second wire goes through
the cycle f, g, h, i, J, @, -+, e.

The contacts shown in Figs. 4, 5, and 6 occur because each pair has
neighboring pairs at exactly the minimum allowed distance (6). In
particular, |z | = a(0°), |v| = a(90°), | v — u| = a(90°) and so the pair
at P makes contact with the six pairs at P + u, P+ v, and P £ (v — u).
The pairs at P + v and P + (v — u) differ in phase from the one at P
by 90°. Thus, as mentioned following eq. (6), a wire at P will touch

Fig. 6—The wires touched by a given wire of the densest lattice packing during one
complete turn. Circular dots mark the pair axes.
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both wires of pairs at P £ v and P % (v — u). That accounts for the 8
contacts at positions a, c; b, d; f, h; g, i. At P + u, with phase difference
0°, only one wire is touched (at j and e). Thus the wire in Fig. 6 touches
10 wires belonging to 6 pairs.

The fact that each wire touches 10 wires belonging to 6 other pairs
is an indication that the packing is very tight. The appendix proves
the following theorem.

Theorem 3: Suppose all pairs have straight parallel axes and twist
at the same rate. Then no wire can touch more than 6 other pairs nor
more than 10 wires belonging to other pairs.

Note that the hypotheses of the theorem apply to packings more
general than lattice packings.

Three twisted pairs will be said to form a triplet if each pair touches
the other two. Pairs with axes P,, Ps, P3, and phases 6, #;, 6; form a
triplet if | P; — P;| = a(6; — 6) for the 3 choices of distinct subscripts
t, j. One might expect many triplets in a dense packing, lattice or
otherwise. Theorem 3 shows that no pair can belong to more than 6
triplets; the lattice packing of Theorem 2 achieves that number. In
fact, each parallelogram cell in Fig. 4 is formed from two triangles,
having vertices at axes of a triplet. Thus triplet triangles cover the
entire plane of Fig. 4. Moreover, these triplet triangles have the least
area possible.

Theorem 4: Suppose three twisted pairs with parallel straight axes
and the same twisting rate form a triplet. The triangle with vertices
at the axes of the three pairs has area at least

(2 + 32"%)'2r% = 5534201,

This minimum area is achieved if the three phase differences are 0°,
+90°, and +90°.
This theorem is proved in the appendix.

V. CONCLUSION

Theorem 2 gives the packing fraction f = 0.56767 of the densest

packing of twisted pairs having
(i) Pairs with parallel straight axes.

(i) The same twisting rate for all pairs.

(iii) A lattice arrangement of pair axes and phases.
It may be that assumption (iif) can be dropped. Without assuming
(ii), Theorems 3 and 4 show that pairs in the packing of Theorem 2
are as “close together” as possible in two senses that are not directly
connected with f. But at present, without assuming (iii) one can only
guarantee f < 0.62240 (Corollary to Theorem 1). To extend Theorem
2 without assuming (iif) may be difficult. Even for circles, the density
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maximizing property of Fig. 1 has only recently been proved without
a lattice assumption.” For spheres in three dimensions, the astronomer
J. Kepler conjectured that the face-centered cubic lattice packing is
densest possible. Two centuries later, Gauss proved the conjecture for
lattice packings, but there has been no proof without a lattice assump-
tion.

Assumption (i) is too strong for most applications. It would be
desirable to drop () and assume only that different pairs fail to
intertwine. Relaxing (i) probably permits some increase in packing
fraction. Figures 4 and 5 show that no pair ever touches more than
two wires at a time in any cross section. Then, in any cross section,
every pair is free to move slightly. If a bundle of pairs, packed as in
Figs. 4 and 5, were surrounded by a cord and tied tightly, the axes
would bend and the pairs would assume a denser packing in the plane
of the cord. It should be possible to bend axes in Figs. 4 and 5 to obtain
a packing fraction f > 0.56767 in all cross sections simultaneously.

In regard to assumption (i), Section III mentioned a denser packing
with pairs twisting in opposite senses, although still with the same
absolute twist rates.

APPENDIX
Proofs of Theorems 2, 3, and 4
A1. Theorem 2, Part 1

Theorem 2 will be proved in two parts. The first part subjects a
given lattice of twisted pairs to deformations that increase f and leave
the lattice with generators u, v such that twisted pairs at 0, u, and v
form a triplet. The second part of the proof is then also a proof of
Theorem 4.

Many choices of u, v, o, T produce the same lattice of twisted pairs.
For example, given one set of generators, another is obtained by
changing v to u + v and 7 to o + 7. The pairs remain packed exactly as
before although the point now called Py in (7) is the one formerly
called P; ;.,;. This freedom to choose among different generators is used
in the first part to obtain generators u, v with simplifying properties.

The deformations in the first part must be performed without
causing wires to intersect. Because the pairs are symmetric to one
another as explained in Section IV, it suffices to ensure that the pair
at 0 never intersects a pair at any other point P. From (6) one obtains
the requirement

|P|=2r{1+ M(@(P))}. (11)
Or, if R (P) is defined to be the ratio
R(P) = |P|/{2r1 + M@(P)]},
the requirement is R(P) = 1 for all P # 0.
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If a given lattice of twisted pairs has Min R (P) = R, > 1, then the
lattice of P axes can be shrunk, moving each point P to P/R,. Shrinking
the lattice would increase f by a factor Ri. Hence a lattice of twisted
pairs with maxzimum density must have points P such that R(P) = 1.
One of these points will be taken for the generator vector u; R (z) = 1.
This choice also determines o = #(u).

Figure 7 shows the point lattice of twisted pair axes. The points may
be grouped in rows parallel to a central row of points ... , —, 0, u, 2u,
.-+ . These are horizontal rows in Fig. 4. Since R(u) =1, |u| = 2r{1
+ M(0)} = 4r. From (11), any point P, except the origin 0, satisfies
|P|=2r{l1+ M(90°)} = (2 + 2"%)r. Thus

|P|>0.85]|u|
Similarly, any point P except ku satisfies | P — ku| > 0.85 | u|. Then it
follows that the distance between the horizontal rows of points is at
least 0.68|u|. Now start to compress Fig. 7 linearly in a vertical

direction. The compression only increases the packing factor. The
compression must stop before the vertical separation between rows

o g o [o]

x

COMPRESSION

Fig. 7—Deformations of a lattice to increase packing fraction. Above: compression to
produce a point v with R(v) = 1. Below: rotation of v to make R(v — u) = 1.
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reaches 0.68 | u | because, for some P, the ratio R (P) will become equal
to 1. A point P linearly independent of uz and with R (P) = 1 can only
lie in a row directly above or below the central row. For in a more
remote row,

|P|>2x068|u|=136(2+ 2V)r > 4r;

then R(P) > 1. A point P with R(P) = 1 and linearly independent of
u will now be taken as the second generating vector v of the lattice.
Because R (—P) = R(P) there will be a choice between two vectors for
v. Pick the vector that lies within 90° of u, as shown in Fig. 7; then
| a| = 90° in (9). That determines r = #(v).

Since R(u) = R(v) = 1, |u| and |v| are as small as (11) allows, for
the given phases o and 7. Another deformation of the lattice, changing
o in (9) while holding | |, | v|, 6, and r fixed, may increase f. Because
| | = 90° the change must be in the direction of decreasing | a|. The
requirement R (v — u) = 1 sets a lower limit on the size of | a|. Since
|u| and |v| lie between (2 + 2'°)r and 4r, |[v — u| would become
smaller than (2 — 2"%)r and have R(v — u) < (2 - 2%)/2+ 2" <1
at « = 0. Thus, with R(z) = R(v) = 1 and fixed o and 1, A in (10) is
always at least as large as the value given by (9) with | a | determined
from the condition R(v — u) =1. When R(v — u) = R(u) = R(v) =1,
twisted pairs at 0, u, v form a triplet and pairs at u, v,
u + v form another (recall the definition of triplet, given following
Theorem 3). The two congruent triplet triangles (0, », v) and (u, v,
u + v) together constitute the parallelogram cell (0, u, v, u + v). Given
o and 7, (10) shows that fis no greater than mr”* divided by the area of
a triplet triangle 0, u, v with R(u) = R(v) = R(v—u) = l;ie,

lu| = 2r(1 + M(o)} (12)
|v| =2r{1+ M(7)} (13)
lv—u|=2r{1+ M(r - 0)}. (14)

The first part of the proof of Theorem 2 is now finished. It remains
to adjust o and 7 to minimize the area of the triplet triangle 0, u, v.
That will lead to o = 0°, 7 = 90°, and prove Theorem 4. Another detail
to verify is that the lattice determined by (12), (13), and (14) with ¢
= 0°, r = 90° actually has R (P) = 1 for all P # 0. Since R(P) <1 only
if | P| < 4r, there are only a few lattice points to examine. A short
calculation shows R(P) = 1, with equality holding only for P = *u,
+v, and (v — u). These six vectors locate the axes of the six twisted
pairs mentioned in Theorem 3.

A2. Theorem 2, Part 2 and Theorem 4

The proof of Theorem 4 will use a formula, of Heron of Alexandria,
for the area of a triangle with sides of given lengths a, b, ¢.”® Here
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Table I—Packing fraction f of lattices of twisted pairs

~2 = 0 10° 20° 30° 40° 50° 60°
0° 0.4534

10° 0.4546

20° 04581  0.4569

30° 04640  0.4616

40° 04725 04689  0.4676

50° 04839 04788 04763

60° 04985 04918 04878  0.4865

70° 0.5168 05082 05025  0.4997

80° 05396 05286 05210 05165 05150

90° 0.5677  0.5540 05439 05373  0.5341

100° 05418 05332 05281  0.5265

110° 05262 05227

120° 0.5209

a=|v—u|,b=|u|, c=|v|, which depend on g, r as in (12), (13), (14).
Heron’s formula converts the cell area A in (9) (twice the area of a
triplet triangle) to

A= {s(s—a)s—b)(s—c)}" (15)

where s = (a + b + ¢)/2. Table I shows how the packing fraction f,
obtained from (15) and (10), depends on o and .
Table I shows only values of o and 7 in the range

0=<=20=1=<90° + }o. (16)

Values of f for other angles can be obtained by exploiting symmetries
in formulas (12), (13), (14), (15). Write (o', ') = (g, 7) if substituting
o', 7’ for o, 7 leaves the three lengths a, b, ¢ unchanged, except perhaps
for a permutation. For example, (¢ + 180°, 1) = (0, 7) = (0, T + 180°)
because M(#) is a function with period 180°. Then ¢ and 7t can be
assumed nonnegative. Second, (1 — o, 1) = (0, 7), and so one can
assume 0 < 1 — 0, i.e., 206 < 7. Finally M (f) has a symmetry M (180°
— 6) = M(#), and so (o, 180° — 7 + o) = (0, 7) and (180° — 1, 180° — 1
+ 0) = (o, 7). It suffices to require 7 = 180° — 7 + o or 7 =< 90° + }a.

Table I indicates a maximum of f at ¢ = 0°, r = 90°. However, for
the sake of mathematical exactness, an analytical proof follows.

First, note that A is an increasing function of a, b, and ¢. To prove
this, differentiate A* with respect to these variables. For example,

A
(8A/a) 2 2bc — a*=2(2 + 2V%)? - 42 > 0. (17)

It now follows that A cannot have a maximum in the part of the set
(16) where T < 90°. For, in that part M (r) = cos 7/2 and, because  —
o < 90°, too, M(r — o) = cos{(r — 0)/2}. For fixed g, |v| and |v — u|
are decreasing functions of r while | u| remains constant. Then (17)
shows that A is decreasing and hence f can have no local maximum
with 0 = 7 < 90°.
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The remaining portion of the range (16), with 90° < 7, can be cut
into three parts. These are

0<o=45° T =190°, (18)
0 < o=45° 90° < 7 =90° + }o, (19)

and
45° = g, 20=7=90° + {0 (20)

[note that the second inequality of (20) actually implies 45° < ¢ <
60°]. In all three parts,

M (o) = cos a/2
M(r) =sin /2
M(r — o) = cos{(T — 0)/2}. (21)

Consider the range (20) first. Since 45° =< o < 60°, one has N <1
=120°and 45° <o =<1 — 0 < 90° — 06 = 67.5°. Then

|u|= (2 + 2% r = 3.41421r
|v| = (2 + 3"3)r = 3.73205r
|v—u|= (2 + 2 cos 33.75°)r = 3.66294r.

When these minimum lengths are substituted for a, b, ¢ in Heron’s
formula, one obtains a lower bound A > 11.19573r° and hence f <
0.56121 throughout (20). Thus these parameters o, 7 can never mini-
mize A nor give a packing fraction as high as f = 0.567668, which is
obtained with o = 0°, 7 = 90°.

Next consider (19). Those inequalities imply 0 < o < 45° and 90° =<
T = 112.5° so that

M(7) = M(112.5°) = M(67.5°) < M(45°) < M(o)
and
o] <|ul. (22)

To show that there is no local maximum of f with o, 7 satisfying (19),
consider a small change from o, 7 to 0 + x, 7 + x. Changing o and 7 by
the same amount keeps | v — u| constant but changes |v| and | u| in
opposite directions. The effect on A is determined by differentiating.
Equation (15) provides

dA _ 2 4l U]
8AE—WH?IUHU wl = lul) —
d|v|

+1vl @lullo-ul - 0P 2

(23)
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The derivatives of | « | and | v| are obtainable from (12), (13), and (21):

d|u| d|v]
Tdx Tdx

dx
Then the inequality (22) can be used to simplify (23) to a bound

= —-rsino/2<0, =rcos1/2>0.

(M/r)%>|u|(2|u||v—u|—|u|2)(—sino/2)

+|v|@2|u||lv—u|—|u||v|) cos /2
=|u||lv| (2|v—u|—=|v|)cos 7/2 — sin 0/2).

The inequalities (19) imply sin 0/2 < sin 22.5° and cos 7/2 > cos 56.25°
= sin 33.75° > sin 0/2. Also, 2|v — u|—|v| = 2(2 + 2'*)r — 4r > 0.
Then dA/dx > 0 in the range (19) and there can be no local maximum
there.

The proof so far has shown that f is too small in range (20) to
achieve a maximum there and that, elsewhere with r 7 90°, fincreases
if (o, 7) moves toward the line 1 = 90°. One must consider (18) and
show that dA/do > 0 with 7 fixed at 90°. Then0 <o =<45°<t—0=
90° = 7, which implies |v| < |v — u| < | u| because

lu| =2(1 + cos a/2)r
lv| = (2 +2"r
|v = u|=2(1+ cos{(90° — a)/2})r.

Now a formula like (23) may be written for dA/do. The proof that
dA/do > 0 is similar to the one given for the range (19), here using the
inequality |v — u| < |u|. That completes the proof of Theorems 2
and 4.

A3. Theorem 3

To prove Theorem 3, consider a wire twisting about an axis at the
origin 0. Let Py, P, --- , Px denote axes of neighboring pairs that this
wire touches. The names P, P,, --- , Px may be assigned in order of
increasing polar angle about 0. Magnitudes | P, | must satisfy (6) with
¢ the phase difference ¢ = 6(Py) — 6(0). Thus all | P,| lie between
(2 + 2V%)r and 4r. Also | Py — P;| = (2 + 2)r. Let t; denote the
number of times the wire at 0 touches wires of the pair at P;. Then ¢
= 2if | Px| = (2 + 2"%)r (i.e., if ¢» = £90°), but otherwise ¢, = 1. The
total number of contacts is

T=t+t2+ -+ + tg
and the theorem states K < 6 and T < 10.
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Let a, denote the angle P.0P... The K angles ay, - - -, ax fall into
three types.
Type 1: If t, = tpey = 2, then |Py| = | Ppsr| = (2 + 2V%)r and ¢ =
+dyp+1 = £90°. Then | Pryy — Pr| = a(0°) = 4r and oy = 71.7° follows
from the cosine law.
Type 2: If ty, = 2 but tyy = 1, then | Py| = (2 + 2"*)r, | Pyss | < 4r and
| Pre1 — Pi| = (2 + 2%)r. Then ar = 54.1°. The same bound holds if ¢,
= 1and tp4+ = 2.
Type 3: If tp = tp+1 = 1 then | P;| and | Pr+1 | may be as large as 4r and
| Pis1 — Pr| = (2 + 2'%)r. Then ax = 50.5°.

Let N,, N, N3 be the numbers of angles a; of types 1, 2, 3. Then

71.7° N, + 54.1° N> + 50.5° N; = 360°. (24)
Moreover,
T=H{ti+b)+(t+t)+ -+ (tx+ 1)}

and each term (£x + £x+1) has value 4, 3, or 2 according to the type 1, 2,
or 3 of ax. Thus

T = }{4N, + 3N: + 2Ns}. (25)

Subject to the constraint (24), nonnegative integers N, Na, N3 give T
a maximum value T = 10, That proves half of the theorem.

The other half is more delicate because the constraint (23) allows
Ny=7 N =N,=0,K= N, + N, + N3 =T7. An improved bound on
a, for type 3 is needed to prove K =< 6. The angle ax = 50.5° is not
actually achievable because it would require both ¢ and ¢+ to be 0°
or 180° while ¢x+1 — ¢ = £90°. For given ¢, and ¢x+1, the smallest ax
is obtained with | Py| = a(¢r), | Pre1| = alpr+1) and | Pryy — Pi| =
a(pr+1 — ¢r). Then the cosine law determines a, as a function of ¢
and ¢+1. The minimum «, is found to occur at ¢x+1 = 135°, ¢ = 45°.
The details will be omitted. In this way, one finds 52.67° < a, K <
[360°/52.67°] = 6, and the theorem is proved.

In (25) there are actually two ways to make T = 10. The solution
N, =2, N, = 4, N; = 0 corresponds to Figs. 4 and 5. Another solution
N, = 5, N, = N3 = 0 can represent an isolated arrangement of five
twisted pairs with phase 90°, surrounding a central pair with phase 0°.
That configuration cannot occur as part of a lattice. A lattice would
also contain a pair at P, — P, with phase 0°, but that pair would
conflict with the one at P;.
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