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Theorems are presented concerning conditions for the input-output
stability of interconnected dynamical systems. Results in the area of
input-output stability are often partitioned into two categories:
small-gain type-results and passivity-type results. The main theorem
given here does not fall into either of these categories, but is most closely
related to the passivity-type results. The theorem involves a new class
of interconnection operators that is a substantial generalization of the
familiar set of nonnegative operators defined on a space of vector-
valued functions. '

l. INTRODUCTION

In this paper, theorems are presented concerning the input-output
stability of interconnected systems. Results in the area of input-output
stability are often partitioned into two categories: small-gain type results
and passivity-type results. The main theorem given here does not fall
into either of these categories, but is most closely related to the passiv-
ity-type results. The theorem involves a new class of interconnection
operators that is a substantial generalization of the familiar set of non-
negative operators defined on a space of vector-valued functions.

The mathematical model considered throughout the paper is described
in Section II, and results of a general nature concerning the model are
given in Section III. The case in which the interconnection operator has
a certain matrix representation is treated in considerable detail in Sec-
tion IV. In Section 4.5, a specific example is given of a stable intercon-
nected system for which the interconnection matrix does not meet the
nonnegative-definiteness requirement of the criterion given in Ref. 7,
which contains the most pertinent earlier stability result.

* This paper was presented at the 1978 IEEE Symposium on Circuits and Systems (New
York, May 17-19, 1978).

t For background material in book form concerning intput-output stability, see, for ex-
ample, Refs. 1-4. Interconnected systems (which are systems whose natural or artificial
decomposition into subsystems plays a prominent role in their mathematical analysis)
have been considered by many researchers. See, for example, Refs. 3, 5, 6, and 7. Although
some interesting and significant results have been obtained concerning the stability of
interconnected systems, the theory is very much in its initial stages of development.
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The main purpose of the paper is to introduce a new concept that is
believed to be useful. No attempt is made to present the sharpest possible
stability results that the concept can be used to obtain.

1. THE MODEL
2.1 Preliminaries

Let K denote a real linear space that contains a normed linear inner-
product space L with inner product (-,-) and norm | - | related by | f| =
(f.)2 for f € L. (Of particular interest to us is the case in which L is the
set Lo of all real Lebesgue square-integrable functions defined on the
half line [0,=) with the usual inner product, and K is the “extended” set
E, of real functions defined on [0,=) such that each function is square
integrable on [0,7] for any nonnegative number 7.)

For each r = 0, let P, denote a linear mapping of K into L (e.g., if K
= E,, let P, be defined by (P,f)(t) = f(t) for t & [0,7] and f(¢) = 0 for ¢
> 7, where f is an arbitrary element of E).

Let K, L, and P, be such that (i) g € L if and only if g € K and sup,
|Pg| < =, (i) |g| =sup, |P.g| forg € L, and (iii) (P.f.g) = (P.f,P.g)
and |P,f| < |f| forfand g in L and 7 = 0.

We let L™ and K", in which n is any pesitive integer, denote the n-fold
Cartesian product of L and K, respectively. The norm of an element h
= (hy,hs, ... ,h,) of L™ is denoted by |h| and is defined by |k| = (Z;
|h;|2)1/2.

It is assumed that L contains n elements ey,es, . . . e, such that |e;|
=1 for each i and (e;,e;) = 0 fori = j.*

We say that an operator T' that maps K into itself (i.e., an operator
T in K) is causal if and only if P,T = P,TP, on K forall 7 = 0.

2.2 The basic equations

Throughout the paper, attention is focused on.an interconnected
system governed by

x; + 'i1 AjBjxj=y;, i1=12,...,n, (1)
j=

in which (A.I): x; and y; belong to K for all i, and A;; and B; are causal
operators in K for alli and j.

In (1), each B; is associated (sometimes somewhat indirectly) with a
subsystem, and the A;; ordinarily take into account the way in which the
subsystems interact. Typically, it is not difficult to show the existence
of a solution x1, x9, . . . ,x,, of (1) for any given y1, ¥g, ... . ,¥, under some
weak additional hypotheses. (Successive-approximation type arguments
of the kind commonly used in connection with nonlinear Volterra inte-
gral equations often suffice.)

* This assumption is used only in Section IV.
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We assume that (A.2): each B; is nonnegative in L, in the sense that
each B; maps L into L and there exists a nonnegative constant a such
that

(Bjw,w) = a|w|? (2)

for w € L and all j. It is assumed also that (A.3): each A;; maps L into
itself, and there is a positive constant v such that

|Aijw| < v |w] (3)

forw € L and alli and j.*
It is often convenient to write (1) in the form

x+ ABx =1y, (4)

in which x = (x1,X2, .. .,%n), ¥y = (¥1.Y2, - . . ,¥n), and A and B are the
mappings of K™ into K" defined by (Af); = Z;A;;f; and (Bf); = Bif; for
all f € K™ and each i.

2.3 Definition of stability

We say that (4) is L-stable if and only if y € L™ implies that x € Ln
with |x| < p(|y|) for some nonnegative continuous function p that de-
pends only on A and B and is defined on the nonnegative reals such that
p(0) = 0.

. Sg AND THE MAIN THEOREM

In the following definition and hypothesis, 8 is a nonnegative num-
ber.
Definition of Sg: S is the set of operators H in L™ with the following
property: For each v € L" such that |v| # 0, there is an index k such
that |vk| # 0 and (vg, (Hv)g) = Bluog |2

The definition of Sy is related to one of the equivalent definitions of
a “P-matrix.” ?
H.1:If 8 = 0, there is a positive constant 6 such that

|Bjw| < é|w| (5)

forw € L and all j.

Our main result is the following.
Theorem 1: Let H.1 (and A.1 through A.3) hold. Then (4) is L-stable
if A€ Sgwitha+ 3> 0.

* In order to focus attention only on essentials, we are proceeding with some assumptions
that are stronger than necessary. It will become clear that (2) and (3) (and also (5) of Section
III) could have been replaced with somewhat weaker inequalities (similar, for example,
to some of those used in Section 5.3 of Ref. 8). Similarly, if for example there are positive
constants a; such that (Bjw,w) = a;|w|2 forw € L and all j, and if A in (4) is represented
by an nXn matrix in the sense of Section IV with [ + a diag («;)] invertible, then it is clear
that x satisfies an equation similar to (4) in which each B;x; is replaced with (B;x; — ajx;)
and A and v are modified accordingly. Consideration of such a modified equation often
enables a useful trade-off to be made between requirements on A and the degree of posi-
tiveness of the B;.
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Proof of Theorem 1: Let H.1 and A.1 through A.3 be satisfied, let y €
Ln, let x € K" be a solution of (4), and assume that A & S with
a+>0.

Suppose first that 8 = 0, in which case a > 0. Let 7 = 0 be arbitrary.
Using (1) and the casuality of the A;;, we have

Px;+ P, 3 Aj;P.Bjxj = P.y; (6)
J
and

(P.Bix;Px) + (P.BixiP: . AyP.Bx;) = (P-BixiPry) (1)
7

for i = 1,2,...,n. Since A € S, and (P,B;x;,P,Z;A;;P.Bjx;) =
(P.B;x; Z;A;;P,Bjx;) for each i, there is an index k such that
(P:Bpxp,P,ZjAp;P.Bjx;) 2 0 and hence such that

(P Bpxy,P,xi) < (P;Bpxp,P.y). (8)

By the Schwarz inequality and the fact that (P,Bpxy,P.y:) =
(P.BpP.xp,P.yr) = (BpPxp,P,ye), (P.Bpxp,Pyr) < |BpPxk| « |Pryel.
Therefore, using (P,Byxp,P,x1) = (BpP.xi,P.x;) as well as (2), (5) and
(8), we have

a|Pxg|? < 8| Prag| - | Pryel (9)
and consequently, with ¢ = a1,
|Pxg| < c|Pykl

The argument given above shows that | P,xz| < c|y| for some k (which
might depend on x and 7). Let J denote any nonempty proper subset
of {1,2, ... ,n} with the following property. For j & J, there is a constant
cj that depends only on ¢, 6, and v such that |P,x;| < cj|y|. Using
(1),

x; + Z A;ijx_,- =y — Z Al-ijxj, P& (10)
JEJ JjEJ

The left side of (10) is basically the same in form as the left side of (1).
With r the number of elements contained in o, let the elements of
({1,2,...,n}=J)bejij2 ... jin—r) ordered so that j; <js <+« <jp—p).
With respect to that ordering, let the mapping of K"~ into itself as-
sociated with (10) that corresponds to A be denoted by A,. Since A.3
holds, each A;; maps the zero element of L into itself, and it is a simple
matter to verify that A belongs to, so to speak, Sg with n replaced with
(n — r). Thus, by the argument given above, we find that there is an index
| & J such that

|Px| <c : (11)

P, (y; > Az,;Bjxj)
jed
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Using |P,x;| < c;j|y| for j € J, as well as (11) and the causality of the
A;j and the B;, we have

Pl s (Iyl + ]_z P,A;Bjx;
JES

<c (|y| +ng |PTA1jP-,-BjP1xj|)
<c + o P.x;
(Iyl ¥ jél ;I)

sé(1+-ya T c,-) Iyl
jed
Let wy,ws, . . . ,w, be defined by w; = ¢ and

(i—1)
w;=c(1+76 > wj), 1=23,...,n.
j=i

We have shown that given x, 7, and i, |P,x;| < d;|y| for some d; €
{wy,ws, . . . ,wp). Since w, = max;w;, we have

i |P.xi|2 < nw,?|y|? forall7 20,
i=1

which shows that x € L™ and that |x| is suitably bounded in terms of
|7|. This completes the proof for the case in which § = 0.

The proof for the 8 > 0 case is similar. Using primarily (7) and the
hypothesis that A € S, we find that

B|P.Bpxy|2 < |PBpxi| « |Prykl
for some k. Therefore,
|P,Brxr| < 871yl (12)

for some k. By proceeding essentially as indicated above, we can show
that

|P.Bix;| < Qn|y| foralliandr 20, (13)
in which @, is the number defined by Q; = 8~! and
(i—1)
Q=81 (1+'y y Q,-)
i=1

fori =2,3,...,n.
From (6) and (13),

|Poxi| < |Poyil + 2 |AiP:Bjxil
J
< |y| + Z 'YinyI
7
< (1+nyQ)|yl
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for each i and all 7 = 0. Since this shows that x € L and that |x| is
bounded as required, our proof is complete.

3.1 Comments

To see that U ,>0 S, contains the familiar set of nonnegative operators
defined on a space of vector-valued functions, let H be any mapping of
L7 into itself such that

3 (g (Hw))) 2 ol w € L, (13)
1= ;

in which ¢ is a nonnegative constant. From (13) it is clear that for each
w € L™ with |w| # 0 there is an index k such that |wy| # 0 and
(wg,(Hw)y) = B|w| 2 in which 8 = on—L. Since |w|2 = |wy |2, we observe
that H = Sﬂ.

Theorem 1 is of course a result concerning the L-boundedness of so-

lutions of (4).* By modifying the hypotheses and proof of Theorem 1
in a direct manner, an analogous result can be obtained concerning the
L-continuity of solutions (i.e., concerning the L-boundedness of the
difference (x, — x3) of a solution x, of (4) that corresponds to y = y, and
_ asolution x; that corresponds to y = y, with (v, — v5) € L). With regard
to the necessary modifications of the hypotheses concerning A, the fol-
lowing definition, in which 8 = 0, plays a central role.
Definition of Tg: T is the set of operators H in L™ with the following
property: For each u and v in L™ such that |u — v| # 0, there is an index
k such that |up — vg| # 0 and (up — vg, (Hu)p — (Hv)g) = Blug —
U | 2,

In order to be more explicit, let (A.1’) denote the assumption that x,
+ ABx, = y, and x;, + ABx;, = y; in which each A;; and B; are causal
operators in K and x,, x;, ¥4, and y, belong to K. Let A.2’ be the hy-
pothesis obtained from A.2 by replacing “(Bjw,w) = a|w|2 forw € L
and all j” with “(Bju — Bjv,u —v) = a|u —v|2foru and v in L and all
J,” and let A.3’ and H.I’ be the hypotheses obtained in a similar manner
from A.3 and H.1, respectively.

Our L-continuity result (whose proof is omitted) is the following.
Theorem 2: Let H.1’ and A.1’ through A.3' be satisfied, let (y, — yp) €
L,and let A € Tgwith a+ B > 0. Then (x, — xp) € L, and thereisa
nonnegative continuous function p defined on [0,») that depends only
on A and B such that p(0) = 0 and |xq — x| < p(|Ya = ¥s]|)-

* Results along the lines of Theorem 1 for cases in which B is more general than assumed
here but both A and B are nonnegative operators are given in Ref. 8, where the stability
of interconnected systems in the sense of Section 2.2 is not explicitly discussed. A non-
negative-operator approach to the stability of interconnected systems, as well as its relation
to other approaches, is discussed in Ref. 7.
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3.2 A Corollary to Theorem 1

We shall refer to the following two hypotheses.
H.2: Each B; is a continuous mapping in L that maps the zero element
into itself, and there are positive constants ¢; and cs such that for
all;

(Biu,u) = ¢;|Biu|?2 (14)
| Biu — Biv| < co|lu —v] (15)

foru and v in L.
H.3:K = Es, L = Ly, and for each 7 = 0 P, is the operator associated with
E, in the example given in Section 2.1.

There are many cases in which (14) holds* for all u for some ¢, > 0,
but there is no positive a such that (2) is satisfied for all w. On the other
hand, it is clear that there is a positive ¢; with the property that (14) is
met when (2) holds with « > 0 for all w and there is a positive constant
8 such that |Baw| < §|w| for all w.

Corollary 1: Let H.2 and H.3 (as well as A.1 and A.3) be satisfied. If A
& Sy, then (4) is L-stable.

Proof: Assume that the hypotheses of the corollary are satisfied and let
I and I,,, respectively, denote the identity operators in K and K" With
regard to the following lemma, two elements u and v of E5 are taken to
be the same if and only if | P, (z — v)| = 0 for all 7 = 0.

Lemma 1: Let H.3 hold, let F be a continuous mapping of L into itself
such that for some positive constant ¢ < I we have

|Fu — Fv| < clu—v| foruanduvin Ly, (16)

and let F also be a causal mapping of Esinto Eo. Then (I — F)~! exists
and is causal on both L and Eo.

Proof of Lemma I: Let the hypotheses of the lemma be met. In view of
(16) and the continuity of F, the equation x — Fx = h with h & L has
in L a unique solution x which is given by x = lim, . x ™ in which x )
=h+ Fxr—'forn = 1and x© = h. Thus, (I — F)~! exists on Lo, and
since h + F(-) is causal on Lo sois (I — F)y~L.

Now let h € E,, and for each 7 = 0let z, be the unique element of L
that satisfies z, — Fz, = P,h. Since (I — F)~!is causal on Ly, it is clear
that P,,z,, = P2, for 7 = 71. Let x be the element of E; defined by the
condition that P,x = P,z, forall7 = 0. Forany 7 = 0, P.x — P, Fx =Pz,
—PFPx=P.z,—P,FPz =Pz, —P,Fz = P.h. Therefore x satisfies
x — Fx = h. Suppose that x; and x; in E3 satisfy h = x; — Fx; = x5 — Fxs

* This type of inequality is among those used in Ref. 8.

t We mention two simple examples: Let L = Ly and let B; be defined by the condition
that for each ¢ = 0, (B;w)(t) = w(t) for |w(t)| <1and (Bw)(t) = sgn(w(t)) for [w(t)| >
1. Then (14) with ¢; = 1 holds for all u & L, but there is no « > 0 for which (2) is satisfied
for all w € L. It is not difficult to show that a similar conclusion is reached when B; is the
convolution operator in Ls with impulse response e .
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with |P,(x; — x2)| 0 for some 7 = 0. Since F is causal, we have P h,
= P.hsinwhich h; = P.x; — FP,x; and hy = P,x9 — FP x5. This con-
tradicts the fact that (I — F)~! is causal on Ls. Thus, x is the unique
solution in E5 of x — Fx = h, which means that (I — F)~1 exists on E5,
because h is arbitrary. In view of the fact that the solution x of x — Fx
= h satisfies P,x = P,z, where z, — Fz, = P_h for every 7 = 0, it is evi-
dent that the operator (I — F)~! on E; is causal. This proves the
lemma.

Let ¢ be a positive constant such that ¢ < min (cy,c3~1). By Lemma
1, (I, — ¢B)~lexists on K" and B(I, — ¢B)~!is causal on K™ and maps
L™ into itself. In particular, the equation x + ABx = y can be written
as

h+(A+cl,)BU,—cB)th=y

in which h = x — ¢Bx. From A € S, it follows at once that ( A + cI,,)
e S..

Also, from h = x — c¢Bx and the fact that B is causal on K" and satisfies
|Bu| < eg|u| foru € Ln, with ccs < 1, we have |Px| < (1 — cco) ™| P,h|
for r = 0.

Therefore, by Theorem 1, to complete the proof it suffices to observe
that for any w & L=, '

(B, — ¢B)"'w,w) = (Bu,u — cBu)
= (Bu,u) — c¢|Bu|?
>0

in which of course u = (I, — ¢B) 1w.

IV. RESULTS CONCERNING THE MATRIX CASE

Of importance in the theory of interconnected systems is the special
case in which A is represented by a real nXn matrix a with elements a;;,
in the sense that for each i,

(ALU)," = z a;w;, w e Ln
=1

Throughout this section, “A & M means that A has such a represen-
tation with representation matrix a, and, assuming that A & M, Uy(U)
denotes the set of representation matrices such that A € Sy (A € Sg
with 8 > 0). In addition, Py(P) denotes the set of real square matrices
with nonnegative (positive) principal minors.

Proposition 1: If (A.1 through A.3 are satisfied and) A & M witha &
Py, then (4) is not L-stable for some B.

Proof: Let the hypotheses be met, and let 1,, denote the identity matrix
of order n. From a & P,, it follows that there is a diagonal matrixd =
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diag (d,dy, . . . ,dn) with d; > 0 for all i such that (d + a) and hence
(1, + ad~1) are singular.*

For each i, let B; be defined by the condition that B;w = d; ~'w for w
€ K. Let v be any real nonzero n-vector that is annihilated by (1, +
ad~1), and let e be any element of K different from the zero element 6
of L. With x = ve, we have x + ABx = f. This shows that (4) is not L-
stable for the particular B constructed.

In order to proceed to the first theorem in this section, it is necessary
to introduce the following definitions. For each w & L", a,, denotes the
matrix obtained from a by replacing a;; with a;;(w;,w;) for all i and j. For
any w € L with |w| # 0, T'(a,,) denotes the matrix obtained from a,,
by deleting both the ith row and ith column for all i € {i: |w;| = O}.
Theorem 3: Let A & M. We have a € U(a & Uy) if and only if T'(ay)
€ P(a, € Py) for each w & L™ with |w| # 0.

Proof of Theorem 3: We shall use two lemmas. With regard to the first
of the lemmas, M,, denotes the normed linear space of real nXn matrices,
with the usual Euclidean norm, and C denotes {u & M,: thereisaw &
L" with |w| = 1 such that u;; = (w;,w;) for alli and J}.

Lemma 2: C is compact.

Proof of Lemma 2: The set C is obviously bounded. To show that C is
closed, let uM,u(?, . .. be a sequence of elements of C that converges to
some element & of M,,. !

Given a real n-vector v, for each w & L™ and its corresponding element
u of C, we have vtruv = (Zvw;, Z;viw;) = 0.t Thus, each u V) is nonne-
gative definite, and therefore it follows that & is nonnegative definite.
In view of the fact that Tr(u ")) = 1 for all j, it also follows that Tr(i) =
1.

Since @ is nonnegative definite and has unit trace, there is an or-
thogonal matrix T and a diagonal matrix D = diag (d,dy, . . . ,d,) with
d; 2 0 and Z;d; = 1 such that

a=TDT = ZI: d, T (T))*,

in which T is the Ith column of T. Referring to the pairwise mutually
orthogonal elements ey,es, . . . ,e, mentioned in Section 2.1, let z in L

be defined by
Z2= Z dgl/zT,-eg.

Using the orthonormality of the e;, and the fact that for each [ the sum
of the squares of the components of 7T} is unity, it is not difficult to verify
that |z| = 1, and that (z;,2;) is equal to the i,jth element of Z for all i and

* A proof is given in Ref. 10. Another proof can be obtained from the fact that, since a &
Py, there is (see Ref. 9) a real nonzero n-vector g such that g;(ag); <0 for every i such that
qi #= (0.

 The superscript “tr” denotes transpose.
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j. This shows that C is closed, and completes the proof of the
lemma.*

The following lemma is proved in Ref. 9.

Lemma 3: A real square matrix m belongs to P(Py) if and only if v, (mv);,
> 0 (v, # 0and vg(mv), = 0) for some k for each real nonzero vector
v of dimension equal to the order of m.

In order to prove the theorem, suppose initially that I'(a,,) & P for
every w € L" with |w| # 0. By Lemma 3, for eachw € L™ with |w| =
1 we have (I'(a,,)v)r > 0 for some index k&, when all of the components
of the vector v of compatible dimension are unity. Thus, max; 27,
a;;(w;,w;), which we view as a function of the matrix u whose elements
are the (w;,w;), is positive for each w in L™ with unit norm. Since max;
2% a;j(w;,w;) is obviously a continuous function of u, and, by Lemma

J
2, C is compact, there is a ¢ > 0 such that

n
min max ) a;j(w;,w;) = o. a7
ueC i j=1
Therefore, for each w € L™ with |w| = 1 there is an index k such that

n
Y apj(wp,w) = ow|? = o|wg?,
J=1

from which we see that for each w € L™ with |w| 5= 0, there is a k such
that |wy| # 0 and

n
Y apj(we,w;) = o|wg|2
j=1

Thus,a € U.

To show that a € Uy when a,, € Py (and hence I'(a,,) € Py) for each
w € L™ with |w| > 0, we observe that then, by Lemma 3, for eachw &
L™ with |w| # 0 we have (I'(a,,)v)x = 0 for some k when the components
of v are all unity. Therefore, for each w € L with |w| 5 0, thereis a k
such that |wy| > 0 and

n
2 agj(wg,w;) 2 0,

Jj=1
which means that a € U,,.

Suppose now that for some w & L" with |[w| > 0 we have I'(a,) &
P(a,, & Py). Then, by Lemma 3, there is a nonzero vector v such that
vp(D(ay,)v)r = 0 (ve(T(ay,)v)r <0) for every k such that v, = 0. Thus,
by multiplying each w; for which |w;| s 0 by the appropriate component
of v, it is a simple matter to construct a z & L™ for which |z| # 0 and
Z;a;i(2:,2;) < 0 for all i(Za;j(2;,2;) <0 for all i such that |2;|  0). This
completes the proof of the theorem.

Corollary 2: If n = 3, U(U,) is a proper subset of the matrices of order
nin P(Py).

* Of some peripheral interest is the fact that it is not necessary to assume that L is
complete.
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Proof: To see that U(Uy) is a subset of P(Py), let a € U(Uy), let e be any
element of L such that |e| = 1, and let w be the element of L defined
by w; = e for all i. Thus a,, = a, and, by Theorem 3, a € P(Py).

In order to show that for n = 3 there is a matrix of order n in P(Py) that
is not contained in U(Uj), observe that it is sufficient to consider the
n = 3 case, and let a{*) and a® be defined by

1.1 1 -10
atr=]1 1.1 1 |

1 1 1.1

1 1 -10
a®=11 1 1}

1 1 1

We have a‘*) € P and a'® & Py. Let w & L3 be given by

1 0
w=|1l]le;+]| 1]esq
10

in which e; and e, are orthogonal elements of L with unit norm. Itisa
simple matter to verify that

1.1 1 -10
aP=|1 22 11}
11 1111

1 1 =10

a =11 2 11

1 11 101

and that we have det[a!"’] <0 and det[a!"'] < 0. By Theorem 3, this shows
that a(a®) & U(U,), which completes the proof.
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Corollary 3: If n = 2, U(U,) = P(Py) restricted to 2X2 matrices.
This follows directly from Theorem 3.*

4.1 Definitions

Let N denote the set of real symmetric nonnegative definite matrices
m of order n with m;; > 0 for some i. For each m € N, let a,,, denote the
nXn matrix whose #,jth element is a;;m;; for all i and j,* and let A(a,,)
denote the matrix obtained from a,, by deleting row i and column i for
eachi € {j: m;; = 0}.

Corollary 4: We have a € U(U,) if and only if A(a,,) € P(a,, € Py) for
eachm & N.

Proof: The proof of Lemma 2! shows that a real matrix m of order n
belongs to N if and only if there is a w in L™ such that |w| = 0 and m;;
= (w;,w;) for all i and j. Thus, Corollary 4 follows from Theorem 3.

4.2 Introduction to Corollary 5

In order to present our next corollary, we need the following additional
definitions: Let S(m) denote the set of all matrices obtainable from a
given real n Xn matrix m by replacing each off-diagonal element m;; of
m with rjjm;j, where the r;; are real numbers that satisfy r;; = rj; and |r;;|
< 1.Let R denote {m & P: S(m) C P}, and, similarly, let Ry = {m & Py
S(m) C Py}

When n = 2 and P and Py are restricted to 2X2 matrices, we have R
= P and Ry = Py On the other hand, if we let at*)(A) and a‘@(}), re-
spectively, denote the matrices obtained from a(*) and a(® of the proof
of Corollary 2 by multiplying the (1,3) and (3,1) elements by a scalar
variable A, then a+}(1) € P and a9(1) € Py, but a‘*(0) & P, and,
similarly, a‘©(0) & P,. This shows that R(R,) is a proper subset of the
nXn matrices in P(Py) when n = 3.° Two familiar classes of matrices
contained, for example, in R, are the set of row-sum dominant matrices
and the set of column-sum dominant matrices.

Corollary 5: We have a € U(U)y) if either

(i) a € R(Ry).

(ii) Thereare diagonal matrices d, and d of order n with positive di-
agonal elements such that diads is positive definite (nonnegative
definite).’

Proof: Suppose first that a & R(R,). Let w be any element of L” such
that |w| # 0, let ¢ = diag(cy,cs, . . . ,¢,) in which for all , ¢; = 0 if |w;|

* The proof of Corollary 2 shows that U/ C P and Uy C Pgoforn = 2.

t In other words, let a,, denote the “Schur product” of @ and m.

i Lemma 2 is used in the proof of Theorem 3.

§ It will become clear that this proposition also follows from Corollary 2 and Corol-

lary 5.
1l’?(As usual, we say that a real square matrix m is positive definite (nonnegative definite)

if and only if the symmetric part of m is the matrix of a positive definite (nonnegative
definite) quadratic form.
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= 0and ¢; = |w;| "1 if |w;| > 0, and let I'(ca,,c) denote the matrix ob-
tained from (ca,c) by deleting the rows and columns corresponding to
the indices i for which ¢; = 0. In view of the fact that | (w;w;)| < |w;|-|w;]
for each i and j, we see that I'(ca,,c) € P(Py) and hence* that I'(a,,) €
P(Py). By Theorem 3,a & U(Uj).

At this point, we need the following lemma.
Lemma 41: If p = {p;;} and q = |q;;} are real square matrices of the same
order, with p positive definite and g symmetric, nonnegative definite,
and such that g;; > 0 for all i, then r = |p;;q;;} is positive definite.
Proof of Lemma 4: Let p and g be as indicated, and let k denote the order
of p. The proof of Lemma 2 shows that Ly contains & functions
fi.fa, - .. .fr such that

qij = jmfi(t)fj(t)df for all  and j.
0

With v any real nonzero k-vector and with A the smallest eigenvalue of
the symmetric part of p, we have

viro = T vy ﬁ f(O)f(t)dt
= DWZPijUifi(t)Ujfj(t)dt
i)

> j; ”A;(u,—f.»(t))zcit
>0,

which shows that r is positive definite.

To complete the proof of the corollary, suppose that d,ad; is positive
definite, with d; and d» as described, and let m & N. By Lemma 4,
Aldyands) (ie., Ala,,} with a replaced with d,ad») is positive definite and
hence it belongs to P. Therefore, Ala,,} € P, and, by Corollary 4,
e e U

The proof for the case in which d;ads is nonnegative definite is es-
sentially the same, and is omitted.

4.3 Comments Regarding Corollary 5

In light of the fact that Ry = Py restricted to 2X2 matrices when n =
2, the following special result is a direct consequence of Corollaries 5 and
1, and the content of the proof of Proposition 1.
Proposition 2: Let n =2and A € M. Let H.2and H.3 (as well as A.1 and

* Here and in another part of the proof, we use the easily proved result that a real square
matrix m belongs to P(Pp) if and only if dymds € P(Py) for every pair of compatible di-
agonal matrices d, and d3 with positive diagonal elements.

R *f_A proof that the conclusion of Lemma 4 holds when g is positive definite is given in
ef. 11.
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A.3) be satisfied. Then (4) is L-stable for every B if and only if a €
P,.

An example of a matrix a that is nonnegative definite and such that
a & R is given by

11 1
a=1]1 21/2 21/2 R
1 912 9u2

since

11 0
det|1 212 212|<0.
0 a1/2  91/2

Similarly, a very simple example of an a € R such that d,ad5 is non-
negative definite for no suitable d; and d; is

0= [0 1]
0 ol

Of some interest is the fact that a & U if a is an M-matrix (i.e., ifa
has positive principal minors and nonpositive off-diagonal elements);
in that case there is a diagonal matrix d with positive diagonal elements
such that ad is strongly row-sum dominant* and therefore ad and con-
sequently a belong to R.

Theorem 4: Let A & M. If a;; = 0 for alli, thena € Uyif and only if a
€ Ry.
Proof: The “if part” is a special case of Corollary 5.

Suppose that a € Uy with a;; = 0 for all {, and suppose also that a &
R in which case there is an element b of S(a) such that b & P,. Let b
be given by b;; = 0 for all i, and b;; = r;a;; with r;; = rj; for i # j. Choose
n real numbers r11,r99, . . . ,Fan so that the nXn matrix m given by m;;
= r;j for all i and j is nonnegative definite. Observe that m & N. Since
am, = b, by Corollary 4, we have a contradiction to the supposition that
a € Uy Therefore, a € Ry when a € Uj and a; = 0 for all i, which
completes the proof of the theorem.

4.4 Comment regarding Theorem 4

We can have a € Py with a;; = 0 for all {, and a & R,. For example,
let

* See the theorem given on page 387 of Ref. 12.

3044 THE BELL SYSTEM TECHNICAL JOURNAL, OCTOBER 1978



Fig. 1—Flow graph of an interconnected system.

Then a € Py, and

0 —Ijp Ijg
det T12 0 0 = roglriaris <0
0 T'og 0
for,say,ros =ri9=—-rig= 1.

4.5 A Specific example of an L-stable interconnected system

Assume that H.2 and H.3 (as well as A.1 and A.3) are satisfied.
For the system described in flow-graph form in Fig. 1, we have

yYi=x
Y2 =x3— Bix1 + Baxa — Byxy
y3=x3— 2Boxo + 2B4x4
¥4 = x4+ Boxa — Baxs.
Here A & M, with

0 1 -1 0
To see that ¢ & R, consider the matrix

0 0 0 0
=rogp 0 rog —To4

0 =29 O oras |

0 ros —rag 0
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We observe that its determinant vanishes and every 1X1 and 2X2
principal minor is nonnegative for all real values of the r;;. It is a simple
matter to verify that its principal minor of order three obtained by de-
leting the first row and first column vanishes for all values of the r;;, and
it is clear that every other principal minor of order three also vanishes
for all values of the r;;.

Since a &€ Ry, by Corollary 1 and either Corollary 5 or Theorem 4, the
system described in Fig. 1 is L-stable.

Another way to prove that the system in Fig. 1 is L-stable is as follows.
Since H.2 holds, |Biu| < co|u| for u € L. It therefore suffices to show
the L-stability of the system obtained from the flow graph in Fig. 1 by
deleting By, x1, and y;. That can be done with the aid of Corollary 5 by
verifying that the interconnection matrix a of the modified system has
the property that there is a 3X3 diagonal matrix d with positive diagonal
elements such that da is nonnegative definite.
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