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For many real networks, the input and output switches can often
be partitioned into subsets called zones such that switches in the same
zone have a certain community of interest and are more likely to request
a connection. Such a network will be called a zone-balanced network
if, among other regularity conditions, the channel graph between an
input switch u and an output switch v is either isomorphic to a graph
G, if u and v are in the same zone, or isomorphic to a graph Gy if oth-
erwise. In this paper, we continue the study of using balanced incom-
plete block design for the construction of zone-balanced networks. We
introduce some new methods to construct a wide class of such networks,
which include some previous constructions as special cases.

I. INTRODUCTION

The topology of a switching network can often be represented by a
graph by taking switches as vertices and links as edges. By this repre-
sentation, a multistage (switching) network is a graph the vertex-set
of which can be naturally partitioned into s subsets V,...,V, and the
edge-set into s — 1 subsets Ej,. . . ,E,_y, for some number s, so that E;
connects V; to Vi4+1. (We do not allow multiple edges between two ver-
tices.) Vertices in V; correspond to the input switches of the network
and vertices in V correspond to the output switches. Let ueV; and veV,.
Then the channel graph G(u,v) is the union of all paths connecting u
to v in the network. A multistage network is said to be regular if every
vertex in V; has the same number of edges in E;_; and the same number
of edges in E;. A regular multistage network is balanced if the channel
graphs G (u,v) over all ueV; and all veV; are isomorphic.

For many real networks, the input and output switches can often be
partitioned into subsets called zones such that switches in the same zone
have a certain community of interest and are more likely to request a
connection. (In this paper, we are concerned only with connection be-
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tween an input switch and an output switch.) Such a network will be
called a zone-balanced network if it is regular and there exists two graphs
G, and G4 so that G(u,v) is isomorphic to G if u and v are in the same
zone and G (u,v) is isomorphic to G if not. G; and G will be referred to
as the intrazone and the interzone channel graphs, respectively. A
zone-balanced network is said to be symmetrical if it is symmetrical with
respect to the center stage or the two stages in the middle.

A balanced incomplete block design (abbreviated as BIBD) with pa-
rameters (v,b,r,k,\) is a family of blocks, with each block being a k-subset
of the set {1,2,. . . ,v}, satisfying the following properties:

(i) Every element in the set {1,2,.. . ,v} appears in exactly r blocks.
(ii) Every pair of elements in the set {1,2,. . . ,u} appears together in
exactly A blocks.

BIBDs have long been a favorite subject for mathematicians and
statisticians. The reader is referred to Ref. 1 for the existence and con-
struction for many BIBDs. The use of BIBDs for constructing zone-bal-
anced networks was first studied in Ref. 2. Some further constructions
were given in Ref. 3. In this paper, we give some methods for such con-
structions. The zone-balanced networks constructed previously, as well
as in this paper, are all symmetrical.

Il. SOME PRELIMINARY RESULTS

A zone-balanced network is called canonical if each zone consists of
a single input switch and a single output switch. Therefore, a CZBN
(canonical zone-balanced network) can be viewed as a prototype for a
full-fledged network with the same interzone and intrazone channel
graphs. The mechanism for expanding a CZBN into a full-fledged network
is the operation of “parallel expansion,” which was first introduced by
Takagi* and by Timperi and Grillo.? For an s-stage network N, a (k,j)
left (right) parallel expansion means taking k copies of N and identifying
their subgraphs from stage j to stage s (from stage 1 to stage j). Figure
1 gives some examples of parallel expansion. It is clear that parallel ex-
pansion preserves the isomorphisms of the interzone and intrazone
channel graphs.

Next we introduce a method which we will use later to describe the
connection between switches in two adjacent stages. To use this method,
every switch in the two adjacent stages should be labeled by a subset of
a given set. Then two switches in the adjacent stages should be connected
if the label of one is contained in the label of the other. This type of
connection will be called a labeled-subset connection.
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Fig. 1—Examples of parallel expansion.

. A RECURSIVE CONSTRUCTION FOR CZBN

A 2-stage CZBN with v zones is necessarily a vXv complete bipartite
graph; hence, its construction is trivial. We now give a construction for
a 3-stage CZBN (noting that a 3-stage channel graph is uniquely deter-
mined by its number of paths).

Theorem 1: Suppose that a (v,b,r,k,\)-BIBD exists. Then we can con-
struct a 3-stage CZBN with v zones which has r paths in its intrazone
channel graph and \ paths in its interzone channel graph.

Proof: Take b switches of V; and label each of them by a distinct block
of the given BIBD. Take v switches of V;(V5) and label each of them by
a distinct element of Z = {1,2,.. . ,v}. Apply a labeled-subset connection
between V; and V(V3). It is easy to verify that the resulting network
is the one specified in Theorem 1.

Example I: Let the given BIBD have parameters (7,7,3,3,1) and have
blocks (1,2,4), (2,3,5), (3,4,6), (4,5,7), (5,6,1), (6,7,2), and (7,1,3). Figure
2 gives a 3-stage CZBN with 7 zones.

We now give a recursive construction for a symmetrical s-stage CZBN
fors = 4.

Theorem 2: Suppose that an s-stage CZBN with k zones exists which
has G and G, as its intrazone and interzone channel graphs. Fur-
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Fig. 2—A 3-stage CZBN.

thermore, suppose that a (v,b,r,k,\) BIBD exists. Then there exists an
(s + 2)-stage CZBN with v zones which has the channel graphs as shown
in Fig. 3.

Proof: Let N be the given s-stage CZBN and assume that every input
(output) switch of N is labeled by the zone it belongs to. Take b copies
of N and let N; denote the ith copy. Replace the k zones in N; by the k
elements in the ith block of the given BIBD. Take v switches of V1(V3)
and label each switch by a distinct element of the set Z = {1,2,.. . ,v}.
Apply a labeled-subset connection between V1(V3) and the input (out-
put) switches of the b copies of N. It is easy to verify that the resulting
network is indeed the one specified in Theorem 2.

Corollary: Suppose that a (v,b,r,k,\) BIBD exists. Then we can construct
a 4-stage CZBN with v zones such that its intrazone channel graph
consists of r disjoint paths and its interzone channel graph consists of
A disjoint paths.

INTRAZONE INTERZONE

Fig. 3—Channel graphs for Theorem 2.
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Example 2: Using the same BIBD as in Example 1, we obtain the 4-stage
CZBN as shown in Fig. 4.
IV. A CONSTRUCTION FOR CZBNS USING A BALANCED PARTITION

OF BLOCKS

Consider a (v,b,r,k,\) design, and let F; denote the subfamily of blocks
containing element i. A partition of F; is said to be balanced with pa-
rameters (p,d) if the following conditions are satisfied:

(i) F; is divided into p disjoint parts such that each part consists of
r/p blocks.
(i) Exactly d + 1 distinct elements appear in each part.

INTRAZONE INTERZONE

<>

Fig. 4—A 4-stage CZBN.
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(zzt) For any element i’ i contained in part j, the number of blocks
in part j containing i’ is a constant. (From (z) and (iz), this constant must
also be independent of j.)

We say F; has a 2-step balanced partition with parameters
(p1,d1,p2,d9) if F; has a balanced partition Py.. . . ,Pp,, with parameters
(p1,d1) and each P; has a balanced partition with parameters (ps,d2).
Similarly, we can define a ¢ -step balanced partition of F; with parameters
(p1,d1,p2,da. . . ,ped:).

Note that any ¢-step nested partition of a set N induces a partial or-
dering which can be represented by a (¢ + 2)-level rooted tree. Suppose
that N has n elements. Then the first level of the tree corresponds to the
crudest partition, namely, a single node representing the set N itself, and
the (¢t + 2)-level of the tree corresponds to the finest partition, namely,
n nodes each representing a single element of N. The ¢ intermediate
levels of the tree correspond to the ¢ partitions sequentially. By taking
two copies of this tree and identifying their nodes at the (¢ + 2)-level,
we obtain a (2t + 3)-stage symmetrical network. This mapping from a
nested partition to a multistage network is critically used in the following
theorem.

Theorem 3: Consider a (v,b,r,k,\) BIBD and let F; be the subfamily of
blocks containing the element i. Suppose that foreach F;,i=12,. .. v,
there exists a t-step balanced partition with the parameters
(p1,d1,p2,ds,. . . ,pi,d;). Then there exists a (2t + 3)-stage ((2t + 4)-
stage) CZBN which has channel graphs as shown in Fig. 5: (¢ =
r/Ii-ip;). (To obtain the channel graphs for the (2t + 4)-stage CZBN,
replace each vertex in the center stage by the graph 0-0.)

INTRAZONE INTERZONE

Fig. 5—Channel graphs for Theorem 3.
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Proof (only for the case that n is odd): For each F;,i = 1,. . . ,v, construct
a (2t + 3)-stage symmetrical network by using the given ¢-step balanced
partition. The union of these v networks (they overlap at the center stage,
since the F;’s overlap) yields a CZBN with channel graphs as specified
in Fig. 5 with ¢ = 1. Taking ¢ copies of these networks and identifying
their first stages and last stages, we obtain the desired cZBN. That the
constructed network is “balanced” is a consequence of the partition being
balanced.

Corollary: Suppose a (v,b,r,k,1) BIBD exists and I1i_,p, divides r. Then
a CZBN with channel graphs as specified in Fig. 5 exists.

Proof: With A = 1, any partition which satisfies condition (i) of a bal-
anced partition is a balanced partition. The same is true for a t-step
partition. Therefore, when Tj_,p; divides r, then a t-step balanced
partition with parameters (py,. . . ,p¢) always exists (the parameters d;s
are determined by p;s).

Note that by applying Theorem 2 several times to the network con-
structed in Theorem 3, we can obtain CZBNs with various types of
channel graphs. In particular, we obtain the following:

Theorem 4: Suppose that a sequence of BIBDs with parameters
(v;,bjri ki Nj), ] = 1,2, .. ,m exists. Furthermore, suppose k; = vj+1 for
j=12...,m—1, Ap, =1,and l1}-,p, divides r,,. Then there exists a (2t
+ 2m + 1)-stage ((2t + 2m + 2)-stage) CZBN which has channel graphs
as shown in Fig. 6: (g = r,/ILi= p}).

Proof: Use the (vy,bm,"m,&m, Am) BIBD to construct a (2t + 3)-stage
CZBN from Theorem 3. Then apply Theorem 2 m — 1 times.

Note that, if we take ¢ copies of each & out of v combination, we obtain
a (v,b,r,k,\) BIBD with b = ¢(}), r = ¢(32}) and A = c¢(}=3). By setting &
= p, it is clear that a (v,r,r,u,r) BIBD always exists. The zone-balanced
networks constructed in Ref. 3 are thus seen to be special cases of the
networks specified in Theorem 4 by setting \; =r; forj = 1,2,... ,m —
1. (The conditions that A = 1 and IIi_,p, divides r,, are not explicitly
stated in Ref. 3, but a check with the author of Ref. 3 has verified their
necessity.)

V. A GENERALIZATION

We can generalize the definition of zone-balanced network to partially
zone-balanced network in which every pair of zones is classified into one
of the k associate classes. The channel graphs of all intrazone pairs of
the ith associate are isomorphic to a graph G; regardless of which pair
is chosen. The number of the ith associates of a given zone should be
independent of which zone is chosen. Just as balanced incomplete block
designs are a natural tool for the construction of zone-balanced networks,
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INTRAZONE

Fig. 6—Channel graphs for Theorem 4.

we can use partially balanced incomplete block designs to construct
partially zone-balanced networks, and results similar to those given in
this paper can be obtained. However, the partially balanced incomplete
block design is really too strong for our construction, since we do not
require that for every pair of zones X and Y of the ith associate, the
number of zones which are the jth associate of X and the kth associate
of Y should be independent of X and Y. This suggests that some design
weaker than the partially balanced incomplete block design should be
studied for this purpose.

After the completion of this paper, we learned that the author of
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Ref. 3 had just revised her paper into a more complete and general ac-
count.® However, the main difference between our construction and her
construction remain as follows: (i) Her construction uses only one BIBD,

while ours uses many BIBDs sequentially. (zi) The method of using bal-
anced partition of blocks is unique in our construction.
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