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An experiment has been performed to study the perceptual char-
acteristics of speech processed by adaptive differential PCM. We created
18 three-bit and four-bit coders spanning a wide range of quantizer
adaptation parameters. Subjects judged differences between coders
and rated the quality of each coder individually. The difference data
reveal three important perceptual characteristics: overall clarity, signal
vs. background degradation, and rough vs. smooth impairment. These
characteristics are strongly correlated with coder design parameters
and objective performance measures. Overall subjective quality is well
predicted by segmental signal-to-noise ratio and even better by a linear
combination of measures of granular distortion and overload distor-
tion.

I. INTRODUCTION

Speech signal processing systems are susceptible to a variety of audible
impairments often classified with words like “distortion,” ‘“noise,”
“echo,” and “sidetone.” These categories are themselves subdivided:
for example, “linear” and “nonlinear” distortion, “white” noise, “im-
pulsive” noise, “speech-dependent” noise, etc. When the type of system
is familiar to a large body of listeners, the application of these names
becomes standardized and a language exists for describing the quality
of specific implementations. With new systems, however, the types of
degradation are often not known a priori, and special effort is required
to identify them and to relate them to physical characteristics of the
system.

For example, experiments on PCM (pulse code modulation) have
identified peak clipping, granular quantizing noise, and bandlimiting
as important audible degradations.l2 In PCM, there are relatively few
design parameters, and each of these impairments can be related to one
of them: peak clipping to quantizer overload point, granular noise to step
size, and bandlimiting to sampling rate.
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In ADPCM (adaptive differential PCM), a coding method that appears
promising for a number of practical applications, the situation is more
complicated. Here each design parameter has interrelated effects on
several types of degradation, and the perceptual correlates of a particular
design are hard to predict. In ADPCM, the step size and overload point
vary with time, producing a dynamic mixture of overload and granularity
that depends on the adaptation mechanism. One can identify in the
quantized waveform two types of overload: overload that causes clipping
of stationary inputs and in addition, overload due to slow quantizer re-
sponse to increases in short term (syllabic) signal level. Moreover, a
mathematical study® has identified two separate aspects of adaptive
quantizer performance: static (response to constant-level inputs) and
dynamic (response to changes in input level). However, it is by no means
evident or even likely a priori that these mathematically separable
characteristics are perceived separately.

To investigate perceptual characteristics of speech processed by
ADPCM we conducted an experiment that is summarized in the next
section. The following five sections provide details of the coding method,
objective performance measures, the experimental design, and analyses
of subjective and objective measurement data. Section VIII discusses
the implications of the principal findings.

Il. SUMMARY

High-quality digital recordings of speech samples from four talkers
(two male and two female) were processed according to 18 different
ADPCM coding schemes on a digital computer. The coders incorporate
all combinations of two bit rates, three load constants, and three time
constants. The data obtained from the experiment consisted of two types:
objective measurements and subjective judgments of the processed
speech. With these two types of data we addressed the following ques-
tions:

(i) What are the perceived characteristics of speech processed by
ADPCM?

(ii) How are these characteristics related to subjective judgments
of quality?

(iiz) What is the relationship between objective performance measures
and the perceptual features?

(iv) What is the relationship between objective performance mea-
sures and judgments of circuit quality?

(v) What combinations of design parameters produce coders within
a given quality range?

The analyses of the data indicate the following answers to each of the
above questions:

1598 THE BELL SYSTEM TECHNICAL JOURNAL, MAY-JUNE 1978



(i) Listeners perceive three distinct characteristics of the processed
speech: (a) the overall clarity, (b) the kind of degradation that reduces
the clarity, namely, whether the degradation is signal distortion or noise
or both, and (c) the nature of the signal distortion and/or the nature of
the noise.

(ii) Quality judgments are correlated with all of these subjective
variables. The overall clarity is by far the strongest correlate.

(iii) Signal-to-noise ratio, measured segmentally, SNRy,,, is a good
predictor of the overall clarity. The log of the ratio of attack to recovery
speed, log A/R, is a good predictor of the mixture of signal distortion and
background noise. The log of the attack time, log T, predicts the kind
of signal distortion and/or the kind of noise.

(iv) SNRs is a very good predictor of quality judgments, while SNR
measured in the traditional manner is a very poor predictor of quality.
A linear combination of probability of overload, P, and segmental sig-
nal-to-granular-noise ratio, SNRGse, is an even better predictor of quality
than SNR .

(v) By applying the prediction equations to coders with design values
intermediate to those of the experiment, we show the combinations of
load constant and time constant at each bit rate that would be judged
about equal in quality. Those that would be rated almost as highly as
the best coder cover a wide range of design parameters.

lll. CODER DEFINITIONS

Figure 1 is a block diagram of an ADPCM coder-decoder. In the absence
of transmission errors, the sequence of received samples r’(k), is identical
to the quantized approximation sequence r(k). In our experiment s(k)
was a digital speech signal represented in a 12 bit, 8 kHz format and the
coders were realized in software on a Data General Eclipse computer.

The conversion from 12-bit PCM to 3-bit or 4-bit ADPCM is performed
according to the algorithm described by Castellino et al.% In all of the
coders the predictor is a two tap transversal filter with coefficients 1 and
—0.5 so that the relationship of approximation signal, r(k), to quantizer
output, d(k), is

r(k) =d(k) +r(k —1) —0.5r(k — 2). (1)

Signal-level estimation. The step size, A(k), which is derived from
the sequence of quantized prediction error samples d(k) or equivalently
from the transmitted code words, I(k), is proportional to an estimate
of the mean absolute value of the quantizer input, e(k). The estimate
at time k, o(k), is an exponentially weighted sum of quantizer output
magnitudes. It is computed recursively as

o(k) = ao(k — 1) + (1 — &)|d(k — 1) (2)
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Fig. 1—Block diagram of ADPCM coder-decoder.

Here, the parameter « (0 < a < 1) determines the speed of response of
the quantizer to changes in input level. A low value of « provides a fast
response; « ~ 1 is associated with a slow response. A compromise between
static and dynamic performance objectives is required in selecting a.. A
high value (« = 1) provides more accurate “steady-state” tracking of a
constant signal level than does a low value.

If the signal level suddenly increases, the estimate ¢ increases with
an initial slope proportional to 1 — & volts/sample (if ¢ is measured in
volts). In this paper we shall refer to an adaptation time constant, 7 sec,
that is the reciprocal of this initial slope in response to a unit step. It is
defined by

T

l—a

T=

sec

where T is the sample period. For 8 kHz sampling

To incorporate a perceptibly wide range of signal conditions, we have
selected, after informally listening to a large number of coders, 3 values
of a for the experiment. They are a = Yy, 3%, 255456 with corresponding
time constants: 7 = (.25, 4, 32 msec.

Quantizer loading. The quantization step-size A(k) is proportional
to the signal-level estimate, a(k):

A(k) = Co(k) (3)
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where the load constant, C, determines in steady-state (fixed signal level)
the mixture of granular noise and overload distortion in d(k). A relatively
high value of C produces a large average step size and causes granularity
to be the principal distortion component. With a very low value of C,
overload predominates.

For a given number B bits/sample, we define a nominal load constant,
Co. C, is the step size which produces minimum mean square error in
a fixed quantizer processing a signal that has Laplacian probability
density with unity average magnitude. In fact, it has been noted that the
shape of the PDF of the compressed signal e(k)/o(k) is between a
Gaussian and a Laplacian function, and more near to the Laplacian one
for higher time constants.” For B = 2, 3, 4, 5 bits, Cy = 1.53, 1.03, 0.65,
0.40, respectively. We define a relative load constant for each quantizer
to be

L=20 loglg £ dB.

Co
After listening informally to speech processed by a variety of coders, we
chose for the experiment three relative load constants, L = —10, —4, 4

dB.
It has been shown® that this adaptive quantizer is a special case of the
one with multiplicative step size changes™

A(k + 1) = M[I(k)]A(R).

The multipliers associated with code words I(k) = 1, £2, ... £2B-1
are

M[I(k)] = a + (1 — @)C(|I(k)| — 0.5).

Dynamic and static behavior. The dynamic behavior of the coder can
be described by two characteristics: the attack and recovery speeds. The
attack speed is defined as the step size increase (in dB) per unit time
when the signal level suddenly changes from a very low value to a very
high value. The recovery speed is defined as the step size decrease (in
dB) per unit time when the signal level suddenly falls. The attack and
recovery speeds can be computed from the largest and smallest multi-
pliers3:

Vg = —zglogM(I,,) dB
T sec

-2
Ve T

where T is the sampling time, and n = 2B-1, A small attack speed will
produce slope overload distortion, while a small recovery speed will result

logM(I4) d8
sec
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in greater granular distortion. The static behavior is also affected by

attack and recovery speed: a high attack and low recovery speed result

in a step size that is higher on the average than that resulting from a slow

attack and fast recovery. A very good indicator of static performance is

the attack to recovery ratio:
AJR < Yo JogMU,)

v, —logM(Iy)

Attack time, which we have found to be strongly correlated with the type

of distortion or the type of noise produced by a coder, is the reciprocal

of attack speed:

Va

Summary of conditions. The experiment includes coders with 3
variable design parameters: B bits/sample, 7 msec response time, and
L dB relative load constant. The 18 coders comprise all combinations
of B=3,4;7=0.25,4,32; L =-10, —4, 4.

IV. OBJECTIVE MEASURES

Our aims include exploration of the relationships between perceived
characteristics of the processed speech and objectively measurable
quantities. To investigate these relationships, we have computed several
objective performance indices for each processed utterance. The mea-
sures are defined as follows:

Total signal-to-noise ratio.

Ts2(k)
S[s(k) — r(k)]2
Here k ranges over all samples in the utterance, and r(k) is defined as

the best estimate of s(k).
Granular signal-to-noise ratio.

SNR = 10 log

si(k)
Z[sg (k) — rg(k)]?
where k ranges over all samples in the utterance and the signals sz (k)

and r, (k) are defined only when the quantizer is not overloaded; that
is, when the quantization error is less than one-half the step size:

AGk)
2

SNRG = 10 log

sg(k) =s(k); ry(k) =r(k) if |[s(k)—r(k)|<

se®) = rgk) =0 it |s(k) = r(i)] > 252

1602 THE BELL SYSTEM TECHNICAL JOURNAL, MAY-JUNE 1978



Percent of samples overloaded.

N
2 sg(k)/s(k)

p=100]1-%2L
N

where N is the total number of samples in the utterance.
Total segmental signal-to-noise ratio. This is a measure proposed
by Noll8 as a more relevant index of speech quality than SNR:

128
3 s2(j + 128m)
“

1 M-1 F
SNRgeg = ﬂ ZD 10 log o
me
S [s( +128m) — r(j + 128m)]?
j=1

Here the utterance is divided into segments each containing 128 samples
(16 msec) and the signal-to-noise ratio in each segment is measured in
dB. The average of these measures over the M segments in the utterance
i8 SNR;eg.

Granular segmental signal-to-noise ratio.

128
> s2(j +128m)
<

10 log :
128
> [s( + 128m) — rg(j + 128m)]2
j=1

1 M-1
Mm=0

SNRGyey =

Here the same procedure as for SNR,, is applied to samples s, (k) and
rg(k).

V. TESTING PROCEDURE

Digital recordings* of 10 sentences spoken by each of 4 talkers (2 male
and 2 female) were processed by each of the 18 coders. The processed
sentences were equalized to the same mean power to eliminate level
differences due to quantizer overloading and thereby minimize differ-
ences in subjective loudness. Four analog test tapes, each containing the
153 possible pairs of coders, were prepared from these recordings. The
speech samples in a pair of conditions were the same sentence by the
same talker. The talkers and sentences were assigned to coder pairs so
that they occurred as equally as possible on a tape. A pair of coders
processed a different talker and sentence on each tape and the order of

* The source speech was the set of digital tape recordings used in a previous experiment
on PCM.!

SPEECH PROCESSED BY ADAPTIVE DIFFERENTIAL PCM 1603



presentation within the pair was reversed on half of the tapes. The coder
pairs appeared in a different (random) order on each tape.

Students from the junior and senior classes of local high schools served
as paid subjects. They listened to the processed speech over Pioneer
SE700 earphones at 80 dBSPL while seated in a double-walled sound
booth with frequency-weighted room noise introduced at a level of 50
dBA.

Dissimilarity judgments. In the first experiment, 17 subjects (3,4,5,5
per random order) judged the pairs of conditions. They were told to use
the numbers from 0 to 9 to indicate how different the speech sounded
over each pair of coders, using a 0 for no difference, a 9 for very different,
and the numbers between 0 and 9 for intermediate differences. Before
the test session began they judged 6 pairs, for practice, that represented
the expected range of differences.

Preference judgments. In the second experiment, 16 different subjects
(4,5,4,3 per random order), also junior and senior high-school students,
listened to the same tapes containing the pairs of coders. However, this
time the subjects were instructed to indicate which condition of each pair
they would find more acceptable for listening to speech.

Rating judgments. In the third experiment, subjects judged the
quality of the coders individually. Eight audio tapes were prepared, each
containing 36 sentences. Tapes 1-4 had the processed speech (played
through the 18 coders) of one male and one female talker. The other two
talkers appeared on tapes 5-8. The stimuli on tapes 1-4 appeared in
different (randomized) orders. The same 4 orderings were used for tapes
5-8. The sentences occurred as equally as possible on each tape.

In this experiment the subjects were asked to rate the quality of the
36 conditions according to the adjectives: excellent, good, fair, poor,
unsatisfactory. Their answer sheets contained 36 rows of short lines
separated into 9 columns. The odd columns were labeled with the ad-
jectives and the even ones unlabeled, allowing the subjects to check in-
termediate ratings if they chose to do so. On half the answer sheets the
order of the labels were reversed. Tapes 1-4 were presented to the 17
listeners of the first experiment in a short session that took place 5
minutes after the completion of the difference judgments. Tapes 5-8
were presented to the 16 listeners of the second experiment 5 minutes
after the completion of the preference judgments.

VI. INITIAL DATA REDUCTION

The experiment was performed to provide information about rela-
tionships between ADPCM coders and it is expected that for the most part
differences in listener responses are due to coder differences. The ex-
periment was designed to cause other sources of variability to be mu-
tually cancelling in the average data for each coder. Sources of extraneous
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variability are: differences in the way listeners use the response scales,
differences in speech material, and effects of presentation order. Before
aggregating the data for individual coders it was necessary to assess the
importance of each of them.

Difference judgments. The variability due to listener differences is
revealed by the correlation coefficients of pairs of subjects who heard
the same tape. These coefficients have a mean value of 0.61 and standard
deviation of 0.09, indicating substantial agreement. The effects of pre-
sentation order and talker were tested by means of an analysis of variance
which showed that the responses to the 4 random orders were not sig-
nificantly different. The variability due to the different talkers was
significant at the 0.05 level, but accounted for only 1 percent of the total
variance. This variability is due to the fact that speech of female talkers
was rated differently from speech of male talkers. There was no signifi-
cant difference in the ratings of talkers of the same sex.

The important variability in the difference data can therefore be at-
tributed to coder differences, and to assess these differences, we nor-
malized the 153 responses of each subject to zero mean and unity stan-
dard deviation. The averages, across the 17 subjects, of the normalized
responses were the elements of a dissimiliarity matrix which was ana-
lyzed according to the MDSCAL®-13 procedure.

MDSCAL locates points, representing the stimuli, in a multidi-
mensional space so that the distances between the points are monoto-
nically related to the judged differences. Because the dimensionality of
a solution is specified as input, successive solutions of increasing di-
mensionality are usually computed. Then, the stress values (essentially
the root mean square error) and the interpretability of each solution are
used as criteria for deciding upon the smallest number of dimensions
that are needed to explain the data. The stress values give a measure of
how well the distances in the solution spaces correspond to the reported
differences among the coders. Solutions in 1, 2, and 3 dimensions for the
difference judgments among the 18 coders had stress values of 0.25, 0.11,
and 0.07, respectively. The large decrease in stress between the 1 and
2 dimensional solutions indicates that at least 2 dimensions are needed
to account for the data. Although a 3-dimensional solution accounted
for only a small additional decrease in stress, it offered an enhanced
interpretation of the subjective space. (See Section VIL.)

Preference judgments. The preference data were analyzed according
to MDPREF, 1415 a factor analytic procedure that measures the variability
in preference among the subjects. The proportion of the total variance
contributed by each factor is related to the agreement among the subjects
on the relative importance of different characteristics of the stimuli. In
the solution for the preference judgments of the 18 coders, the first factor
accounted for 0.89 of the variance and the second accounted for only an
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additional 0.02, indicating strong agreement among the listeners and
a single factor solution. Therefore, the values of the points from the one
factor solution were used for the scale of preference.

Rating judgments. We computed the correlations of the ratings of
each subject with those of each of the other subjects who listened to the
same tape. The distribution of the correlation coefficients had a mean
of 0.78 and standard deviation of 0.08, again showing a high degree of
agreement. Therefore, the mean across subjects of the individual re-
sponses, normalized so that the ratings of each subject had zero mean
and unit variance, were used in an analysis of variance due to coder pa-
rameters, talkers, and random orders. The 3 design variables, load
constant, time constant, and bits, were all significant at the 0.05 level.
The variability due to the random orders was not significant, but the
variability due to the different talkers was significant. As in the differ-
ence experiment, the significant talker variability was due to differences
between the male and female talkers, accounting for only 1 percent of
the variance.

Rating vs. preference. The two types of quality judgments, preference
and rating, were obtained so that the two testing methods could be
compared. The paired comparison tapes were designed to balance many
of the sources of variability that are artifacts of the testing procedure.
Each coder was heard an equal number of times with each talker and
approximately an equal number of times with each sentence. The order
of presentation was reversed on half of the trials and, of course, the rel-
ative merit of each coder was ultimately determined by comparing it with
every other coder. In the rating judgments, the merit of a coder was de-
termined by one presentation per talker. Ratings assume that the quality
represented by the five adjectival categories are not only well defined
for each individual, but are essentially the same for all individuals. Al-
though the ratings were normalized before computing the analysis of
variance, the more customary procedure is to simply average the original
judgments across subjects. Therefore, to compare the results of the rating
study with those of the more critical paired-comparison study, the mean
across subjects of the original unnormalized ratings were used.

Figure 2 shows a scatter plot of these ratings vs. transformed quality
measures from the one factor MDPREF solution of the paired-comparison
judgments. (The linear transformation scales the maximum and mini-
mum measures to one and nine, respectively.) As this plot shows, the
agreement in ratings for the two methods is extremely high: the corre-
lation is 0.99. Thus it appears that the uncontrolled sources of variability
that could contaminate simple rating judgments did not have a strong
influence on the variability of these data. The additional experimental
effort involved in collecting paired-comparison judgments in order to
control this variability did not increase the accuracy.
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Fig. 2—Relationship between overall evaluation of coders by category ratings and paired
comparison preference methods.

VIl. RESULTS

The output of MDSCAL is a set of points, representing the coders, in
Euclidean space. The inter-point distances are related to the judged
differences between coders and the orientation of the points in this space
is supposed to reveal the underlying perceptual characteristics of the
coders. However, the distances are invariant under orthogonal rotation
and it is often the case that a rotation of the MDSCAL coordinates is
necessary to interpret the configuration in terms of known coder prop-
erties.

In evaluating MDSCAL analyses of varying dimensionality, we con-
cluded that a 3-dimensional geometry would be most informative. We
approached the rotation problem by using multiple linear regression
procedures to locate vectors in the 3-dimensional space on which the
projections of the points are maximally correlated with various objective
measures and design parameters. We also located the vector on which
the projections of the points are maximally correlated with the average
subjective ratings obtained in the third experiment. The vector for each
measure of the 18 coders was located independently. Table I displays
some of the measures for which vectors were derived and Table II gives
the correlations between measurements and the corresponding projec-
tions on vectors in the MDSCAL space. These vectors are an aid to the
interpretation of the subjective space because they make it possible to
relate directions in space to changes in design parameters and perfor-
mance measures. As a visual aid, the coordinate axes were rotated so that
they nearly or exactly coincide with meaningful directions.
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Table |

r L, To T SNR, SNR,e, SNRG, SNRGg, P,
Coder B e A A/R 4B ng B seg % R
1 3 025 4 0.01 0.1512.63 10.5 8.8 10.5 8.8 0.07 3.4
2 3 025 —4 0.03 004 1.20 14.8 15.7 20.3 19.0 6.69 5.7
3 3 025-10 021 003 013 29 4.5 24.9 23.7 58.28 24
4 3 4.00 4 0.11 251 2399 11.1 9.0 11.1 9.2 0.11 3.2
5 3 400 —4 037 068 184 13.1 14.6 20.9 19.6 6.15 5.6
6 3 4.00-10 3.27 054 017 21 4.2 24.3 23.0 57.32 25
7 3 32.00 4 0.79 20.13 25.54 11.1 5.5 11.2 5.9 0.60 2.3
8 3 3200 —4 289 545 189 179 11.2 20.7 17.8 13.03 44
9 3 32.00 —10 26.16 4.39 0.17 0.7 3.6 224 229 63.79 16
10 4 0.25 4 0.01 005 532 159 14.8 16.0 14.8 0.07 49
11 4 025 -4 002 003 141 19.2 20.4 24.5 23.1 2.76 T4
12 4 025 -10 0.06 0.02 040 89 11.7 29.9 28.1 25.74 5.2
13 4 400 4 0.08 094 1253 17.1 15.5 17.2 15.7 0.11 5.2
14 4 4.00 —4 0.23 057 250 17.0 19.7 25.5 23.9 2569 7.2
15 4 400 -10 085 051 059 74 10.3 29.8 279 2491 6.2
16 4 3200 4 055 7.60 13.73 17.1 13.0 17.7 13.5 0.44 4.0
17 4 3200 —4 1.78 463 260 11.8 16.2 256.5 22.3 6.81 6.1
18 4 32.00 —10 6.78 4.10 0.60 3.3 9.4 28.9 27.1 3490 3.5
Table Il
Objective Corr. with vector
measure values
SNR 0.95
SNRg,, 0.96
log A 0.96
SNRG 0.94
SNRGyeg 0.95
P overload 0.98
log T, 0.92
log T, 0.85
Rating 0.99

As a further step in interpreting the space, we listened to one of the
tapes used in the rating experiment. After hearing each sentence, the
three of us independently wrote adjectives to describe the processed
speech. Examples of coder descriptions are: “clear, some noise,” “slightly
muffled, medium noise,” “crackling noise,” “very hoarse.”

After considering several other rotations, we chose the solution dis-
played in Figs. 3 and 4 as most interpretable because the coordinate axes
nearly or exactly coincide with vectors of measurable quantities and the
coder descriptions cluster in a meaningful way. With this rotation, the
proportions of the total variance accounted for by dimensions I, I, and
III are 0.62, 0.19, and 0.19, respectively.

Subjective variables. When the descriptive adjectives were related
to the configuration of points on the plane of the first two dimensions,
shown in Fig. 3, an interpretation emerged that was reminiscent of a
similar analysis in a study of analog circuits.16 The interpretation of the
space in that study indicated that listeners distinguish among the pro-
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Fig. 3—Projections of points, representing coders, and vectors, representing measures,
on the plane of dimensions I and 1L

cessed speech samples according to whether the speech is clear or de-
graded. When degradation is present, they further distinguish between
noise in addition to the signal and distortion of the signal itself. The same
interpretation applies to the first 2 dimensions in the ADPCM coder
space. The coders we described as having clear speech and little noise
are high on the first dimension. The coders that were described as noisy,
muffled, and hoarse are low on the first dimension, and intermediate
amounts of each type of reduction in overall clarity are distributed be-
tween these two extremes. Thus, the first dimension appears to represent
the overall clarity of the speech.

The plane of dimensions II and III, shown in Fig. 4, identifies the
characteristics of the speech that reduce the clarity. The coders that we
described as noisy are high on the second dimension and those that we
described as muffled or hoarse are low on the second dimension. Thus,
the second dimension represents the two kinds of degradations that
reduce the overall clarity: background noise and distortion of the speech
signal itself. The conditions we described as very muffled sounded as
though the speaker had his hand, or some other material object, in front
of his mouth, and these conditions are high on dimension III. Those
conditions we described as hoarse sounded as though the speaker had
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Fig. 4—Projections of points, representing coders, and vectors, representing measures,
on the plane of dimensions IT and III.

laryngitis and, in general, they are low on the third dimension. T'wo kinds
of background noise were also identified: one that is described as
crackling, and one that is more like the familiar white random noise. In
general, the coders with crackling noise have low values on the third
dimension and those with white random noise are in an intermediate
position. Thus, the third dimension appears to represent a further dis-
tinction between each kind of degradation that could be described as
rough vs. smooth. Hoarse speech and crackling noise are rough or ir-
regular in character, muffled speech is smooth or uniform, while speech
corrupted by white noise is intermediate between these two extremes.

Objective measures. Figures 3 and 4 also show the vectors corre-
sponding to various objective measures. The vector SNR,,, is very close
to the coordinate axis of dimension I and is therefore a good indicator
of the overall clarity of the processed speech. Log A/R predicts the dis-
tribution of points on the second dimension, interpreted as the prevalent
kind of degradation, signal distortion or background noise. A low A/R
produces a low step size on average, leading to slope overload, perceived
as signal distortion. On the other hand, a high value of A/R resultsina
high average step size and high granular noise. The locations of the
vectors SNRGeg and P are also consistent with our interpretation of the
coordinate axes. They both have high negative weighting on dimension
IT because both reflect the predominant impairment category. High P
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Fig. 5—Waveforms of the word “tool” for 3-bit ADPCM coders low on dimension II (signal
distortion), with different values on dimension I1I, showing the relationship of attack time
to the smooth or rough subjective descriptions.

means high overload and substantial distortion; high SNRG,.; means
low noise. Their non-zero weight on dimension I indicates their influence
on speech clarity. A high value of SNRG,, indicates low background noise
and enhanced clarity. Conversely, a high value of P is correlated with
high distortion and thus with low clarity. The small angle between P and
SNRG,, reflects the fact that overload and granularity usually vary re-
ciprocally in coders with a given number of bits per sample.

The coordinate axis of dimension III is highly correlated with log T,.
When the attack time is very high, the step size is very slow in following
fluctuations in input level and the speech sounds muffled. When the
attack time is very low, the step size frequently overshoots its target value
at the beginning of pitch periods, causing irregularity in the periodicity
of the processed speech. This irregularity makes the speech sound
hoarse.

These properties are apparent in Figs. 5 to 7 which show waveforms
that are representative of coder locations in the II-III plane. All of them
display the word “tool” processed by 3-bit ADPCM coders with sub-
stantially impaired clarity. Figure 5 shows the waveforms of distor-
tion-producing coders (low weighting on dimension II). With —10 dB
relative load factor they all produce substantial slope overload in steady
state. Coder 9 (Fig. 5b) with T, = 32 msec and high weight on dimension
III is the most muffled; fluctuations in the signal envelope are very
heavily smoothed. Coder 6 (Fig. 5¢), T, = 4 msec, lower on dimension
III, reproduces long-term envelope fluctuations, but smoothes out in-

SPEECH PROCESSED BY ADAPTIVE DIFFERENTIAL PCM 1611



INPUT
SPEECH

a
CODER 4

b
CODER 7

c
CODER 1

d

Fig. 6—Waveforms of the word “tool” for 3-bit ADPCM coders high on dimension IT
(background noise), with different values on dimension IIL

dividual pitch periods. Coder 3 (Fig. 5d), T, = 0.25 msec, moderate
loading on dimension III, reproduces pitch contours but with substantial
time and amplitude distortion. Figure 6 shows the waveforms of the very
noisy coders, 4, 7, and 1, with high relative load factors (4 dB) and high
weighting on dimension II. With low distortion they all preserve the
general envelope and time structure of the original, so that the nature
of their impairment is best seen in oscillograms of noise voltages (coder
output minus input). The two extreme types of noise are displayed in
Fig. 7. Coder 4, with relatively high weight on dimension III, has
“smooth” noise which is shown in Fig. 7b to be correlated with the long
term envelope of the speech. In Fig. 7c, coder 1, with crackling noise
impairment, low weight on dimension III, is seen to produce impul-
sive-type noise correlated with the pitch contours of the signal.
Quality prediction. The vector labeled R corresponds to the mean
ratings on the 9-point response scale and is very close to the first di-
mension. As indicated by Fig. 2, a vector corresponding to quality derived
from the paired-comparison preference judgments would be in essen-
tially the same location. Multiple regression procedures were used to
derive linear relationships between the objective measures and subjective
quality. Table III lists the formulas for predicting the ratings from several
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Fig. 7—Noise waveforms relative to the word “tool” processed by two coders of Fig. 6,
with the amplitude scale doubled, showing the influence of attack time on the types of
noise.

of the objective measures, singly and in combination. Prediction accuracy
is indicated by correlations between actual and estimated ratings (1.0
would be perfect agreement), and by the rms error expressed as a fraction
of a point on the 9-point scale. Table ITI shows that, consistent with the
locations of their vectors relative to the R vector, SNRy, (formula 2) is
a very good predictor of subject quality and SNR (formula 1) is not a good
predictor. Among the formulas that contain more than one objective
measure, the most accurate predictors of subjective quality are 7 and
8 which include separate measures of granular and overload impair-
ments. Although the location of the vector corresponding to SNRG is
essentially the same as that of the SNRG,,,g vector, prediction accuracy
is higher when the measurement is made segmentally.

Other coders. Since formula 8 proved an accurate estimator of the
subjective quality of the 18 coders in the experiment, we used it to esti-
mate subjective quality of other ADPCM coders with a wide range of

Table Ill

Formula for predicting rating Corr. :‘nsr

1 0.21 SNR + 2.27 0.69 1.20
2 0.31 SNRyeg + 0.89 0.93 0.63
3 0.33 SNR,ee — 0.45log A/R +0.79 | 0.95 0.54
4 0.25SNRG — 0.067 P —0.39 log T, +0.22 0.94 0.55
5 0.24 SNRG — 0.077 P + 0.68 0.93 0.63
6 0.16 SNRG — 1.11 log T, + 0.47 0.69 1.21
7 0.24 SNRGyeg — 0.078 P — 0.22 log T, + 1.00 0.96 0.45
8 0.25 SNRG;e — 0.084 P + 1.19 0.96 0.48
9 0.14 SNRGgee — 1.03 log T,y +1.38 0.65 1.27
10 —0.036 P —0.26 log T, + 4.97 0.56 1.38
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0g‘ig. 8—Equi-rating contours predicted by formula 8, Table III, for 4-bit ADPCM
coders.

design parameters. To do so, for each bit rate, we simulated 64 coders
that comprised all combinations of 8 load factors and 8 time constants.
The 8 values of each parameter included the 3 tested in the original ex-
periment and 5 intermediate values. SNRG;; and P were measured on
4 sentences, one by each talker, processed through each of the 64 coders.
The quality ratings, predicted using formula 8 with the averages of the
measures on the 4 sentences, are displayed in Figs. 8 and 9, which pertain
to 4-bit and 3-bit coders, respectively. The equi-rating contours show
that near-optimum quality can be expected over a surprisingly wide range
of circuit conditions. For instance, with 4-bit coding, a rating of 6.5 (1,
point from optimum on the 9-point scale) is maintained over a 7 dB range
of load factors and a 32:1 range of time constants.

Vill. DISCUSSION

Perceptual characteristics. Our interpretation of the 3-dimensional
subjective space is consistent with previous work!® on analog speech

1614 THE BELL SYSTEM TECHNICAL JOURNAL, MAY-JUNE 1978



LOAD CONSTANT IN dB

.25 5 1.0 20 4.0 8.0 16.0 320
TIME CONSTANT IN msec

gig. 9—Equi-rating contours predicted by formula 8, Table III, for 3-bit ADPCM
coders.

impairments. In both cases, the first two dimensions have the same
meaning. The third dimension in Ref. 16 was related to loudness. In the
present experiment, the stimuli were equalized in level, so that subjects
could attend to less obvious differences, like the “rough” or “smooth”
character of the impairment. The plane of dimensions IT and III, Fig.
4, provides perhaps the most interesting view of the subjective space.
Accounting for 38 percent of the variance in the average difference
judgments, it represents the kind of degradation, independent of the
amount of degradation. In this plane, the perceptually meaningful
classifications of ADPCM impairments are the categories, “speech dis-
tortion” and “background noise” (dimension II) and, in addition, the
types of distortion, “muffled” (smooth) and “hoarse” (rough) and the
types of noise, “continuous” (smooth) and “crackling” (rough).

This geometric representation also confirms that the mathematical
separation of ADPCM performance into static and dynamic response
categories? is perceptually meaningful. Dimension IT is highly correlated
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Fig. 10—Mean ratings for the 18 coders vs. SNRs showing the improvement in prediction
by measuring SNR segmentally. The solid line is the graph of formula 2, Table III, the re-
gression of rating on SNRseg.

with log A/R, a measure of static performance, and dimension III is
highly correlated with log T, a measure of dynamic performance.

Objective measures. Table III indicates that, as in the case of PCM,!
ADPCM quality is accurately predicted by a linear combination of over-
load and granularity measures. Formulas 4, 5, 7, and 8, all containing
separate measures of overload and granularity, are among the 6 good
predictors of average rating. The table also demonstrates the value of
measuring signal-to-noise ratio segmentally. Formula 2, which contains
the single measurement, SNRy,,, is also one of the 6 good predictors.
Segmental measures give equal importance to strong and weak compo-
nents of speech, while non-segmental SNR is essentially a measure of the
quality of the high-level components. The strong correlation of SNR;g
with average rating indicates that subjective quality judgments are in-
fluenced by weak sounds as well as strong sounds.

These properties of SNR and SNR,, are revealed by Fig. 10 which is
a scatter plot of average rating vs. both measures for the 18 coders. SNR
points are labeled with crosses and SNR,,,; points are labeled with circles.
The line is the graph of formula 2, the regression of R on SNR;,. The
coders to the left of the line are, for the most part, those with low A/R,
in which overload distortion is the predominant impairment. This dis-
tortion affects only the strong sounds which are the ones that determine
SNR. The good reproduction of weak sounds by overloaded coders is not
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reflected by SNR and the crosses for these coders tend to be far to the
left of the regression line. That is, they give an unduly poor indication
of quality. By contrast, the points to the right of the line tend to be those
with high A/R, coders with mainly background noise impairment. This
degradation is particularly harmful to weak sounds and therefore its
effect is less on SNR than on SNR,,,. Consequently, SNR gives an unduly
good indication of the quality of these coders.

SNR,.; apparently resembles @, the objective measure of coder quality
proposed by D. L. Richards.!” @ is an average of SNR measures per-
formed with different input levels of a stationary signal. As such it ap-
parently fails to take into account the dynamic response of a coder, which
is an important aspect of adaptive quantization. We therefore speculate
that as an estimator of subjective quality, the accuracy of @ is interme-
diate between that of SNR and SNR;.,.

Coder design. The relatively large distances between equi-rating
contours in Figs. 8 and 9 show that a designer has very substantial lati-
tude in choosing a coder with a prescribed quality rating. This finding
is contrary to quality predictions based on conventional SNR measures,
which indicate that only restricted sets of design parameters offer
near-optimum performance. This newly discovered design flexibility
could be valuable in finding coders that simultaneously satisfy criteria
in addition to the quality of the coding-decoding process. Examples of
such criteria are quality of tandem connections of codecs, resistance to
transmission errors, ability to communicate voiceband data, compati-
bility with other code formats, and economy of implementation.
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