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More on Rain Rate Distributions and |
Extreme Value Statistics

By S. H.LIN
(Manuscript received October 14, 1977)

A new methodology is described for estimating the 5-minute rain
rate distribution from yearly 5-minute maximum rain rate data and
yearly accumulated rainfall data published by the National Climatic
Center for U.S. locations. The method previously described gives the
high rain rate portion of the distribution, whereas the extended meth-
odology yields the complete distribution, which is assumed to be ap-
proximately lognormal. The three parameters characterizing the log-
normal distribution can be calculated by application of the theory of
extreme value statistics. The calculated results agree well with the
20-year data. The accuracy of the calculated results is limited by the
instability of extreme rain rate data with a finite time base. Two-year
rain rate data measured by a tipping bucket rain gauge at Palmetto,
Georgia, are used to demonstrate that the time variation of rainfall
process obeys a proportionate relationship, supporting the lognormal
hypothesis.

I. INTRODUCTION

Reference 1 has described a methodology for calculating long-term
distributions of high rain rates by applying the theory of extreme value
statistics to the yearly maximum 5-minute rain rate data published by
the National Climatic Center.23 The obtained high rain rate distribu-
tions cover the range of interest to the engineering of terrestrial micro-
wave radio links. However, for other applications, such as earth-satellite
radio engineering, the rain rate distributions in the moderate and low
rain rate ranges are also needed. This paper describes a methodology
to obtain rain rate distributions covering the entire range (i.e., from below
5 mm/hr to greater than 200 mm/hr). The rain rate distributions are
assumed to be approximately lognormal. The three parameters char-
acterizing the lognormal distribution can be calculated from the yearly
maximum 5-minute rain rate data and the yearly total accumulated
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Fig. 1—Binghamton, New York: Comparison of 20-year distribution of 5-minute rain
rate calculated by extreme value theory and lognormal hypothesis (dashed line) with
20-year data (solid line).

rainfall data by applying the theory of extreme value statistics. The
calculated results agree well with 20-year data as shown in Figs. 1 to 13
and Figs. 17 to 20.

Sections IT and III describe the method and discuss the results. Section
IV discusses characteristics of measured time variations of rain rates in
support of the proportionate effect described by Aitchison and Brown.10
The proportionate variation of rain rates is simply another manifestation
of the lognormality of rain rate statistics.

In this paper, a “5-minute rain rate” corresponds to the average value
of the randomly varying rain rate in a 5-minute interval and is calculated
as AH/r where AH is the 5-minute accumulated depth of rainfall and
7 = 5 minutes or Y5 hour is the rain gauge integration time. The meth-
odology is also applicable to integration times other than 5 minutes.

Il. EXTREME VALUE STATISTICS AND LOGNORMAL RAIN RATE
DISTRIBUTION

Many sets of rain rate data indicate that rain rate distributions can
be closely approximated by the lognormal distribution (see Refs. 4 to
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Fig. 2—Comparison for Trenton, New Jersey.

9, 23, 24 and Figs. 1 to 13 and 17 to 20 in this paper)*:
Inr—In Rm]
V2 Sk

where R is the randomly varying 5-minute point rain rate, erfc(~) de-
notes the complementary error function, In(~) denotes natural loga-
rithm, Sg is the standard deviation of In R during the raining time,* R,
in mm/hr is the median value of R during the raining time and Py is the
probability that rain will fall at the point where the rain rate R is mea-
sured. Rain rate data usually emphasize high rain rate statistics with the
result that the value of Py, and hence the total raining time per year, are
not directly available. In the following, it is demonstrated that the values
of Py, R,, and Sg, and hence the entire distribution P(R = r), can be
determined from the yearly maximum 5-minute rain rate data and the
yearly total accumulated rainfall data.

Let W denote the long-term average value of the yearly accumulated
depth of rainfall.t The relationship between W and the parameters in

PR=zr)=Pgy- % erfc [ (1)

* Figures 14, 15, 16, 21, and 22 are discussed later in Sections IT and III.
t Excluding snowfall.
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Fig. 3—Comparison for Harrisburg, Pennsylvania.

eq. (1) is
W = {R) X total raining time/year
= (R} X Py X (8760 hours/year)
= R, X eSr¥2 X Py X (8760 hours/year) 2
where
(R) =R, X eSr%/2 (3)*

is the mean value of R during the raining time.4 Long-term (=30 years)
data on W for U.S. locations can be found in Refs. 2 and 11.

Let R, denote the yearly maximum 5-minute rain rate which varies
from year to year. The distribution of R; is!

PRizZr)=1—e" (e (4)

where
y=allnr—-U) (5)
is called the reduced variate, « and U are scale and location parameters

* This relationship among (R}, R,, and Sg holds if R is lognormal. 410
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Fig. 4—Comparison for Pittsburgh, Pennsylvania.

respectively. Notice that the lognormal rain rate distribution (1) is
uniquely determined by the three parameters Py, R,, and Sp; whereas
the distribution (4) of the yearly maximum 5-minute rain rate R; is
uniquely determined by the two parameters a and U. Gumbel12:13,22 hag
given the following approximate relationships among o, U and the parent
distribution (1):

U—IlnR, 1
q>( Sk ) =1 Py N (6)
_Py-N U-InR,
o S r;b( S ) (7)
where
U-InR,\ _ 1 U-InR,
P ( S ) =1 P erfc [—\fi S ] (8)

is the standard unit normal distribution function,
d
o(z) =— &(2) 9
dz
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Fig. 5—Comparison for Lynchburg, Virginia.

is the normal probability density function, and
N = total number of 5-minute intervals per year
= (525600 minutes/year)/5 minutes
= 105120. (10)

From eqs. (4) and (5) it is easily shown!213 that U is the most probable
value (i.e., the mode) of In R, where R is the randomly varying yearly
maximum 5-minute rain rate. Let us define

R, =el. (11)

Equation (6) states that, on long-term average, the randomly varying
rain rate R will exceed R, by approximately 5 minutes per year.*
Equation (7) further specifies the slope (i.e., the derivative or probability
density) of the rain rate distribution at R = R,,. Solving egs. (6) and (7)

* From egs. (1) and (6), it is easily shown that
U~-InR 1

2=t -0 (U500 -

P(R =Ry 0 11 S N

Multiplying this probability by the total time per year yields 5 minutes per year.
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Fig. 6—Comparison for Rochester, Minnesota.

yields
_Py-N il 1 ]
Sp=""- ¢[4> (1 PO-N) (12)
and
R =exp[U—SR-CIJ"1(1— 1 ] (13)
m Py,-N

where $~1(~) denotes the inverse normal probability function.
Reference 1 has given a set of formulas for calculating the parameters
a and U from the yearly maximum 5-minute rain rate data. For com-
pleteness, this set of formulas is included in Appendix A. Knowing the
values of W, a and U allows us to solve* the three equations (2), (12), and
(13) for the three unknowns Py, R,, and Sg. Substituting these three
parameters into eq. (1) then yields the entire rain rate distribution.
For example, Table I lists the yearly maximum 5-minute rain rate R,
measured at Binghamton, New York, for the 20-year period from 1953
to 1972.2 Applying the formulas in Appendix A to the data in Table I

* These transcendental equations are solved numerically by a computer iteration pro-
cess.
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Table | — Yearly maximum 5-minute rain rates at Binghamton,

New York
Yearly maximum
5-minute rain
Year rate, mm/hr
1953 103.63
1964 100.58
1965 161.54
1956 152.40
1957 91.44
1958 103.63
1959 201.17
1960 243.84
1961 112.78
1962 67.06
1963 115.82
1964 188.98
1965 91.44
1966 134.11
1967 85.34
1968 91.44
1969 106.68
1970 91.44
1971 97.54
1972 76.20
yields
a=3.224
U = 4.5736.

The 30-year (1941-1970) average value of W at Binghamton? is
W = 762 mm/year.
Substituting this set of W, @ and U into egs. (2), (12), and (13) yields
Py = 0.018 (i.e., 1.8 percent),
R, = 2.631 mm/hr,
Sk = 1.1015 nepers.

The lognormal distribution (1) of the 5-minute rain rates calculated from
this set of Py, R,, and Sg agrees closely with the 20-year data'4 as dis-
played in Fig. 1. Similarly, Figs. 2 to 13 show the close agreement between
the calculated result and the 20-year data at 12 other locations.
However, high rain rate statistics require a very long time base to yield
stable results. The sensitivity of the high rain rate distribution with re-
spect to time base measured at Newark, New Jersey, is shown in Fig. 14.
It is seen that increasing the time base from 19 years to 21 years signif-
icantly alters the distribution for rain rate beyond 150 mm/hr. J. W.
King!% and J. Xanthakis!® have presented approximately 100 years of
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rainfall data to show that the variations of annual accumulated rainfall
from year to year is correlated with the 11-year cyclic variations of
sunspot numbers. R. J. Talbot and D. M. Butler!? have discussed the
climatic effects during passage of the solar system through nonuniform
interstellar dust clouds. Therefore, rainfall activity is influenced not only
by many terrestrial environmental factors but also possibly by extra-
terrestrial sources. The required time base for stable rainfall statistics
may be longer than 20 years. Since the parameters of the lognormal
distribution are estimated from the yearly maximum rain rate data, the
instability noted in Fig. 14 limits the accuracy of the calculated results.*
Figures 15 and 16 give two examples of the effects of unstable high rain
rate data on the estimated rain rate distributions.

. FIFTY-YEAR DISTRIBUTIONS

Section IV of Ref. 1 describes a set of formulas for calculating the
parameters « and U from rainfall intensity-duration-frequency curves
for U.S. locations published by the Weather Bureau.? These curves are
derived by the Gumbel method!2!3 using the theory of extreme value
statistics and are based on approximately 50 years (1900-1950) of rainfall
data. From this data source, we need only the following three numbers
for a given location to calculate « and U:

M = the number of years of rainfall data from which rainfall-
intensity-duration frequency curves are derived,

r, = the extreme rain rate with 2-year return period, i.e., the rain
rate which is exceeded once in 2 years, on the average, by the
yearly maximum 5-minute rain rates,

r, = the extreme rain rate with 10-year return period, i.e., the rain
rate which is exceeded once in 10 years, on the average, by the
yearly maximum 5-minute rain rates.

Therefore, in principle, long term distribution (1) of 5-minute rain
rates for U.S. locations can easily be obtained by this method. The only
input required are the four parameters W, M, r, and r; for each location
read from Refs. 2 and 3.

For example, for San Francisco, California, the four numbers are

w

115 mm/year
M = 48 years (1903-1950)
Ta 1.9 inches/hr = 48.3 mm/hr
rp = 3.05inches/hr = 77.5 mm/hr.
"+ The accuracy of the calculated results for the very low rain rate region (i.e., < 10

mm/hr) may be also limited because the parameters Py, R, and S are estimated from
the extreme, high rain rate data.
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The formulas for calculating @ and U are given in Appendix B for com-
pleteness. By substituting these values of M, r, and r;, into egs. (26) to
(31) we obtain

a = 3.6297
U = 3.7786.

Substituting this set of W, a and U into egs. (2), (12) and (13) yields
Py = 0.0016 (i.e., 0.16 percent)
R, = 6.23 mm/hr
Sg = 0.7771 neper.

Figure 17 shows that the calculated lognormal distribution of 5-minute
rain rates for the 48-year period (1903-1950) is reasonably close to the
20-year data (1953-1972). Similarly, Figs. 18, 19, and 20 show the
agreement between calculated results (=43 years) and the 20-year data.
On the other hand, Figs. 21 and 22 give two examples of appreciable
differences due to the instability of high rain rate data.
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IV. PROPORTIONATE EFFECT AND LOGNORMAL RAIN RATE
DISTRIBUTION

The rainfall process is influenced by many environmental parameters.
An important question is whether the environmental parameters affect
the rain rate in a proportional fashion or in an additive fashion. It is well
known®10:21 that a proportional fashion leads to a lognormal distribution
whereas an additive fashion leads to a normal distribution. The following
rain rate data will shed some light on this question.

Rain rate data measured in Illinois,'® New Jersey,!® and Canada2?
indicate that the short term mean rain rate (R ), and the deviations, AR,
from the short term mean (R )¢ appear to be correlated. The subscript
s in this section denotes “short term” mean value. These data indicate
that the magnitude of the deviations, AR, tends to increase with the short
term mean (R ),. In the following, we present 2 years of rain rate data
measured by a tipping bucket rain gauge at Palmetto, Georgia, to confirm
this correlation between AR and (R );.

Figure 23 displays the time-varying rain rate, R(t), in two 1-hour pe-
riods measured by the tipping bucket rain gauge at Palmetto, Georgia.
In Fig. 23a, the hourly mean rain rate (R ), is 12.6 mm/hr and the hourly
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Fig. 23—Time-varying rain rate measured by a tipping bucket rain gauge at Palmetto,
Georgia.

mean deviation {|AR| ), is 8.8 mm/hr where
|AR(t)] = |R(t) = (R)s| (14)

In Fig. 23b, the values of (R ), and (| AR| ), are 17 and 13.4 mm/hr, re-
spectively. Two years of rain rate data at Palmetto have been processed
in this fashion and all the hourly (R ), and (| AR| ) pairs are plotted in
Fig. 24. It is seen that (R), and (|AR| ), are indeed correlated and the
average relationship is approximately a straight line with a 45 degree
slope on the log X log graph paper. To examine this proportional rela-
tionship more closely, let

X(t)=1nR(t), (15)
|AX(£)] = | X(£) = (X),] (16)
The relationship between the hourly mean value (X ), and the hourly
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Fig. 24—Two-year data on correlation between hourly mean rain rate, (R ),, and hourly
nG'nean deviation, {|AR|)s, measured by the tipping bucket rain gauge at Palmetto,
eorgia.

mean deviation (|AX| ), processed from the same 2-year rain rate data
are plotted in Fig. 25. It is seen that (| AX| ), is practically independent
of (X),. In Figs. 23 to 25, we use 1-hour period for short-term mean only
as an example. The 2-year data were processed by several different
“short-term periods” ranging from 5 minutes to 1 hour and showed es-
sentially the same correlation between AR and R. Figures 24 and 25 in-
dicate that AR is approximately linearly proportional to R:

AR=h-R (17)*

where h is a proportional parameter. The scattering of the data in Fig.
24 and the random variations of AR in Fig. 23 indicate that the propor-
tional parameter, h, is not a constant, but is a time-varying random
variable. Equation (17) can be interpreted in that the change, AR, in the
rain rate is proportional to the product of the rain rate R and the in-
tensity of the cause, h. In other words, the environmental parameters
affect the rain rate in a proportional fashion. Therefore, the data of Figs.
24 and 25 are another manifestation of the lognormal rainfall process
and support the lognormal hypothesis (1). Readers interested in the

* Equations (15) and (17) imply that AX is independent of X and is consistent with the
data in Fig. 25.
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Fig. 25—Two-year data measured by the tipping bucket rain gauge at Palmetto, Georgia,
demonstrating that the hourly mean deviation, (|AX|),, and the hourly mean value, (X),
are uncorrelated, where X = In R.

derivation of the lognormal distribution from the proportionate rela-
tionship (17) are referred to Refs. 10 and 21.

V. CONCLUSION

A new method has been described for calculation of 5-minute rain rate
distributions from yearly maximum 5-minute rain rate data and yearly
total accumulated rainfall data which are available from National Cli-
matic Center23 for U.S. locations. By applying the theory of extreme
value statistics and the lognormal hypothesis, the obtained rain rate
distribution covers the entire range of rain rates (i.e., from below 5 mm/hr
to greater than 200 mm/hr) for wide application. The calculated results
agree well with long term (20 to 50 years) data as shown in Figs. 1 to 13
and 17 to 20. The accuracy of the calculated results is limited by the in-
stability of the high rain rate distribution with finite time base.
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APPENDIX A

Formulas for Calculating Extreme Value Parameters o and U from Yearly
Maximum Five-Minute Rain Rates

Let R.(j),j = 1,2,3, ... ,M be the measured yearly maximum 5-minute
rain rate in M years of measurements, and let

%1() = In [R1()] (18)
The formulas for calculating « and U are:

0z

a=""> (19)
Ox
and
_ z
U=x;—— (20)
[
where
7 =23 5 " (21)
*1= 3,5 10)
is the sample mean of x,
1 M e
o= {7 & i) -3 (22)
is the sample standard deviation of x;,
. J
= - - ’ 23
0=~ () g
7= % 20) (24)
z=—23 z(j),
M=
and
(1 M[ N 1/2 (25)
az—[M_lj);le z ] .
APPENDIX B

Formulas for Calculating a and U from Rainfall Intensity-Duration-Frequency
Curves

o= Qe * Oy + ——> (26)
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1 z T
U—Uw+aw[7—az-‘/g], @7)
M = M, (28)
Inr,=1Inry
and
Aa In rpy — Ab In L
U. =
A, — A, (29)
where
Qq ]
Ag=—In|In——|,
[ Qa -1 (30)
Qs ]
Ap=-In|In———|»
b [ Qp—1 8D
Qa = 2 (years), (32)
Qs = 10 (years), (33)
v = Euler’s constant ~ 0.5772, (34)

Z and o, are defined by eqs. (24) and (25).
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