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Properties of a sequence of positive operators defined by the Widder
Laplace inversion formula are studied in order to obtain practical
methods for the inversion of the Laplace transform, practical error
formulae, and useful approximations to given functions. The approx-
imation procedure retains essential structural characteristics of the
original function, e.g., nonnegativity, monotonicity, and convexity.
Thus a distribution function is approximated by distribution functions.
Enhancement techniques are provided for the improvement of accuracy
for a given order of approximation. The methods are illustrated by
applications to renewal theory and to the covariance and recovery
functions of telephone traffic theory.

l. INTRODUCTION

The Laplace transform occurs frequently in investigations of queueing
theory and telephone traffic models in which it usually represents a
probability distribution function. Although the mean and variance of
the distribution can be readily obtained from the transform, there are
many investigations in which the distribution itself is needed; in par-
ticular, good analytic and numerical approximations for the comple-
mentary distribution when the argument is large. This is the case, for
example, when studying waiting times of queues, time delays of work
through a computer system, and delays of message progress through data
networks.

Numerical methods which have been made thus far!6-18 concentrate
on accurate numerical approximation on some interval [0, T}, the diffi-
culty of accurate inversion increasing with increasing 7. Methods de-
pending on Gauss-Legendre quadrature applied to the defining Laplace
integral with subsequent interpolation are discussed in Ref. 19. These
methods require the solution of large order linear systems whose matrices
are severely ill-conditioned; thus they can bog down in meaningless
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calculations. Much ingenuity has been used in specific cases to circum-
vent this problem. Asymptotic formulae may sometimes be used to ap-
proximate the complementary distribution for large argument; however,
in many practical cases, good accuracy was obtained only when the
argument was so large that the corresponding probabilities were too small
to be of practical significance. One of the methods of this paper, namely,
the « enhancement procedure, specifically attacks this problem by im-
itating the exponential decay of the original in [T, =] while simulta-
neously providing accurate approximation in [0, T']. The transition region
is sufficiently well approximated for most practical uses.

The well-known Laplace inversion formula of Widder!® has not been
actively used in practical work. It has been the experience of the author
that an investigation of the Widder formula qua functional transfor-
mation can provide useful practical techniques for inversion and also
inequalities and limit relations between the approximations and the
original function. Accordingly, it is the object of this paper to study the
properties of a sequence of positive operators defined by the Widder
formula in order to obtain practical methods for Laplace inversion,
practical error formulae, and useful approximations to given functions.

In II the Widder inversion formula is obtained and a sequence of
positive operators, L,, which form the subject of the paper, are intro-
duced. The L, map a function f(¢)(t = 0) to a sequence of functions f,(t)
= L,f which converge uniformly on [0, =] to f(¢). This viewpoint enables
one to study the approximation characteristics of the sequence f, (t), thus
providing a means of approximating a given f(t) besides effecting the
inversion of its Laplace transform, f(s). Several representations are given
for f,(t) in terms of f(t).

In ITI properties of the sequence {f, ()} are developed which show that
it possesses many desirable characteristics. In many applications it is
preferable that the approximating functions globally imitate the original
function in qualitative structural features rather than to the attainment
of very high numerical accuracy. Thus if the original function lies be-
tween zero and one, is monotone decreasing, and is convex, then these
same properties would be desired in the approximation. It is shown that
the approximating sequence, {f,(t)}, does retain those properties. A re-
cursion relation for fn+1(t) in terms of f,(t), and a generating function
for the sequence are also given, thus making the computation of higher
approximations possibly more convenient than the direct application
of the representation formulae themselves. A useful feature of the f, (t)
is that, when f(t) is convex, they satisfy f, (t) = f(¢).

Part IV develops error bounds and pointwise error estimates. The
results in terms of f(t) reflect the use of the technique for approximation;
on the other hand, the pointwise estimate of error in terms of fa(t) is
especially useful for the inversion problem since then f (t) is not available.
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It is also shown that the successive approximations fo(t), f1(t), fa(t), . . .
are uniformly better for each t if f(¢t) > 0.

In practical use the initial member of the sequence, fo(t), is not an
accurate approximation to f(t) for ¢ not in the neighborhoods of zero and
infinity. Additionally the sequence {f, (¢)} does not converge rapidly in
n. Consequently one must go far out in the sequence to obtain adequate
accuracy. Part V treats this problem. A modification, f, . (t), of f,(t) is
introduced depending on a parameter « for which, by appropriate choice
of @, fo,q(t) is a much improved approximation to f(t) than fy(t); the
rapidity of convergence of the sequence {f,, ()} is not improved over that
of the unmodified sequence. However, it has been found that good ac-
curacy is obtained by use of fo . (t) or f1,.(t) as is demonstrated in the
examples on covariance and recovery functions given in this paper.

In many applications, especially to complementary distribution
functions, the behavior of f(t) for large t must be accurately reproduced.

- The approximations fn.«(t) accomplish this especially when « is related
to the decrement of an exponential majorant. For functions which are
exponentially small at infinity, the f,(¢) do not adequately reproduce
the decay of f(¢).

Many of the desirable features of the original method are still retained
by this modification. The concept of convexity with exponent « is in-
troduced which allows the transference of the inequality f,, (t) = f(t) to
fr.a(t) = f(t). A criterion is given for deciding convexity with exponent
a in terms of the transform, f(s).

The degree of precision concept is applied to the approximation se-
quence in order to obtain a modified sequence, s, (t), which converges
more rapidly. For sufficiently smooth functions this method is successful.
The approximation s, (t) consists of a linear combination of fo(t), . . .,
fa(t) orof fo o(t),. .., fna(t) and hence is easily applied. Its efficacy is
demonstrated in the examples of this paper. Unfortunately the im-
provement in rapidity of convergence is so strong that the map from f(t)
to s, (t) is no longer positive, consequently many of the desirable struc-
tural preservation properties of the L,, are lost in favor of greater nu-
merical accuracy.

An attempt is made to enhance the rapidity of convergence of {f,, (¢)]
while simultaneously retaining the positivity of the map. This is ac-
complished by the construction of a new sequence, h,(t), which is also
a linear combination of fy(t), . .., f,(t). As is to be expected, however,
the improvement is not as great as is realized with the sequence s, (¢).

The pointwise error estimate developed in Part IV may be used as a
correction device on f,(t) or f, o (t) to improve further the accuracy of
computation. This, however, in the absence of an error estimate for the
modification, must rely on one’s understanding of the specific problem
for ascertaining the reasonableness of the result.
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An application of the methods of this paper to the renewal function?®
in the theory of renewal processes is made in Part VI. The remarkable
accuracy of the simplest of the approximations fo(t), f1(t) is notewor-
thy.

Part VII presents applications of the techniques to the covariance and
recovery functions of Erlang blocking models used in telephone traffic
theory.!1 For the covariance function, the initial approximation, fo,q(t),
is excellent: however, in the case of the recovery function it was found
that fo,«(t), f1,«(t) might not be considered sufficiently accurate, ac-
cordingly the linear combination, s;(t), was used. This provided suffi-
cient enhancement of accuracy.

The generating function, G(z,t), for the f,(t) can sometimes be used
to obtain an explicit construction of the sequence. Some examples of this
nature are treated in Part VIIL

Applications of the methods herein have been made to the comple-
mentary distributions of waiting time in M/G/1 queues. Also B. W. Stuck
and E. Arthurs have successfully applied these techniques to the study
of models of computer systems.

There are questions of an exclusively mathematical character which
have not been touched upon, e.g., a semigroup interpretation and satu-
ration phenomena. It is felt that these would be outside the essentially
practical thrust of the paper. For some theorems which are applicable
to the operators of this paper see Ref. 5.

A short table of operations on f(t) and their corresponding maps under
L, is included to facilitate application of these methods to the con-
struction of approximations.

Il. WIDDER INVERSION—REPRESENTATIONS
Let the transform f(s),

7(s) = ‘[; " e=suf(u)du 1)
exist for s > 0, then
(-1)"’ n n —S_n-'-_1 ® —Suypn
s eI s) == j; e—suynf(u)du @)
in which
F(s) =S ). ®)
S

The function (s"*1/n!)e~*4u" is a probability density function on (0,
@) fors > 0, n = 0 whose mean is (n + 1)/s and variance (n + 1)/s2 When
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s = (n + 1)/t, the mean and variance are t and t2/(n + 1) respectively.
One has:!

Theorem 1 (Widder). Let the transform, f(s), of f(t) exist for s > 0, let
f(t) be continuous at ¢t and bounded on [0, =], then

lim ( 1)nsn+1/"(n)(s) =f(t)_

n—« . s=(n+1)/t

The convergence is uniform in every finite closed interval throughout
which f(t) is continuous.

Proof. Korovkin’s theorem on sequences of positive functionals.2

The inversion theorem, in the above form, had already been stated
by Feller? who used the law of large numbers to effect the proof. It is the
purpose of this paper to study the transformation

(=1)"
n!

Lof=fn= sn+1f(n}(s) (4)

s=(n+1)/t

so that f, may be effectively used as an approximation to f. The repre-
sentation of f, directly in terms of f is obtainable from (2); thus,

falt) = j; " gn(t, wf(w)du )

_(n+ 1)1

ent e~ l(n+1)/tluyn n=0. (6)

gn(t, u)

Alternative forms which will be found useful are:

n+1 @ u
falt) =" j; w(n, (n+1) ;) f(u)du (7)
ful) = (n+ 1) f " yln, (n + Du)f(tu)du 8)
0
S
Y(x,a)=e G+ D 9)
in which y/(x, a) is the Poisson probability distribution,
o t du
fult) = _j; M, (;) f) = (10)
M, (x) = (n +n11) +le—(n+1)fxx—n—l (11)

in which the representation is by means of convolution on the half line
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(Mellin convolution), and

g = [ Knng(n— Dde (12)

Kn(n) = M e—(n+1)q—(n+1)e"? (13)
n.

t=eMlu =e£.f(t) =g(77),fn(t) =gn(n) (14)

in which the representation is by means of convolution on the whole real
line (Fourier convolution).
The conditions of Theorem 1 are relaxed below.

Theorem 2. Let the transform, f(s), of f(t) exist for s > ¢, let f(¢) be
continuous at ¢ and let f(£) = 0(et)(t — «); then,

lim f,(¢) = f(£).

n—+»w

The convergence is uniform in every finite closed interval throughout
which f(t) is continuous.

Proof. The representation (5) may be written as follows:

(n + 1)n+1
n!t““

falt) = J;m e~ [(n—m+1)/tluy ng—m/tuf(y)du. (15)

For all ¢ in some finite closed interval, m may be chosen so that
e_(mlt)uf(u) = 0(1)(u —> CD)

hence Korovkin’s theorem is again applicable and the conclusions fol-
low.

. PROPERTIES OF f,(f)

Jensen’s theorem applied to (5) proves
Theorem 3. f(t) is convex on (0, )

=f(t) < fa(t),t=0,n=0.

The value of an approximation method is greatly enhanced when the
approximating function preserves the shape of the original and coincides
closely with its behavior in the neighborhoods of zero and infinity.
Theorems 4, 5, 6 establish the desired properties.

Theorem 4. a < f(t) < b= a < f,(t) < b; a, b arbitrary real.

Proof. Direct evaluation shows that
Lof =f,f= a+ Bt (16)
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The positivity of L,, implies
f<b=L,f<L,b=bL,1=0. (17)

Similarly for the lower bound.

The derivatives of f,, (¢) may be related to those of f(t) through use of
(8); thus

Theorem 5. Let f")(t) be continuous and 0(et)(t — «), then there is
an m so that £ (t) exists and is continuous for n = m and

o) = (n+ 1) J'O T Wn, (0 + Du)urfO(tu)du.

One may set m = 0 if /() = 0(1)(t — =).

Proof. For m sufficiently large, the integral of the theorem converges
uniformly in ¢; hence the representation (8) may be differentiated under
the integral sign r times. If f)(¢) is bounded then m = 0 is a permissible
choice since one still has uniform convergence.

Corollary 1. f 2 0= f">0,n 2> m.
Proof. This follows from the positivity of the kernel.

The above corollary implies that if f has a continuous derivative and
is monotone then f, is monotone, and if f has a continuous second de-
rivative and is convex then f, is convex. A stronger structural result will
be obtained in Theorem 6. One also has that if f is completely or abso-
lutely monotonic then f, is completely or absolutely monotonic re-
spectively.

Corollary 2. fi?(0+) = A\,,f(0+), n = m,
N 'n+r+1)
" nln+ 1)

In particular
fa(0+) = f(0+) n=m
fn0+)=f0+) n=m.
Proof. Define \, . by

AMr=(n+1) J;m v(n, (n+ Du)udu

then evaluation of the integral yields the formula stated. Since the op-
erator is bounded, the limit statements follow. Also one has Ano=An1
=1.
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Corollary 3. Let f)(=) < «; then
fD(0) = Mapf =) 020
In particular

fal®) =f(=) n20,
fa(®)=f(=) nZ0.

Proof. Dominated convergence allows the interchange of limit and in-
tegral.

The following concepts will be needed to establish further structural
properties.

For an arbitrary sequence in (—®, ®), — < ty,t3, ..., t¢ < =, the
number of changes of sign is called the variation of the sequence and will
be indicated by v(ty, tg, ..., te); thus

v(3,-1,0,2,-2)=3 (18)
v(1,2,4,6) =0. (19)

One sets v(0, 0, . .., 0) = —1. Let f(t) be defined on (0, =), and let 0 <t
<ty < ...< tp < = be an arbitrary, ordered sequence in (0, =), the
quantity sup v(f(t1), f(t2), . . ., f(t¢)), in which the supremum is taken
over all sequences, i.e., for all choices of (£, tg,...,¢ ¢gandforall£ =1,
is called the variation of f and will be indicated by v(f). A transformation
L on a given class of f will be called variation diminishing if and only if
v(Lf) < v(f) for every f in its domain. The definition used here is adopted
from Hirschman and Widder.*
Let ¢(n) be a frequency function on (—, =), that is,

s 20, |~ o(mdn=1 (20)
and let
(s) = _f_ " e (n)dn. (21)
Define E(s) by
E(s) = d(s)™L 22)

Then a theorem of Schoenberg? states that the transformation
Te= " o@e(-0dt  gBO(==, =) (23)
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is variation diminishing if and only if

E(s) = e~ Cs?+bs I (1 — i) es/ak (24)
k ak

C=0,ba,real,y 1/at < oo,
k

The designation geBC(—~, ») means that g(») is bounded and contin-
uous on (—=, «), It may be observed that the mean of ¢ is b and the
variance

2C+ 3 1/a}
%

The Laplace transform of K, () (13),

Ro(s) = f_ " =K., (n)dn (25)
is
_ _ T'n+s+1) )
Knls) =i+ 1 (26)

This may be written in the following forms

o _TI'(1+s) n s
K= v L (1+ k) @
5 (=1 = psin T S\ stk
Rofs) 1 =esrs TT (1+k) e (28)
=l +1)+y—3 = (29)
j=1]

in which v = 0.5772157 is Euler’s constant. Thus by Schoenberg’s the-
orem, the transformation T,.g = g, geBC(—=, =), defined in (12) is
variation diminishing. The mean and variance of K, are respectively v,
as given above, and o2 given by
2 n 1
2="_31

- j>=:1 7 (30)
Since the map t = e” is monotone, the following theorem has been es-
tablished.

Theorem 6. The transformation L, defined on feBC(0, =) is variation
diminishing, i.e.,

U(fn) =< U(f)

Corollary. f, does not cross any straight line more often than f. In par-
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ticular, if f is monotone then f,, is monotone, and if f or —f is convex then
fn or —f, is convex.
Proof. From (16) and Theorem 6,

V(Ln(f —a—pBt)) =v(Lpf —a—=Bt) Sv(f—a—Bt). (31)
Clearly f is monotone < v(f — a) < 1 for arbitrary o, and f or —f is convex
= v(f — a — Bt) < 2 for arbitrary «, 8.

It is clear from (8) that the approximating sequence to f(at)(a > 0)
is fn (at); this may be expressed in a more illuminating way as follows.
Define the operator A by

Af(t) = f(at) a>0 (32)
then A and L, commute; thus
L.Af = AL,f (33)

Hence the eigenfunctions of A, which are ¢7, are also the eigenfunctions
of L. In fact one easily obtains

Lptm= Mpft", r20,n 2 0. (34)
It may be observed that if L,, is defined by (8) instead of by (4) then (34)
remains valid even for r < 0 provided n is large enough.
Other operations with the same eigenfunctions will also commute with
L. Of importance in discussing the convergence of f\"(¢) is the opera-
tor

0=t— (35)

One has

Theorem 7. The operators L,(n = 0), § commute; thus

Lp(07f) = 0"fn.

It is assumed that the rth derivative of f exists and is continuous on (0,

®),

Proof. 1t is observed that the eigenfunctions of § are t"; alternatively the
result follows directly from (8).

Corollary. Proceeding inductively, one can now establish that if f(") is
continuous and 0(e¢t)(t — «) then

lim f{ = f©

n—w

In addition to shape preserving properties, another way of assessing
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the adequacy of an approximation process is by comparison of moments;
the rth moment of f(t) is here taken to be fgt’f(t)dt. The Mellin
transform, f(s), given by

f(s) = J; " ts-1f(t)dt (36)

is the appropriate tool. Since the transform of M, (s), eq. (11), is

(n+1»T(n—s+1)
n!

M,(s) = (37)

one has from (10)

Fuls) = 25 I)SF,ET ==+ D). (38)

For the following, it is convenient to use the factorial symbol

n®=1n"=n(n-1)...(n—r+1),r>0 (integral). (39)

The following theorem may now be stated.

Theorem 8. Let the rth moment of f(t) exist (r = 0, integral); then the
rth moment of f,(t) exists for n > r and one has

« . _ (n+1)r+1 @ .
J:) tfa(O)dt = — 5 j; t7f(t)dt.

Special cases are

_fmf,,(t)dt=ﬁ+—1f“f(t)d: n>1 (40)
0 n 0

- _(n+1)? =
_ﬁ) tha(0)dt = j; te)dt  n=2 (41)

When [§t~1f(t)dt exists, an interesting special case of (38) occurs for
s = 0; thus

7 -1 = (7
j; £-1f, (t)dt j; t=1f(t)dt. (42)

Formulae (40), (41) may be used to ensure equality of moments. Thus
if it is required that the zeroth order moments agree, then, according to
(40), one may use as the approximating sequence nf,(t)/(n + 1). If the
zeroth and first moments are to agree simultaneously, one may use a
linear combination of f,(t) and fn (t); for example, 3f3(t) — Zafa(t).

Another set of moment relations may be obtained from (7) involving
sums of f,((n + 1)t). These are given in
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Theorem 9. Let the rth absolute moment of f(t) exist; then

Y n0f,((n + 1)t) = t-r-1 j‘ " wrfw)du.
n=0 0

Proof. One has

f: nY(n,a) =a’ (43)
n=0
and, from (7),

folln + 1)) = ¢ j;m v (n, %) fu)du. (44)

Multiplication of both sides of (44) by n") and summing, the result
follows on interchanging summation and integration. Dominated con-
vergence justifies the interchange.

Another property of f,,(t) as a function of n is given in:

Theorem 10. Let f(t) = 0 on (0, =), 0(ect)(t — =), then there is an m so
that

n+ 2\nt2
n(),t=0,n = m.
we1) O

fasi(t) < e-1 (

Proof. Since

(n+20Wn+1, (n+ 2)u) =ue v (z I f)n” (n+ 1)¢(n, (n+ 1u)
(45)
one may write
fas1(t) = (n + 1) j: U(n, (n+ Du)ue—s (:I i)nﬁf(tu)du.
(46)

Observing that ue~% < e~1, the inequality follows.

fa(t)
n+1

Corollary. f(t) 2 0= is monotone decreasing inn forallt =0, n

> m.

Proof. One has

fa+1(8) _ fn(2) _/nt?2 n+1.
n+25n+1e (n+1) (47)
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The result follows since

n+1l
et (% + 2) <1 (48)
n+1

A stronger monotonicity property of f,(t) is stated in Theorem 21.

A useful recurrence relation allowing one to compute the members
of the sequence f, (t) successively starting with fo(t) is given in the fol-
lowing theorem.

Theorem 11.
n+1 t n+1
fr1(t) = fn (n+2t) +n+2fn (n+2t)'n20’t20'
Proof. Define f,(s) by
fnls) = H,)“ smHIfn)(s) (49)
n.
then, by (4),
fa(t) = Fals) (50)
s=(n+1)/t
One has
s L 1al6) = (14 D]a) = (14 Dfa () (51)
1 d
Frt1(s) = fals) = — o5 n(s). (52)
Thus

1 d
n+ 1 ds ;"(S)]s=(n+2)/t

The recurrence relation is now obtained on performing the substitution
fors.

fn+1(t) = [fn(s) - (53)

A useful alternative method of presenting the structure of the entire
sequence {f,}; in terms of f is by means of a generating function. This
is given in the theorem below.

Theorem 12. f(t) is bounded on (0, ») =

d 1 t
ngoz falln + 1)) = 1 —-zfo (1 —z).

The series is convergent for |z| < 1 and analytically continuable in the
half plane Re z < 1.
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Proof. The formula follows from (7) after interchange of summation and
integration. The series is clearly convergent for |z| < 1 while dominated

convergence justifies the interchange for Re z < 1.

The case r = 0 of Theorem 9 provides the following corollary.

Corollary.
F(t)eL(0, ©) — lim — fo( L )=t—1‘j;mf(u)du.

z—-l—l_z 1_2

The Mellin transform, f(s), of f(t) may be directly obtained from its
Laplace transform, f(s), by use, for example, of (38) for n = 0; thus

zon __fols)
f(S)—F(l —9) (54)
Accordingly one may now write (38) in the form
- (n+1)Thr+1-s).
fa(s) = AT —3) fols) (55)
or, equivalently,
Fals) = (1 (" %) Folo). (56)
n

At times (55) or (56) provides a convenient alternative to Theorems 11
and 12 when f,(t) is required as a function of n.

The range of applicability of the Jensen inequality of Theorem 3 may
be extended by use of Mellin or Fourier convolution. A sequence {f;, (t)}5-0
will be called an approximation sequence if there is an f(t) so that f,, (¢)
= L,f(t). Let * designate Mellin convolution; then

Theorem 13. f,*g is the approximation sequence for f*g.
Proof. One has
L,(f+g) = Mafg = Lufg (57)
thus,
Ln(f+g) = (Lnf)*g = fn*g. (58)
The converse of Theorem 3 is also true.

Theorem 14. f,(t) = f(t) foralln = 0,¢t = 0, f(¢) is bounded on (0, ») =
f(t) is convex on (0, «).

Proof. The result follows from Theorem 8 of Karlin and Ziegler.5

Corollary. f convex on (0, »), g = 0 on (0, =) = fxg convex on (0, ).
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Proof. One has from Theorem 3

fnzf (59)
and, since g = 0,
fn*g Z [*g. (60)
Since, by Theorem 13, f,*g is the approximation sequence to f+g, ap-
plication of Theorem 14 proves the corollary.

It may be observed that the inequality of (60) remains valid when =
is interpreted as Fourier convolution although, in this case, f,*g is not
the approximation sequence for fxg.

Another set of convexity results may be obtained from (8) by consid-
ering logarithmic convexity.

Theorem 15. If f(t) is log-convex on t = 0, then f,(t) is log-convex for
n=0,t=0.

Proof. Equation (8) and the additivity of log-convex functions.®
Further one may state the following inequalities.
Theorem 16. If f(t) is log-convex on ¢ = 0 then
f(t) < elntni) < f,(t).

Proof. The inequality on the left follows from Theorem 3 applied to
£nf(t); the one on the right is a consequence of the geometric mean-
arithmetic mean inequality.

IV. ERROR ESTIMATION

Error estimates take different forms depending on the class of func-
tions for which they are intended and whether or not they are bounds
or pointwise estimates. From a practical point of view the pointwise es-
timate is the most useful provided it may be easily evaluated in terms
of the approximation itself. The next three theorems provide error
bounds for different function classes; the fourth theorem provides an
approximate formula for the pointwise evaluation of error, while (112)
does the same but in terms of f,(t). The error of approximation, e, (t;f),
is defined by

En(t;f) =fn(t)_f(t) (61)
Theorem 17. Let f(t) be continuous on (0, «); then

len(tsN)] = \/n—+_1?l>1§ |f ()]
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Proof. One has

en(tsf) = L " ga(t, wif(w) — f(t)ldu (62)

len(t:)] < j; " gt w)fw) — f(8)|du 63)

len(t5)] < sup |f(£)] - _f " gnlt, w)|u — t]du (64)
t>0 0

@ /
Ien(t;f)lsfgglf(t)l-[ I gt W —t2du]’  (65)

t
VrrTup HGIN (66)

The last inequality follows because the mean and variance of g, (¢, u)
are t and t2/(n + 1) respectively.
Theorem 18. Let f(t) be continuous on (0, «): then

t2
2n + 2

,en(t;f)l =

|en(t:f)] < sup |f(t)]-
t>0

Proof. The Taylor expansion of f() about t has the form

F@) = F0) + (¢ = ) (©) + (¢ = u)f®) (67)
in which ¢ lies between ¢ and u. Thus
1 ¢2

en(t;f) = o+t 1f(E), £e(0,=). (68)

The inequality of the theorem now follows.

The next theorem provides an error bound which is uniform for ¢ ¢[0,
o]. For this purpose the absolute first moment of K, (n) (13), oy, is
needed; thus

an= " Kamlnldn, (69)

Theorem 19. Let f(t) be continuous on (0, «); then

| en(t51)| < an sup [t£(2)].
t>0

Proof. One has from (12)
alenif) = " Kuln—Dle(®) — glmld (70)
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lelenpl < sup [gl- f* Kaln=9ln—glde (D)

—o L™
len(t:1)| < an sup |tf(2)].
>0
Corollary. The convergence of f,,(t) to f(¢) (n — «) is uniform for t¢[0,

w].

Proof. It is necessary to show that

lim a, = 0.

n—>w

The expression for o, (69) is rewritten as follows

an=pn J__ K@ aldn (72)
1 + 1y n+l

Pn =74 (” )" , K(n) =elmme™. (73)
n! e

Use of the power series expansion for e~ yields

@ 2 + 1
b f e+ D2l | dy = — (n ) (74)
o en!

e

Stirling’s formula now shows that

ay, = \/E (75)

Some numerical values of «, are ap = 1.0160, a; = 0.6388, a2 = 0.50086,
oy = 0.4247, oy = 0.3751, a5 = 0.3396, ag = 0.3126, a7 = 0.2911; the as-
ymptotic formula (75) is sufficiently accurate for n > 7.

To continue the study of ¢, (¢;f), it is useful to obtain an explicit for-
mula of Peano type, that is an integral transform of f.

Let

X4y =X xz20 (76)
= x <0 (77)
then the Taylor expansion of f(¢) with remainder is
f©) = fO) +fO) + {7 (¢ = v)sf)do. (78)
0

From (5) and (16), one has

fa(8) = £(0) + F(0)¢ + J; " Fo)dv f " gn(t, w)(u — v)du.  (79)
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Thus
enlt, ) = ﬁ " Ea(t, v)f(0)dv (80)

En(t,v) = f " g (t, ) (w — v)du — (t — )+ (81)

The kernel E,(t, v) (the Peano kernel for error representation) is,
clearly,

En(t,v) = Lp(t —v)s — (t — )4 (82)

The explicit evaluation of the kernel may be most simply carried out by
means of (24) since the Laplace transform of (t — v)4 is e 75¥/s2. Let

Salx) = 3 5 (83)
j=0j!

and
Ln(a) = e[S, ((n + 1)a) — aS,—1((n + 1)a)] (84)

then
Lot —v)+ =tlpla) a=v/t (85)
E,(t,v) =t[én(a) — (1 — a)+]. (86)

In particular, one has

Eo(t,v) =te v/t — (t —v)4 - (87)
Ei(t,v) = (t +v)e~ 2/t — (t — 1), (88)

Since (t — v)+ is a convex function of ¢ for each v, (82) and Theorem
3 establish

E.(t,v)=0forallt =20,v = 0. (89)
The moments of the kernel, E, (¢, v), may be obtained by substituting

the functions f(t) = t" (r = 2) into (80), and using (34) and (61) for
evaluation of ¢, (t;t"); the following is obtained:

= A r+2_1
rE,(t, v)dy = —2=———¢r+2 = 0. 90
‘j; orEn(t v)de =+ 2) r (%0)
In particular
- t2 1

E, (t,v)dv=——— 91
-j; (¢, v)dv 2n+1 (1)

© t3 3n+5
vE, (¢, v)dv =— . 92
j; n(t o) = 1) ©2)

One may now obtain an approximate evaluation of e, (£;f).
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Theorem 20. Let f(t) be continuous on (0, =) and 0(e<t)(t — «); then
there is an m so that

t2 ./ 3n+5
n(tf) ~ t
n(tif) 2n+2f( 3 +3

also if f(t) is convex, then the approximation is a lower bound.

),an;

Proof. The one point Gaussian quadrature formula for f§E,(t, v)f(v)dv
is of the form Af(«) in which the constants, A, @, are determined by re-
quiring the quadrature to be exact for all linear functions. Use of (91),
(92) now yields the formula of the theorem. The inequality follows from
the nonnegativity of E,, (¢, v) (89) and Jensen’s inequality.

Since by the Corollary to Theorem 7, f,(t) approximates f(t), in
practice the required value of f(t) is approximated either from the an-
alytic form of f,(t) or numerically from a table or curve already com-
puted for f,, (t).

At this point another property of the sequence {f,(¢t)lf can be
proved.

Theorem 21. Let f(t) = 0, continuous on (0, ®), and 0(e“t)(t — «); then
there is an m so that

fas1(t) < fu(t) forallt = 0,n = m.

Proof. Clearly the monotonic decreasing character of f,, (t) as a function
of n will hold if ¢, (¢;f) has the same property. The nonnegativity of f(¢)
and (80) shows that the result is implied if E, (¢, v) is monotonically
decreasing in n; in turn, by (86), this will follow if £, (2) is monotonically
decreasing in n for each a = 0. From (84), by direct calculation,

4 £,(a) = —e~(ntha§ ((n+ 1)a) (93)
da
d2 (n + 1)n+1 —(n+1)
- - AN n a 94
Ja? £n(a) o a’e (94)
Let
hn(a) = €,_1(a) — £,(a) n1 (95)
then, from (94),
d? d?
&;hn(a) =rn(a) @fn—l(a) (96)
1
rala)=1— (1 +1)”+ — 97)
n
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It is clear from (94) that the sign of

dz2
dal hnp(a)

is the same as that of r, (a). There exist two points 0 < ag(n) < a;(n) with

the following properties:

r.(a)=0 0 <a =< ap(n) (98)
rn(a) <0 ag(n) <a <aqy(n) (99)
rn(a) =0 a = a(n). (100)
Since
£,(0) = 1,i £,000=-1, n=20 (101)
da
it follows that
h,(0) = O,Ehn(O) =0, n=1. (102)
da
One has the following integral representations for h,(a):
a b 2
hi@ = [ 7 r(e) 55 bamae)de (103)
0 0 dc?
w - d2
hola) = f db f rn(€) ~— £n_1(c)de. (104)
a b dc?
Thus (98) and (103) imply
hr(a) =0 0<a =<ap(n); (105)
similarly (100) and (104) imply
hp(a) =0 a = a(n). (106)

The function h,(a) cannot be negative in (2y(n), a1(n)) since then it
would have at least one local minimum; however, (99) shows that in
(ao(n), ai(n))

d2
Ehn(ﬂ) <0

which is a contradiction. Thus
hp(a) 20,a=z0,n=1 (107)
and the theorem is proved.

Itis possible to estimate conveniently e, (¢;f) directly from f, (¢) if fa(®)
and f, (t) are readily obtainable, at least possibly numerically from values
of fu(t). From (38) one has
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f(s) = My (s)~fn(s). (108)

Expansion of I'(n + 1 — s) into a power series in s and substitution into
(37) provides the following series

2 2
Mo(s) =1+ vs+ 28t neay (109)

_ 2
M()71 = 1= vps + = Tng2 4. .. (110)

Thus
(J'2 - l’z -

€nlsif) = [uns + "2+ ] fn (111)

2 2
elv'l(t;f) _”nﬂfn(t) +— 2 ngn(t) (112)

To facilitate the use of (112) some values of the coefficients are given
in Table L.

The following readily obtained asymptotic formulas may be used for
values of n beyond the table:

1 1

~ + 113
"o +1) | 12(n +1)2 (113)
1 1
2 ~ +
T +1 2n+1)?
ot — vk _ 1 1

~ + .
2 2n+1) 8(n+1)2

V. ENHANCEMENT OF ACCURACY

The excellent behavior of the operator L, in constructing approxi-
mations to a given f(t) which preserve its structural properties and its
limiting values and which provide inequalities exacts a penalty in the
form of slow convergence. A high value of n is required to attain high

Table | — Coefficients

n Vn 05 ((’2 - yn)fz
0 0.5772 1.6449 0.6559
1 0.2704 0.6449 0.2859
2 0.1758 0.3949 0.1820
3 0.1302 0.2838 0.1334
4 0.1033 0.2213 0.1053
5 0.0856 0.1813 0.0870
6 0.0731 0.1535 0.0741
7 0.0638 0.1331 0.0645
8 0.0566 0.11756 0.0572
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numerical accuracy. In many practical problems, fortunately, very high
accuracy is not needed; notwithstanding, the value of n required may
still be inconveniently high. Considering that one starts with the Laplace
transform, f(s), of f(t) and uses (4), or constructs fo(t) and uses the re-
cursion of Theorem 11, a high value of n implies obtaining a corre-
spondingly high order of derivative of f(s) or of fo(t) which can be a
time-consuming operation. Thus it would be useful to modify the basic
approximation, L,f, while still preserving many of its original charac-
teristics so that the accuracy for a given value of n may be increased.

In many cases the transform, f(s), has the property that for some
>0, f(s — ) converges for s > 0. This property is used to construct a new
approximation, f, . (t), defined by

fr.alt) = e=*L,(e*tf(¢)) (114)
and, correspondingly, a new operator
Ln,of = fn,a- (115)
The following theorem permits the construction of f, . (¢) directly from
fn(2).
Theorem 22.

fnalt) = : - fn
(1 __«a ) 1— at
n+1 n+l
Proof. From (5) and (6), one has

(n + 1)n+1
n!tn+1

Lf= j; " e~ /ey n(y)du (116)

n+1 @
La(ectf) = (n+ )"+t f e~ [+ /tlutauy nf(y)du. (117)
0

n'!tn+1
Thus
t
Lof | 1=at/tn+D)
ot n+l (n + 1)n+1 @
= - —[(n+1)/t]u+
(1 n+ I) nlgntl .J: el wretunf(u)du.  (118)

Comparison of (118) with (117) shows that

Ln(ewif) = 1 | — (119)

n+1
(1_ ozt) 1 - ol
n+1l n+1

hence, the result follows from (114).
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The approximations f, . (t) satisfy theorems similar to those proved
for fn(t); however, modifications are required. Only Theorem 3 will be
discussed. A function f(t) will be said to be convex over an interval with
exponent « if and only if e*!f(t) is convex over the same interval.

Theorem 23. If f(t) is convex on (0, =) with exponent « then

f(t) < fralt).

Proof. One has from Theorem 3,
e f(t) < L,(e~tf(t)). (120)

The result now follows from the nonvanishing of et and (114).
The error of approximation by f, . (t) will be designated ¢, . (t;f) and
defined by

€n,a(t3f) = fra(t) = f(2). (121)
Clearly
en,a(63f) = e~ e, (tietf). (122)
also, if the condition of Theorem 21 is satisfied, one has
n,a(t;f) = 0. (123)

One of the useful aspects of the approximation, f,, (t), is that it more
accurately reflects the asymptotic behavior of f(£)(¢ — =) than £, (t) does
for a given value of n. In the later applications this will be an important
characteristic.

Clearly, ordinary convexity corresponds to convexity with exponent
zero; however, the following theorem relates convexity with exponent
« to log-convexity.

Theorem 24. Let f(t) be continuous on some interval I; then f(t) is log-
convex on [ if and only if it is convex with exponent « on I for all «.

Proof. One has
fn (e“tf(t)) = at + €nf(t) (124)

hence e“!f(t) is convex with exponent « on I for all « if f(t) is log-convex
on I. The derivative condition for convexity with exponent « on 7 is

f(t) + 2af(t) + a2f(t) = 0on 1 (125)

and the derivative condition for log-convexity on [ is
f(&)f(t) — f(t)2=0on . (126)

The choice
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a = —f(&)/f(t) (127)
which is always possible since f(¢) > 0on I, in (125) verifies (126).

Convexity with exponent « and, hence, by Theorem 24, log-convexity
may be decided by means of the Laplace transform and the use of the
Hausdorff-Bernstein theorem.”

Theorem 25. Let f(t) be continuous on (0, «), then f(t) is convex with
exponent « on (0, =) if and only if

(s + a)2f(s) — (s + 2a)f(0+) — (0+)

is completely monotonic in s on (0, ) and is absolutely convergent on
s> 0.

Proof. The expression cited is the Laplace transform of
I
G a2 (e=tf(t))

whose nonnegativity is the necessary and sufficient condition for con- '
vexity of f(t) with exponent a. The Hausdorff-Bernstein theorem now
completes the proof.

It may be observed that the quantities f(0+), f(0+) are obtainable
from
lim sf(s) = f(0+) (128)

§—>m

lim {s2f(s) — sf(0+)} = f(0+). (129)

g

Another method of enhancement is related to the concept of “degree
of precision.” An approximation operator T, i.e., Tf = f, in which the
functions t7, suitably restricted to an appropriate interval (r = 0, inte-
gral), are in its domain, is said to have degree of precision k if Tt = ¢t”
for0 <r <kand Tt" = t" forr = k + 1. Thus the singular operators L,
studied here have degree of precision one.

The enhancement method consists of the following: coefficients 5;(0
<j <k — 1) are determined by the moment conditions

k-1
Y oLtV =t" 0<r<k (130)
i=0
and, accordingly, the linear combination
E—1
se—1(t) = _)% 0;f;(t) (131)
i=

is now taken to approximate f(t). Clearly the map from f to s.—1 has
degree of precision k, however, unfortunately, it is not positive. If f is
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sufficiently smooth there will result a significant improvement in ac-
curacy over the use of fr—; alone. The system (130) may be expressed
in terms of A, , as follows

k=1
> Bjkj‘,- =1 1<r=<k. (132)
j=0
Accordingly special cases of (131) are
s1=—fo+ 2f1 (133)
1 9
Sz=§f0—4f]_+§f2. (134)

A method of enhancement consisting of a linear combination of the
fn(t) similar to (131) which, however, retains the positivity of the map
will now be constructed. The accuracy attained will usually not be as
great as that of (131) for a given set of values {f;(¢)}5. The new sequence
will be designated h,(t) and is defined by

ha(t) = 3 pify(0) (135)
P
Define W, (u) by
Wolu) = iﬂ pi(G + WG, G+ D) (136)
£

then the coefficients, pj, are constrained by

e

pj =1, Wo(u) 2 0forallu = 0. (137)
0

J

Theorem 26.

_ ) n pi 1/2.
[hn(®) = F(6)] < sup [f(0)] {on_f 1]

Proof. From (8), one has

ha(t) = J; T W, w)f(tw)du. (138)
Also, from (137),
_ﬂm W (w)du = 1 (139)
hence
ha(0) = £©) = {7 W @)[f(w) = (0)]du. (140)
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The nonnegativity of W, (z) now permits the following inequality
@) = fO1 < 7 Wa@lfew) = fOldu;  (4)
hence,
[ha(®) = £(0)] < tsup (0] j;“ Wo)|u — 1|du.  (142)
The Cauchy-Schwartz inequality applied to (142) yields
ha(®) = F©)] < esup [FO)] { 7 Walw)u = 12du " (143)

Evaluation of the integral in (143) provides the inequality of the theo-
rem.

S = E _"—_ / 144
j=0J +1 ( )

then, in order to obtain the best approximation, the p; must be chosen
to minimize S besides satisfying the conditions of (137). One has

Jj+1 i .
oW, (w) = 32 UH D s, (145)
j=0 J!
Let
z=el uy (146)
then the constraint of (137) may be written

n +1y+r

> Uj—)e—fpjzf >0 0<z<l. (147)
Define the polynomials P(x) by (147) with z = (x + 1)/2; then one
has

k+1
P(x)= 3" x [z M( ') (2e)- kpk] (148)
SYLE r\
and
P(x)=0 -1=<x=1. (149)

The cosine polynomial P(cos #) is now obtained and written in the
Fourier form

P(cos ) = 500 + Z‘, a; cos jf (150)
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in which the a; are obtained from

g =1 f” P(cos 6) cos jd. (151)
™ -7
The nonnegativity of P(cos ) implies the following representation®
P(cos ) = |h(8)|? (152)
h(0) = xo+ x1e? + ... + x,ein? (153)
in which the coefficients xy, . . ., x,, are real; thus
aj =2 nij XX 4 0<j=<n. (154)
=0

When (154) is solved for the p; in terms of xo, . . ., x,, the problem of
minimizing S subject to po + ... + p, = 1 becomes that of minimizing
a quadratic form relative to another quadratic form.

The optimum p; have been obtained for the case n = 2; the result is

ho(t) = 0.146993fo(t) — 0.944260f,(t) + 1.797267fs(t)  (155)
with S = 0.273952. Thus, from Theorem 26,

|ha(t) = f(t)] < 0.523404¢ sup |}(t)|. (156)
t>0

The estimate of ¢, (¢;f) in (112) may be effectively used to reduce error.
One may take as an approximation to f(¢) the following
0'2 - D’,%

In order to improve f, .(t), the approximate calculation of en.a(L;f)
proceeds by use of (122). The practical use of (112), (157) uses difference
quotients to evaluate 0f,(t), 6f,(t) from the values already obtained
for f,(t). Thus, let h > 0 be the distance between consecutive values of
t for which f,(¢) is calculated; then

falt +h) —fa(t = h)
2h

Ofn(t) ~ (158)

fn(t +h) _ an(t) +fn(t — h).
h2

02f, (t) =~ Of (£) + ¢2 (159)

The following comment should prove useful in reduction of error. If
a function g(t) is known which approximates f(t), for example, the
leading term of an asymptotic expansion for f(¢), then one may use

f(t) ~ g(t) + L,(f — g). (160)
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Evidently an appropriate g(¢) should always be sought before con-
structing practical approximations to f(t).

Vi. THE RENEWAL FUNCTION

In this section some of the preceding theory will be applied to ob-
taining approximations for the renewal function, M(t), of a renewal
stream.? Let A(t), with A(0+) = 0, be the interarrival time distribution
and A(s), given by

A(s) = J;w e stdA(t) (161)
its Laplace-Stieltjes transform, then
_ 1 A(s)
=——"" 162
M(s) S1—AG) (162)

The sequence of approximations, M, (t), may now be constructed
from

1

M()(t) = m - 1. (163)
In particular one has
12 Aen)
MO =T"Zem T - Aem) (164)
in which
" d .
A’(s) = — Als). (165)
ds

Let A be the arrival rate, and o2 the variance of interarrival time, that
is,

-1= ®

A J; tdA(t) (166)
o_ (742 =2

p j; t2dA(t) — A (167)

then evaluation of the contribution of M(s) at s = 0 provides the
term

232 _
At + %—1 (168)
Thus one may introduce a new function, f(t), by
2)\2 -1
M(t) = At +"—2—+f(t) (169)
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with

' A/ a1
1—A(1/t) 2
Since linear functions are invariants of the operators L, there is no re-
duction of error when approximating f(¢) by f.(t) over approximating
M(t) by M, (t); however, often f(t) is exponentially dominated and the

enhancement technique of Theorem 22 is applicable.
The following example will be considered:

folt) = (170)

t . 1
t)=erfy/ - = 171
A(t) =er \/2 A(s) ST (171)
~ 1 1
Mi)=-—.
(s) sVvV1+2s—1 (172)
Thus,
1
My(t) = ——— 173
o) = e -1 (173)
1 2 1
Mi(t) = += : 4
1) VI+4/t—1 tV1I+4/t(V1+ 4/t —1)2 (174)
Since A = 1, ¢2 = 2, one has
M(t)=t+%+f(t)
1 2 1 1

ht =73 T4 -1 VITAViTai-1 e
(175)

The « transformation of Theorem 22 may be applied to f;(t). As-
suming f1(t) to be ultimately of one sign, the singularity farthest to the
right of f(s), namely —, coincides with the abscissa of convergence;
hence, « = Y. Table II compares the approximations for M(t) given by
M (t), the enhancement procedure of (133), and t + Y5 + f; 1/2(¢) with
more accurate values obtained from the exact solution

@ 1 t/2
M@=y ——— j; e—uyn—1/2dy (176)
n=0
r (n + 5)

Since M(t) = t + Y5(t — «), the accuracy increases with increasing
t. This is characteristic of the applications to the renewal function.

An example will now be considered in which the interarrival time
distribution is a mixture of exponentials since this is of frequent practical
use. Accordingly let
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Table Il — Comparison of approximations

¢ Mu(2) salt) E+ 2+ f14(0) M)
0 0 0 0 0
0.5 0.83333 0.85764 0.84297 0.86007
1 1.39443 1.42283 1.41014 1.42466
2 2.44338 2.47255 2.46303 2.47161
5 5.48142 5.50480 5.49568 5.49718
10 10.49350 10.50977 10.49980 10.49989
7 3
Af)=1——e—t — — —2t.
() 10° 10 e (177)
Then,
) 71 6 1
A §)=— + —
) =051 10542 (178)
i 120+ 13s
M(s) = — =225, 179
(s) s217 + 10s (179)

Also one has
21
289

210 1
)= — " 181
fol®) 289 17t + 10 (181)

Application of Theorem 12 provides
8400 1

M) = f—gt + 2L 4 (180)

£) = — 182
h(e) 9289 (17t + 20)2 (182)
5.67 X 105 1

t = - . 18

f2(0) 289 (17t + 30)3 (183)
The exact solution for this simple example is
20 21

M) ==t +—(1- -(17/10)f)- 184
®)=17 289( ¢ (184)

Table III compares calculations from Ms(t) and the enhancement pro-
cedures of (134) and (155) with the exact value. The « enhancement
procedure with & = 1.7 was not used because it produces the exact re-
sult.

Thisexampleshows the operation of the enhancement procedures (134)
and (155); clearly, sa(t) is very accurate since the constraint of positivity
of the approximation operators is discarded in its construction.
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Table Il — Comparison of calculations

t Mo(t) sa(t) ha(t) M(¢).
0 0 0 0 0
0.5 0.62652 0.62967 0.62712 0.62984
1 1.23024 1.23559 1.23127 1.23586
2 2.41812 2.42353 2.41913 2.42318
5 5.95373 5.9565695 5.95407 5.95500
10 11.83713 11.83747 11.83710 11.83737

Vil. THE COVARIANCE AND RECOVERY FUNCTIONS

The study of errors in switch count and continuous scan observational
methods in telephone traffic engineering is facilitated by use of the co-
variance function of the number of busy trunks in the Erlang blocking
system.!! Specifically let x; be the number of trunks busy at time ¢ in
an equilibrium M/M/C blocking system with unit mean holding time
and offered load of a erlangs, then the covariance function, R(t),is

R(t) = E(xox:) — (Exq)>. (185)

In order to express the Laplace transform, B (s), it is necessary to in-
troduce the Poisson-Charlier polynomials'®!3 which may be obtained
from

Gi(x,a) = ¥ (1)~ (’) W= (’;) (186)

v=0 v

They satisfy the following recurrence

Giv1(x, a) =§—_%Gj(x,a) —i*Gj-I(x, a) (187)
X
Golx,a) =1 Gi(x, a) =E— 1.

Also needed is the function «j(x, a) given by

Gi-1(x, a)
- == 188
aj(x, a) G, (x, a) (188)
which satisfies the first order recurrence

arlr, @) =I5~ Lo, ) (189)

-1

ai(x,a) = (£ - 1) .

a

The zeros of G(x, a) are all positive and simple; in particular, the zeros
of Gj(—s — 1, a) as a function of s are designated r; and ordered by
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rj<ris1<...<r;<0. (190)

In the approximation to be developed, r; will be the dominant root.
The Erlang loss function,!® B(c, a), given by

c ¢ aql

Blea)=% /35

c!/ j=oJ!
gives the probability that all servers are busy. In the formulae below it
will be designated simply by B. The mean number of servers busy, u,

is

uw=al(l—B) (191)
and the variance, ¢2, of the number of busy servers is
g2=p—alc — u)B. (192)
The Laplace transform, R(s), and the covariance, R(t), are!l
- a2+ pu? ap acB
R(s) = + -
(s) 1+s s(1+s) (1+s)2
2
m acB
——+4+——a(-s—-1,a 193
5 s(1+s)2aC( s ) (193)
Rty =3 At A=-—2B 11 (1 (194)
Eae aeomn et
I T4 rj = ri

The approximation Ro(t) is
g2+ p2  aut

Ro(t)y=———+ — —u?

o=t

acBt acBt?2
- + '
(1+8)2 (1+1)2

Since the dominant root is r1 one may choose « satisfying0 < a < —r;
to obtain

(— % -1, a) . (1958)

Ro.(t) = o?e~g(t)

2(t) = - 1+ p?/a? aut/o?
+(1—a)t (1—-at)1+(1-—a))
u2/ o2 acBt/a?
Tl-at 1+ (1-a)t)?
acBt2/g?

1
(1—at)(1+ (1—-a)t)2™ (- Ttae—1, a) . (195b)

It is known that the zeros r; are separated by at least one so that 1 — 1/(r;
—r;) > 0, and hence A; is positive for each j; thus R(¢) is log-convex.
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Accordingly, the following inequality is valid (Theorem 23):

R(t) < Ro(t). (196)

In order to facilitate the use of Rg.(t) an accurate upper bound for
ry is needed to provide a suitable choice for a. Such a bound is available
in Ref. 12. Thus let

c 1
£=% —cWar (197)
v=1V
c 1 =11
m=4£2-2% —cWg-r Z‘,— (198)
=2V j=1]
then
"< - = (199)

L+V(e—1)(cm—£2)

To illustrate the practical performance of (195b) and (199), calcula-
tions were made for the cases a = 4, 8, 12 and ¢ = 8 corresponding to
medium, heavy, and very heavy loads respectively. The corresponding
equilibrium blocking probabilities are B(8, 4) = 0.030420, B(8, 8) =
0.235570, B(8, 12) = 0.422655. Table IV compares the exact and ap-
proximate values. Figures 1(a), 1(b), and 1(c) compare the corresponding
curves.

Table IV — Comparison of exact and approximate values

a=4 a=8 a=12

t R(¢) Ro(t) R(t) Ro,«(t) T(t) Roq(t)
0 3.377 3.377 2.564 2.564 1.492 1.492
0.4 2.143 2.145 1.075 1.091 0.312 0.331
0.8 1.365 1.367 0.474 0.483 0.075 0.079
1.2 0.870 0.872 0.212 0.216 0.019 0.020
1.6 0.555 0.556 0.095 0.097 0.005 0.005
2.0 0.354 0.355 0.043 0.043 0.001 0.001
2.4 0.226 0.227 0.019 0.019

2.8 0.144 0.145 0.009 0.009

3.2 0.092 0.092 0.004 0.004

3.6 0.059 0.059 0.002 0.002

4.0 0.038 0.038 0.001 0.001

The quality of approximation of (199) may be seen from the following
values of a used in (195b) compared to the exact r; values.

a =TI o
4 1.1218 1.1215
8 2.0000 1.9730
12 3.4778 3.3415

The transition probabilities P;;(t)—the probability j trunks are busy
at time ¢ given i trunks are busy at time zero—may all be obtained from

INVERSION TECHNIQUE FOR LAPLACE TRANSFORM 701



the transition probability P, (¢)!1; this probability as a function of time
is called the recovery function. It may be used in a similar manner to the
covariance function, R(t), for the study of errors in scan measurement
techniques!#; additionally it is especially important in the analysis of
telephone retrial models.

The Laplace transform, P..(s), and the recovery function, Pc.(t),
arell

pcc(s) =l+£-ﬁ’c(_5 -1,a) (200)
s as
P (t)=B - i Bjerit (201)
=1
1
=— 1- . 202
B Ty ;‘I;[j ( rj — ri) ( )

As for the covariance function, B = B(c, a), and rj(1 < j < c) are the roots
of G.(—s — 1, a) as a function of s.
In order to apply the a enhancement procedure, the function

f(t) = Pcc(t) -B (203)

is considered whose Laplace transform is
f(s)=l|:1—B+£ac(—s—1,a):|- (204)
s a
It may be observed from (201) and (203) that f(¢) is log-convex, hence

the approximations obtained will constitute upper bounds. In order to
demonstrate the operation of the approximations, the functions foalt),

f1,4(t), and
s1(t) = 2f1,a(t) = fo.u(t) (205)

were constructed; they are

[1—B+'§ac(—%+a—1,a)], (206)

—at

e
fo.a(t) = 1 _ ﬂ!t

—at 2
fl.a(t)=——e [1—B+£ac(——+a—l,a)]
1 a t

The prime on a,(x, a) indicates differentiation with respect to x. The
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following recurrence relation is obtained from (189);

oz, ) = i— liej(x, a) = 1ajsa(x, a)2 (208)
ai(x,a) = — 1 ay(x, a)?
a

Since s1(t) does not correspond to a positive operator, it does not provide
a bound for P,.(t); one has, however,

Pc(t) £ B+ f1,a(t) < B + fo,a(t). (209)

The first inequality follows from Theorem 23 and the second inequality
from Theorem 21.

The same cases as for the covariance function were treated. Tables
V, V1, and VII compare the exact and approximate values. Figures 2(a),
2(b), and 2(c) compare the corresponding curves.

TableV —a= 4

t P (t) B + fo,a(t) B+ f1,(t) s1(t)
0 1.0000 1.0000 1.0000 1.0000
0.1 0.5178 0.5907 0.5597 0.5287
0.2 0.3304 0.4280 0.3856 0.3432
0.3 0.2380 0.3335 0.2901 0.2468
0.4 0.1844 0.2703 0.2296 0.1889
0.5 0.1497 0.2249 0.1880 0.1511
0.6 0.1256 0.1907 0.1578 0.1248
0.7 0.1080 0.1641 0.1350 0.1059
0.8 0.0947 0.1429 0.1174 0.0918
0.9 0.0844 0.1258 0.1034 0.0810
1.0 0.0762 0.1118 0.0922 0.0726

TableVI—a =8

t Pe.(t) B + fo,a(t) B + f1,a(t) 51(t)
0 1.0000 1.0000 1.0000 1.0000
0.1 0.5756 0.6335 0.6088 0.5842
0.2 0.4379 0.5005 0.4725 0.4445
0.3 0.3727 0.4256 0.4006 0.3756
0.4 0.3347 0.3770 0.3561 0.3352
0.5 0.3099 0.3432 0.3262 0.3092
0.6 0.2927 0.3187 0.3050 0.2913
0.7 0.2802 0.3005 0.2895 0.2786
0.8 0.2708 0.2866 0.2779 0.2692
0.9 0.2637 0.2760 0.2690 0.2621
1.0 0.2581 0.2677 0.2622 0.2567

This example will be used to show the operation of the error estimate
(112). Using the increment h = 0.1, (158) and (159) were used to obtain
Ole**fo,a(t)], 02[e2tfoq(t)] and B[etf1,4(t)], 82[e*!f1a(t)] at ¢t = 0.5.
Equation (122) was used to estimate € o(t), €1,4(t). The error in s;(¢) was
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Table VIl — a = 12

t Pe(t) B+ fo.a(t) B+ fia4(t) 51(¢)
0 1.0000 1.0000 1.0000 1.0000
0.1 0.6245 0.6679 0.6493 0.6307
0.2 0.52565 0.6629 0.5458 0.5286
0.3 0.4834 0.5097 0.4969 0.4840
0.4 0.4611 0.4789 0.4698 0.4607
0.5 0.4479 0.4598 0.4535 0.4472
0.6 0.4396 0.4476 0.4427 0.4378
0.7 0.4342 0.4396 0.4366 0.4336
0.8 0.4306 0.4342 0.4322 0.4301
0.9 0.4282 0.4306 0.4292 0.4278
1.0 0.4265 0.4281 0.4272 0.4262

estimated by 2¢; (t) — €0(t) in which the estimates for € q(t), €1,4(t)
were used. The results obtained are given in Table VIIL

Table VIl — Error estimates at t = 0.5
a €0, Estimate €la Estimate s1—f Estimate
4 0.0752 0.0714 0.0383 0.0372 0.0014 0.0030
8 0.0333 0.0317 0.0163 0.0160 —0.0008 0.0002
12 0.0120 0.0113 0.0056 0.0001 =0.0007 -=0.0111

Vill. SOME APPLICATIONS OF THEOREM 12
The generating function, which will be designated G(z, t), of Theorem
12, namely,

Gz, t) =

: f d 210
1-2'° (1 - z) (210)
may sometimes be used to obtain explicitly the form of f,(t). The fol-
lowing are some examples.

For f(t) = cos t, one has fo(t) = 1/(1 + t?), hence

1—2z2
Gz, t) = 1—22+ vy (211)

The generating function for the Chebyshev polynomials, T), (t), of first
kind is15

1-1tz i
—— e T (t)zn
1—2tz+22 ,Eo n(t)2 (212)

hence

Gla,t) = 5 2n(1 + 20T, (=)

n=0 V1+t? (213)

One now obtains
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t

21 —(r+1)/2 1
I
n+1 t 2
()
n+1

(214)

fa(t) =L, cost = [1+(

For f(t) = sin ¢, one has fo(t) = t/(1 + ¢2), hence

t
Gz, t)=————.
(z, t) 122+ e (215)
The generating function for the Chebyshev polynomials, U, (¢), of second
kind is

1 @
- = n
I —2tt22 5 U2 (216)
hence
& 1
Gz, t) = 3 zn(1 + t2)-t+0/y ( )
S ) “Viva) O
Thus
falt) = Ly sint = — [1+ AR
" ~ fn SO _n+1 (n+1)_
1
X U, | ————o—1] (217)
Vi (o
1+ ( )
- n+1

The Bessel functions provide additional interesting relations with
orthogonal polynomials. For f(t) = Jy(t), one has fo(t) = 1/v1 + ¢2,
and

1

= 218
Gt = rre 219)
The Legendre polynomials, P, (t), are generated by
1 @
——— = P, (t)zn, 219
V1 =2tz + 22 ,Eo (t)z (219)
hence
)= Ldo®) = [ 14 (—=) 17" p
n(t) = Ly = ‘—
fal 0 [ (n + 1
(220)
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By the substitution of it for t, one derives immediately

27 —=(n+1)/2
£alt) = Lodolt) = [1 -(-59) ] :

_1—_ - (221)

§ W

Since Iy(t) is convex, one also has

Io(t) < Lnlo(t) (222)

for sufficiently large n.
As another example relating to Bessel functions, consider f(t) =

Jo(2v¢), then fo(t) = e~! and

Gz, t) = e—t/1=2), (223)

1—-2z
The generating function for the Laguerre polynomials, L, (t), is

@

e~tz/1=2) = ¥ [ (t)z" (224)
1-=z n=0
hence
t
_ = e—t/tn+ D], (——) 225
fult) = Lado(2VD) = € 1 (225)
IX. SUMMARY

The methods of this paper have been found particularly useful in
analyzing complex queueing phenomena whose Laplace transform
representations are quite often implicitly defined. The error estimate
of (112) has been found especially useful. Its computation is numerically
effected by use of (158) and (159).

It would be desirable to have an effective method of estimating the
a parameter of (114) directly from f,(t). In fact a method of this type
which yields a rough evaluation has been devised and will be reported
in a later paper. Of interest also would be further elaboration of the way
structural properties of f(t) are reflected in f,, . (¢).

The investigation of linear combinations of iterates, L}, of the oper-
ators L,, may prove useful in providing additional enhancement methods.
Especially, further investigation is needed concerning enhancement
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methods which preserve the positivity of the approximation process.
The isolated result of Theorem 16, which shows that exp(L,£,f(t))
is a better approximation to f(¢) than f,(t) when f(t) is log-convex,
should be examined with the purpose of the possible construction of
nonlinear approximation methods exploiting this structural charac-

teristic.
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APPENDIX
Operations
f(t) fo(t) or fn(t)
1 1 t dx
) ; _fo folx)
fat),a>0 falat)
ot —n—1 t
e (1 T+ 1) fn (1 — at/(n + 1))
t t oo,/ i+l
.I:) f(x)dx n+ 1;§(an (tn+1)
; folt) =f(0) n+1 B n ]
) —[0) nt [fn(t) ot (=) [ 2
£(t) fo(t) — fi(i) - tf(O), 4 fi(t) — 2f0¢(;/2) + f(0)
n n-—1
fat) = 2fns (n . t) + faes (n o t)
(n+1)2 v (n
tf(t) tfolt) + t2fo(t)
tf(t) tfn(t)

]_ t
. j; f(x)dx

1 ot
. J; fn(x)dx

f(t)*h(¢)(Mellin) | fn(¢)*h(t)
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