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Inductive Post Arrays in Rectangular Waveguide

By T. A. ABELE
(Manuscript received July 15, 1977)

Previous attempts, based on mode-matching techniques, to obtain
precise data for the equivalent circuit of inductive post arrays in rec-
tangular waveguide have consistently failed due to convergence
problems. A different formulation is presented for symmetrical post
arrays, which is shown to be free from this defect.

I. INTRODUCTION

Waveguide band-pass structures employing cascades of inductive
posts have been built for many years. They usually contain a symmetrical
arrangement of posts in each cross-section, mostly one, two or three
posts. The latter arrangement, for instance, is a favorite for \/4-coupled
filters, since it strongly reduces higher order mode interaction. This al-
lows A\/4 spacings to be used instead of the 3\/4 spacings required for
single post filters, thus leading to shorter filters.

In the past all of these structures had to be designed on the basis of
measured data for the equivalent circuit of the cross-sectional post ar-
rangement, because the available theoretical calculations!282 are not
sufficiently accurate. The obvious problem with measured data is, of
course, that two errors are introduced, whose magnitudes are only poorly
known: dimensional tolerances of the sample to be measured and errors
in the measurement itself.

Previous attempts to obtain theoretical data based on mode-matching
techniques have consistently failed due to the convergence problem
typically associated with taking a finite number of unknowns out of two
sets of infinitely many unknowns. This paper presents a formulation
which leads to only one set of infinitely many unknowns in the case of
single or double posts. It may thus be expected that, when a finite
number of these is taken, no convergence problem will be encountered.
One may also speculate that this will continue to be true for arrays in-
volving three or more posts, although in these cases more than one set
of infinitely many unknowns is encountered again.
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Fig. 1—Post array.

Il. CONFIGURATION

We wish to determine the equivalent circuit of the array in Fig. 1 in
the plane z = 0.

The posts are circular. They are numbered consecutively from u = —M
to u = M with p = 0 designating the center post. The array is symmetrical
with respect to the plane z = 0 and the plane x = 0. The center post may
or may not be present. Each post y has a diameter d, and a coordinate
x = p, of its axis. Only dominant (TE;o) mode propagation is assumed.
The surfaces shall be perfectly conducting.

The electric field will be calculated as the superposition of two fields;
the field which exists without the posts, the unperturbed field, and the
field generated by the surface currents on the posts, the perturbation
field. The surface currents, or rather the coefficients of their Fourier
series, are treated as unknowns, which are subsequently determined in
such a way that the tangential electric field vanishes on the surface of
the posts. As usual, only two special cases of excitation are studied, even
and odd, since this suffices to determine the equivalent circuit.

ll. UNPERTURBED FIELD

We set
E, even = (e/0¢% + e77Ps?) cos r—:- (1a)
Ey aaa = (¢34 — e~J%4%) cos = (1b)
with
2
ks
f=|Ver-5 @
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Fig. 2—Post surface.

where (dominant mode assumption)

2r _ W
B N > 2 (3)
A is the wavelength in our medium. Obviously the fields in Eqgs. (1) fulfill
the boundary conditions everywhere except on the post surfaces.
For later use we wish to develop these fields into Fourier series on the
surface of a post » located at p, and of diameter d,.
From Fig. 2 we see that the post surface has the coordinates

1
x=p,,—-§d.,cos¢ (4a)

d,sin ¢ (4b)

zZ =

DD | =

Introduction of these expressions into Egs. (1) and use of the well-known
expansion of e/z sin (Ref. 5, p. 22), results in

E}‘ even — i Jn (‘;‘ ,Bd,,) eind

n=-—o

X [cos (gp,, - ndm) + (—=1)" cos (;—rp,, + n¢o)] (5a)

Ey oda = n;_m In (é ﬁd.,) einé
X [cos (Ep,, - nqﬁg) —(=1)" cos (fp,, + nqﬁg)] (5b)
where

eito= (8 +i7) ®)
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IV. PERTURBATION FIELD

To determine the field generated by the current distributions on the
posts we observe first that all of these currents are independent of y and
in the direction of y. Secondly, the effect of the broad waveguide walls
can be replaced, making use of the common imaging technique, by as-
suming that all posts are infinitely long in both y directions, and, again,
have current distributions which are independent of y and in the di-
rection of y. Thirdly, by employing the same imaging technique once
more, we can replace the effect of the narrow walls by periodically re-
peating the array of infinitely long posts in both x directions with post
locations and current distributions, which are consecutive mirror images
of each other. To determine the perturbation field, we can then simply
sum up the fields generated by these infinitely many and infinitely long
posts, without having to worry about the boundary conditions on the
waveguide walls, since they are automatically fulfilled.

From basic electromagnetic theory we get for the electric field gen-
erated by a current filament stretching in y direction from — to «, lo-
cated at xo, zo, and of strength I, only the following component in y-
direction

Jou o e—fﬂ|\/(I"xu)2+yo2+(z—zu)2|
E.‘v' == _Iy f 3 5 5 dy()
4x —o|V(x = x0)2 + yo2 + (z — 20)?|

= — %’f[yHo(2)(ﬁ|\/G —x0)2+ (z — 20)?|) (7)

The latter transformation may be found in Ref. 3, p. 27. u is the perme-
ability of the medium.

Making use of the symmetry of our structure and summing over all
currents on all post surfaces we obtain

M T @
E=- 5 [TLe) E C1H®

4 y=—M
G

Figure 3 explains the quantities I,(¢), d,, p, and the coordinates
used.

With this expression for the perturbation field we will do two things.
First we will determine its value at a large distance to obtain expressions
for the elements of the dominant-mode equivalent circuit. Secondly, we
will evaluate it on the post surfaces in order to be able to come up with
an expression for the boundary condition for the tangential electric field
there.

=—om

‘\/(z—éd#sin\b)2+ (x—p,‘+ka+%dﬂcos¢)2

) dy (8)
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Fig. 3—Post.

V. PERTURBATION FIELD AT A LARGE DISTANCE

If we write

1
B=-
a

1
2"2‘du5in¢|

1 1
C=a—(x—pu+§ducos

)
A= fa

in Eq. (8), we can apply Eq. (34) from Appendix A to Eq. (8), which re-
sults in

M 27
Ey=-wp X I,(y)
u=—M 0

— 1)2..2
exp-j|\/ﬁ2—_‘—'—(2k azl) g z—%d,,sinl,b'
P>
k= 2k — 1)%x2
! a'\/ﬁz————( a2)7r
2k =17/ 1
Xcos[—_a (x pﬂ+2d‘,cos¢)]
—1)2.2
exp—l‘\/@#—ﬁ2 z—ld“sinw|
. a 2
+jkt+1 (2k — 1)272
= —1)%x
al\/_a2——32
(2k - 1) 1
Xcos[——a—r(x—p#+§d#cosw)]]dv’/ 9)
with

1 2l - 1)w 20+ 1)=r
>>d, —— << ——
|z| 2d“, . B < .
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The second of the two sums over y obviously represents the evanescent
modes in the rectangular waveguide and, therefore, vanishes for large
|z|. In accordance with our assumptions we have

T« B < 3m (10)
a a
which means that ! = 1 in Eq. (9). We therefore find from Eq. (9) for
Zs1
a
M T
Ey = — Wi z j‘z Iy(\b)e_jﬂg(z_%d" sin )
Bga u=—M Jo
)<cos[E x — +ld w]d
" (= put Saucoss) |av
w
=—— I e~ iBgz+iv(x=pu)lagiy 36d,, sin (y+60)
2600+ En j‘ ) [

+ e—iBgz—in(x—pu)lagj 5Bd, sin W—do)| dyy  (11)

where ¢y is again defined by Eq. (6). Using once more the expansion al-
ready used in Eqgs. (5) we obtain

. M s 1
Ey=—gbeie 3 ¥ Jn (3 54x)

8 p=—Mm=—w
2r )
X cos [-E (x —pu) + mqbo] j; I()elm¥dy  (12)

The inversion of the order of integration and summation employed here

presents no difficulty.
Physical considerations tell us that the currents () can be developed
into a Fourier series. We write in the usual manner

L= Y cumeim (13a)

where, of course,
1 2w .
Cuam = 5= J‘ I,(Y)e=imvdy (13b)
T Jo

Eq. (13b), when combined with Eq. (12), results in

e—ibez %4: Y (-1)m Cumdm ( 3d)

ga p=—Mm=—=

X cos [% (x —pu) — m¢0] (14)
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Fig. 4—Equivalent circuit.

For x = 0 (center of the guide) this results in

et 33 (1) ( 6d)

ga u=—-Mm=—w

2Twp

E, = -

m™
X cos (; pu.t+ m¢o) (15)
Combining this result with Eqgs. (1) for x = 0 we find for the total
(unperturbed plus perturbation) field for wz/a > 1

2rwu
Bga

Ey;};" = e.flsgz 1 e‘jﬁgl —_ e"'_fﬁgl

X g i (=1)™c,, mevene] (;—ﬁdu) cos (Ep#+m¢0) (16)

p=—Mm=—o

Cumgynis written here to distinguish between the values of ¢, , for even
and odd excitation. For the equivalent circuit of Fig. 4, which is valid for
the plane z = 0, we obtain from Eq. (16) the reflection coefficient
2mwp

Bya
X 35 (=) ey e ( Bd#) cos Gp,,+m¢o) a7

p=—Mm=—=

even

Podd = +1—

with
iX + % -1
Peven = + (18a)
X+ —+1
J _]B
JX=-1
= 18b
Podd X+ 1 (18b)

These equations permit the caleulation of X and B once the values of
Cp,mepen are known.
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We note, that because of the structural symmetry with respect to
x=0

Copm = (=1)"Cy-m (19)
foru =0, %1, £2... Also, since we have
L) = £ e (27 = ) (20)
it follows that
Cu—mager = FCumes (21)

Eqgs. (19) and (21) permit reduction of c,,m for negative values of u and/or
m to those with positive values.

VI. PERTURBATION FIELD ON POST SURFACES

Referring once more to Fig. 2 we get for the perturbation field on the
surface of a post » from Egs. (8) and (4)

E=-2 % (TLw ¥ (1

4 ,=—M Jo k=—w
1 ) 1 . 2
X Ho® (ﬁl (Ed" sin ¢ —Edﬂ sin ',b)

211/2
+(p,,—p“+ka—%d,cos¢+%d#cosxp)' )d\b (22)

We wish to write for this a double Fourier series with ¢ and ¢ as inde-
pendent variables. This can be done with the aid of the so-called “ad-
dition” theorem (Ref. 5, p. 361) if we impose the condition that the posts
do not penetrate or touch each other or the narrow walls of the wave-
guide. We obtain

__i"’ﬁ M 27
B == ¥ LW

X[ £ Ecomhin (g6) 9 (354)
ka+p,—pu>0

X HZm (B(p, — pu t+ ka)} e/ *mé)

+ 5 B E on(y0) e (;54)
ka—p,+pu>0

X H& {B(p, — po + ka)} eln+m¥) (~1)ntk

had 1 1 .
+ li n\L PG, i(rlz) (— v J'ﬂ(ﬁ‘\l’)]
x}-{r'll.]n.=2—m dJ (2 Bd ) H 5 kpBd ) e dy (23)
u=vonly
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Based on physical reasoning (summing contributions of current fila-
ments in different order, integrating around each post before summing)
we now exchange the order of summations and integration in Eq. (23)
and carry out the integration. This leads to

__wur 2 1 ind [ ¥ 3 1
By= =50 X dn(3Bd)emt| % Jn(564u) cum
X k_Z (=1)*HZ..(8|p,. — p. + ka|)[sgn (p, — p, + ka)]r*+m

pu—pv+ka =0

+ lim H® (% xﬁd,,)c,,,,, ] (24)

x—1
With the abbreviation
@ A m
Y (-1)*H? (|A + kB|) [sgn (§+ k)]
FiEEwo

= fm(A,B) = (-1)" f_.(A,B) = (=1)"f,(—A,B) (25)
we can write this as
WU

E,=-2£ & (%ﬁd,,) eind

2 n=—w

x[ £ % Jn(384) cumfnon 18p, — p.)fal

p=—Mm=—=
1
+ lim H? (5 x.@d.,)t’:,,,n ] (26)
k—1
If we take this result for the perturbation field, add it to the incident
field Egs. (5) and impose the condition E, = 0 on the surface of the post,
we get (letting x — 1)
ke 1 .
2 dJn (5 Bdu) e’”"’[cos (Ep.. - n¢vo) + (—1)" cos (Epy + n¢o)]
n=—w a a
o© 1 X M @
A (E ﬁd,,) emds[ SO Jn (% ﬁdu)
n=—e

2 p=—M m=—w
@ (1
X Gy s 18P = po), Bl + HEY (5 6, c.,,n;;;n] 27)

Because of the uniqueness of Fourier series (Ref. 4, p. 186), this results
in

cos (g P, = nq&g) + (—=1)" cos (fpu + n¢0)

M @
=5 £ 5 (364 cumtie fn-nlB(p, — o). o)

2 [ EMm=a

+HO (% 6d,) c,,,] (28)
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This equation holds for n = 0,1, 2. ... It expresses the boundary con-
dition on the surface of post » for even and odd excitation. If applied to
all posts v = 0, £1, 2. .. M, it expresses the boundary condition on
all posts. However, because of the symmetry involved, only » = 0, 1,
9. . .M are needed. As before, Egs. (19) and (21) permit reduction of ¢,,m
for negative values of u and/or m to those with positive values. In sum-
mary we can say that Eq. (28), if applied forn =0,1,2,. .. andr=0,1,
2. . .M, will allow us to compute all of the unknown coefficients ¢, m. In
turn, Eq. (17) will then allow us to compute the elements of the equiva-
lent circuit, which means that our problem is solved.

Appendix A and Appendix B provide expressions suitable for the
computation of f,,(A,B) in Eq. (28). These alternate expressions are
essential, because the defining series Eq. (25) converges very slowly, as
the magnitude of H?(z) decreases only with |2=1/2| for large z. The
derivation of these expressions constitutes the most difficult and labo-
rious part of this analysis. For convenience the results are repeated below
in the form most appropriate for Eq. (28). From Egs. (40) and Eq.
(41), ’
fm(Bp, Ba) = 2 tan o cos (E‘Q -

T a

mw

2

2X nTtp mmw
, 2o (%)
+ji- % S— A
™

n=3,5...|\/(§£)2_1| [52%\+ l‘\/(%)z_ 1|]m
1Z (m-n-1!

+j-
I m—2n - 1)

) eim(bo—x/2)

3

m—2n
X A hm—on—1 (cos E) (29a)
. TP a
a sin —
a
fom—-1(8Na, Ba) = 0 (29b)

fam(BNa, fa) = 2 tan do(—1) N+mei2m(éo—r/2)
™

2_A_ (__1)N+m

riE Y e —
7fn=3,5...|V(n_}\)2_1|[n_}\+ \/ n_Az_l]zm
2a 2a (2&)

+ l m 2(—1)N+"(m +n — 1)1(22n—1 — 1)Bg, é 2n
iy (m — n)i(2n)! (a)

(29c¢)
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From Eq. (34e) and Eq. (34f)

D
cos — ) -
a . k3
ilgo—/2) 4 7 = ( 2 _)
fo(Bp, Ba) = oo o0 J o (cot? o
1 4 cos ”_EE
2 (29d)
'n' 3
WG [ I‘/ -1[]»

08 tho

fo(BNa, Ba)-—( elbo=r/2) — (~1)N 4 j= (C+ln—)( N

1 E 4(-1)N
VG B VG ]

These expressions are valid if

(29e)

9
% >\ > 2
3

p #0,+a,+2a...
m=1,2,3,...
N=04+1,42...

The polynomials h,, (x) are defined in Appendix B, Eq. (42). B,, is the
nth Bernoullian number and C is Euler’s constant.

VIl. NUMERICAL RESULTS

A series of calculations was made to investigate the question of con-
vergence and to ascertain that the rather involved analysis is error-free.
To this end the reactances X — 2/B and —X [Eqs. (18)] were calculated
for the cases of single, double, and triple posts with \/a = 1.2, p,/a = 0.25
and 8dy = fd; = 0.2 and 0.4, employing increasing numbers of variables
and equations. Furthermore, the computed results were compared with
measured data where such data were available. Lacking a full-fledged
computer program the calculations were carried out with the aid of a
programmable desk calculator, except for the matrix inversion, for which
a general-purpose computer program was used.

Table I summarizes the results of this work. The first observation that
can be made is that, as expected, the convergence obtained for single and
double posts is excellent. Three terms in the Fourier series for the post
currents is all that is needed to obtain six place accuracy for the reac-

INDUCTIVE POST ARRAYS 587



Table |

X -2

Number of posts % Bdo  Bdi  Nmax B -X
1 — 0.2 — 0 1.121835970 —_—
1 —_ 009450748398
2 1.121835438 —
3 — 009450749381
4 1.121835438 —
Meas. 1.12 010
0.4 0 6546985053 —
1 — 03669710000
2 6546719818 —
3 —_ .03659716655
4 6546719813 —
Meas. .655 .037
2 0.25 — 0.2 0 1.121835969 —_
1 1.100680471  .009467748389
2 1.100679708  .009467748828
3 1.100679707  .009467799814
4 1.100679707  .009467799806
04 0 6546985046 —
1 6071886432  .03659710003
2 6071426563  .03685942441
3 6071423836  .03685949132
4 6071423830 .03685949138
3 0.25 0.2 0.2 0 .2599117670 —_
1 2578995041  .01871192452
2 2578489230  .01872800993
3 2578488656  .01872801335
4 2578488652  .01872801340
Meas. .2565 .020
0.4 0.4 0 .02634303527 —
1 .02329626388 .07043107151
2 .02238859942 .07063929772
3 .02238444183 .07063993488
4 1022384372656 .07063993658
Meas. .0265 074

tances, which is more than enough for any technical application. The
second observation is that, as was hoped, excellent convergence continues
to exist for triple posts, even though in that case two sets of infinitely
many unknowns are encountered instead of just one. Even for posts with
susceptance values as high as B = 20 no more than four terms in the
Fourier series are needed to obtain five-place accuracy. Presumably the
analysis will converge even for four or more posts, but these arrange-
ments are of little technical interest and thus probably not worth in-
vestigating. Finally, when comparing the computed values with mea-
sured data obtained with the aid of a very precise, computer-operated
transmission measurement set,'? sufficient agreement is found to as-
certain that the analysis is free from any fundamental error.

APPENDIX A
We study the following series
»  g=BVI@n—Dr+i]+2% cog {[(2n — 1)7 + t]C}

b2 V[@n = D+ t]? + 22

n=—cw

fz,B,C,t) = (30)
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with ¢ as a real variable, B = 0 and real, C real, Relz} > 0, Re
{(V[(2n — D + t]2 + 2% > 0. This function is even in ¢ and also periodic
in t with the period 27. For reasons which will become apparent later
we wish to develop it into a Fourier series in ¢

1 @
—ag+ Y ax coskt (31)
2 k=1

Without going into the fairly laborious detail the result is

1 @

fz,B,C,t)=— ¥ (-1):Ko(z|VBZ+ (C + k)?| cos kt  (32)
Mh=—=

for the conditions stated for Eq. (30) plus either B> 0or B=0and C

#0,+1,+2....Setting t = 0leads to

@ @—BV(2n-12724z% 0og [(2n — 1)C)

2
nz=:l V(2n —1)2n2 + 22

= T DK VBT CHRPD) (39

provided Re{z} > 0, Re{V/(2n — 1)2x2 + 22} > 0 and either B > 0 and real,
CrealorB=0,C = 0,+1,42...and real. The validity of Eq. (43) can
be extended to include Re{z} = 0 by analytic continuation. In doing this
the points z = 0 and z = £j(2n — 1)x obviously have to be excluded, since
at these points individual terms of the sums involved are not analytic.
The result of the analytic continuation is for z — jA

Y (—1)f HO(A|VBT+ (C + R)7))

k=—m
Lo e—BV(2n—1)r?— A%
= 4] n§1\/(2n a2 cos [(2n — 1)xC] (34a)
with
A > 0, real
A#m3mbr... (34b)
argV/(2n — )22 — A2=0 or";[
and either
B > 0, real
C real (34c)
or
B=0
C#0,+1,£2...,real (34d)
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For the latter situation [Eq. (34d)] Eq. (34a) may be rewritten in the more
rapidly converging form

}E (1) HP(A|C + k) =j~1— In (cotzlvrA) + 4 i
k= —w T 2 n=1

AZcos [(2n — 1)xC]
(2n = Dr v(2n = 1)%2% — A2 [(2n — )7 + V(2n — 1)2x2 — A?)
(34e)
We also need a result corresponding to Eq. (34e) for C = N = 0, £1,
+2.... We observe first that in the left hand sum the term &k = —N has
to be excluded for obvious reasons. Furthermore it is

Y (CDFHPAIN+K|) = (1N T (—1)*HP(A|k])
=—m k=—o

k#—n k=0

= 2(-1)N ¥ (~D)*HP(AR) (35)
k=1

An alternate expression for the last sum is known (Ref. 6, p. 333). We
get :

S (—1)FHPA|N + k|) = (~1)¥ [—1 + 9 i (C+n ;iw)

kN . N
W [\/(2n “1)2aZ— A2 2n1r]]
= (~1)N [—1 + 2j1(c +lné) +4j 5
™ ™ n=1
AQ
(2n — 1)7V(2n — 1222 — A2](2n — V)7 + V(@1 — D)%% — A2 ]
(34f)

with N =0, £1, £2. . . and Egs. (34b) in force. Note that C in this last
formula is Euler’s constant.

APPENDIX B
We study form =1, 2... the series
fm(z,C, t) =

2™ cos

[(2n—1)7r+t] C—mg]

ngl'\/[(zn —Dr+tP+22[2n - Dr+t +V[2n — D + )2 + 22]™
(36)
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with ¢ as a real variable with the range —m < t < 7, C real Refz} > 0,
Re{v/[(2n — 1)7 + t]2 + 22} > 0. Analogous to the situation in Appendix
A we wish to develop f,(z, C, t) + fm (2, C, —t) into a Fourier series

a ®
=04 > ap cos kt
2 k=1

over therange —m <t < 7, thereby continuing it periodically beyond that
range. Again omitting the fairly laborious detail we get for C = 0, +1,
+2...

fm(z, C, t) + fm(z, C, —t)

= = (C)™H[4S, (C2)eime2 — 8K (|C2) ogn C)7]
™

+ L (=1)m*1 i (—1)%[2S,,(jCz + jkz)eim=/2
4w k=1
+ 28, (jCz — jkz)eim™/2 — 4K, (|C + k|z){sgn (C + k)}™

— 4K (|C — k|2)isgn (C — k)] cos kt = i (=1)m

X 3 (—=1)F[2Kn(|C + k|2)isgn (C + k)}m

k=—w

— eim=/28, (jCz + jkz)] cos kt (37a)
andforC=N=0,+1,+2...
fm(z. Nx t)+ fm(Z, N, _'t)
= %(-1)’" i (—1)%[2K,(|N + E|2){sgn (N + k)j™
™ k

# —a
k=N

. 1
—eim®/28 (jNz + jkz)] cos kt + — (—1)N cos % cos Nt (37b)
m

In these equations S,,(z) denotes Schlaefli’s polynomial (Ref. 5, p. 313).
For t = 0 this results in

z™ cos [(2n - 1)xC — mg]

@

ngl V(@2n —-1222+22[(2n — D)r + V(2n — 1)2x2 + 22™

=?41*(-1)”’ i (—1)*[2K,(|C + k|2){sgn (C + k)}™
s

h=—

— eim=/28, (jCz + jkz)] (38a)
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provided C = 0, +1,+2...,andin

z™ cos [(Zn —1)aN-m g]

u§1 V(2n = 1)272 + 22[(2n — D)7 + V/(2n — 1)222 + 22| ™

= (D7 T (<DH2KA(IN + k]2 logn (N + B}

k#—N

—eim=/2 8, (jNz + jkz)] + 1 (—-1)N cosm (38b)
2mw 2

for N = 0, £1, £2.... By working on the two series with Schlaefli’s
polynomials the following alternative expressions are obtained

2™ cos [(2n - 1)xC — mg]

n§1 vV (2n — 1272 + 22[(2n — )7 + V(2n — 1)222 + 22|m
1

=—(-1)m 3 (=1)*Kn(|C + k|2)[sgn (C + k)]™
2 h=—ow

+ -1_ ejmm/2 <§/2 —,._.(m —n=1) (?_I)m-—ﬂn
47 n=0 n!(m —2n — 1! \jz

dm—?n—l 1
[d:z:""‘Z"‘1 sin x]x=cw (392)
Y (=1)*Kor—1(|N + k|2) sgn (N + k) = 0 (39b)
hw
- 220 (=1)N+A

,.gl V(2n —1)222 + 22[(2n — 1)z + V/(2n — 1)222 + 22]2*
== 5 (CDMEn(IN + E|2) + —— (DN
2T p=—w AAT
1 ==N
—— (-1 N+
271_( ) p

A (At k= 1)(22k-1 — 1)By, /27 2k
= (\ — k)!(2k)! ( ) (39¢)

where, again, C = 0,+1,+2...,real N=0,+1,+2...,m=1,2...,
A=1,2...,Relz} >0, Re[v/(2n — 1)272 + 22} > 0. Following the same
argumentation as in Appendix A the validity of Egs. (39) can, by analytic
continuation, be extended to include Re{z} = 0 with the exception of z
=0and z = £j(2n — 1)#. The result is for z — jA with A > 0 and after
some rearrangement
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k_i (—1)RHD(|C + k| A)[sgn (C + k)]m

A™ cos [(2n - 1)xC — g]

= 47 -
/ n§1 V(2n = 1)222 = A2[(2n — D)7 + V/(2n — 1)272 — A2]™

. 12T (m=-n-1) ,2m\m—2n
— __1 m — JE A
S —an = 1] (A)
dm—2n—1 1
I:abc"“g"‘1 sin x]x=C1r (40a)
S (=1)*H2_, (N +k|A) sgn (N + k) = 0 (40b)
hk=—o
k#—-N

T (~1)RHE) (N + k| A) = 4j(—1)+m

k=—wo
k#=—-N
@ AZm
X2

ne1V(2n — 1272 — A2[(2n — D7 + V/(2n — 1)272 — A2)2m
. 2 m (m+n-—1122""1 —1)By,(—1)" /2m\2n
+j(-1)N 2 (—) 40
JEDTT (m — n)l(2n)! A (48c)
validform=1,2...,N=0,+1,+2...,C = 0, %1, +2 and real, A >
0,real and A # =, 3m, 57 ..., and with arg (v (2n — 1)272 —A% =0 or
/2. Eq. (40a) can be written in the following more convenient form

S (—1)FHD(|C + k| A)[sgn (C + k)™

k=—w

Am cos[(2n - 1)aC—m g]

=4 ,,%\/(Qn —1)2x2 — A2[(2n — 1) + V/(2n — 1)2x2 — A2|™

<—

1 2 (m—-n-1)! o

tiT- 2 , ( .
47 n=on!(m —2n — 1)! \A sin C~r

subject to the same restrictions as those enumerated for Egs. (40). The

polynomials h, (u) appearing in this equation are defined by

m—2n
) hm-2n-1(cos Cw) (41)

ar 1
h,(u) = (-1)? [sin ntly - ] (42)
dx™ sin x Jcos x =u
and can be shown to satisfy the following recursion formula
which begins with
dh,—

hn(u) = nuh,—y(w) + (1 — uz)#(”) (43a)
holu) =1 (43b)
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It appears impossible to give a closed form expression for these poly-
nomials, but their coefficients can easily be calculated by the following
scheme which is a consequence of the recursion formula

u? u? u u®

1

#\wf\ﬂ/—o |

Y~

/\
\13/
/\
\/

H \
5 \61 / \
6 61/ \ / \
i.e., itis
ho(lu) =1
hi(u)=u
holu) =1+ u?

ha(u) = b5u + ud

he(u) =5+ 18u2+ ut
It can be shown, incidentally, that the sum of all coefficients of h, (u)
is equal to n! and that the coefficients of u? and u! are Euler’s numbers.
It furthermore appears, but has not been proven, that the coefficients
are equal to those in Table 7.2.2 of Ref. 7, p. 260, the “number of per-
mutations of the first N natural numbers with ¢, runs up.”
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