Copyright © 1978 American Telephone and Telegraph Company
THE BELL SYSTEM TECHNICAL JOURNAL
Vol. 57, No. 2, February 1978
Printed in U.S.A.

Common Channel Interoffice Signaling:

Development Tools

By J. S. COLSON, J. E. MASSERY, and G. A. RAACK
(Manuscript received May 7, 1977)

Tools used in the design, development, and testing of various com-
ponents of the Common Channel Interoffice Signaling (CCIS) feature
of No. 4A toll crossbar and No. 4 ESS are described. Included in the
discussion are CCIS software design and administration support tools,
electronic circuit design, analysis, and test tools, and laboratory support
systems for software and hardware testing.

I. INTRODUCTION

A ccIS switching office or Signal Transfer Point (STP) consists of a
variety of complex software and hardware systems whose sound design
and thorough testing can be aided by effective support and development
tools. Such software tools as a text editor, a macro assembler, and a
linking loader are indispensable for program development. Managing
large data bases of commonly used symbol definitions and large numbers
of individual programs is accomplished by sophisticated software ad-
ministration systems. Several hardware development tools not only aid
the design and analysis of complex electronic circuits, but also provide
circuit performance data used in the diagnostic software for these cir-
cuits. Support for the testing of completed software and hardware de-
signs has also been provided. Laboratory utilities and test systems are
available for debugging, function testing, and integration of system
programs. The need for testing certain electronic peripheral circuits in
an isolated environment has led to the development of off-line test
systems that simulate the appropriate central control processors and
their peripheral busses. The operation and application of each of these
systems in the development of CCIS are detailed below.

429

Il. SOFTWARE DEVELOPMENT TOOLS

The software development tools described below are programs and
systems utilized in the design, development and maintenance of the CCIS
real-time application software. Most of the tools are similar to those
needed for any software development effort, and are representative of
the major tools used during the development of CCIS. They are used for
both the Stored Program Control (SPC) and Peripheral Bus Computer
(PBC) developments and include a development and maintenance ad-
ministration system, an editor, an assembler, a loader, and two special
aids. One special aid is used for the development and maintenance of
common pools of information, called COMPOOLS, which are used by the
assembler. The other aid is a special purpose assembler for the CCIS
terminal hardware unit to aid in assembling its language.

If we look at the development of a typical CCIS program module, called
a pident, we can see how these tools are utilized. First, the name of the
pident and its associated administrative information are entered into
the Interactive Program Administration System (IPAS) data base. The
user may then create the new pident through the use of an interactive
editor within IPAS. The created pident, along with Advanced Processor
Editor (APE) control cards, is submitted by IPAS for assembly by the
appropriate version of the Switching Assembler Program (SWAP) as a
batch job. Once the assembly is flag-free, the object module created by
SWAP is linked to other modules of the system by the loader, which
creates a load tape of the CCIS or PBC programs. This program tape is
directly readable by the SPC or PBC machines, to initialize their memories
with the real-time application programs.

For the cCIS development, these tools are designed to run on a gen-
eral-purpose computer-center machine rather than on the application
processor. The time-sharing and batch facilities of a large-scale, gen-
eral-purpose computer are required to accommodate the heavy demand
for these tools by the members of the development team; because the
application processor is specially designed to control a switching ma-
chine, its instruction set and operating system are not suitable for gen-
eral-purpose programming or time-shared use. Furthermore, to maxi-
mize the effective utilization of machine time, functions such as program
editing and assembling, which can be carried out off line, are supported
on the computer center processor, leaving the laboratory switching
processor available for program debugging and system testing.

2.1 IPAS—the Interactive Program Administration System

IPAS is at the heart of the program development process. It executes
interactively under the computer center’s time-sharing facility. Before
IPAS was available, programmers used card edit decks to define the

430 THE BELL SYSTEM TECHNICAL JOURNAL, FEBRUARY 1978

changes required in a pident source file. Job Control Language (JCL)
statements were generated by hand to run program assemblies under
SWAP in a batch mode. IPAS replaced card edit decks with disk files of
editor statements, and it replaced manual submission of assemblies with
automatic generation and submission of required JCL. A programmer
can now log onto IPAS, interactively create or modify a set of edit state-
ments for a specified version of a pident, and schedule a batch assembly
of the modified source without an intimate knowledge of the computer
center operating system. Thus, more efficient use is made of program
development time.

IPAS utilizes a central data base to control user access to IPAS, to
control user access to particular functions and data files, and to record
the existence and status of a pident’s related edit files. The people in the
Program Administration Group use the IPAS data base to control per-
manent changes to program source files, to check dates and times of
assemblies, to generate official program listings for field distribution,
and to set up loader input to produce a new generic tape.

2.2 Editing, assembling, and linking pidents

As with all Bell System stored program switching developments, such
as No. 1 ESS, No. 2 ESS, and No. 3 ESS, an editor, assembler and loader
are the basic tools for program system development. The APE editor used
to edit the program source is that used by the No. 2 ESS and No. 3 ESS
developments. The SWAP assembler used is similar to those used for
other developments. The loaders which perform the linking functions
for each machine are unique.

2.2.1 APE—the Advanced Processor Editor

A subject file data base is edited by the APE editor through the use
of control cards and new input lines to produce a temporary updated file
which is passed to the assembly step, and optionally, to a new, perma-
nently altered and renumbered subject file. By using the APE editor,
temporary changes can be made to the source files, and incorrect edits
can be easily removed. In addition, the accumulation of these edits
provides a history of changes to each pident, allowing programmers,
testers, and administrators to determine the changes from one issue of
a pident to the next very simply and efficiently.

2.2.2 SWAP—the Switching Assembler Program

SWAP is a powerful macro assembler, which reads symbolically
coded machine instructions, pseudo-operations, and macros and converts
them into object machine code.'2 Its normal outputs include an assembly
listing and a disk data set containing the Object Program Module (OPM).

DEVELOPMENT TOOLS 431

The OPM contains the assembled machine code plus linkage and ad-
ministrative information needed by the loaders. Separate but similar
versions of SWAP exist to assemble SPC and PBC code.

The SWAP assembler, developed concurrently with the SPC No. 1A
processor!® in the 1960s was intended for use by all electronic switching
system software developments. In the next decade, when the use of
high-level languages for SPC machines was investigated, the potential
improvements in the program development process and in software
maintainability did not appear to offset the penalty of greater real-time
consumption and memory usage characteristic of most high-level lan-
guages. As a result, traditional methods using macros and assembly-
language programming were employed in the development of 4A/CCIS
software.

2.2.3 LDR—the Loader

Separate loaders exist for the SPC and PBC systems. Each loader
takes any number of OPMs produced by SWAP (Section 2.2.2) and re-
solves the linkages between them. It also assigns each pident to a “real”
piece of memory (address) or disk space and converts all relative ad-
dresses to absolute addresses. Each loader produces a listing consisting
of the free and occupied areas of memory, the linkages resolved and
outstanding, and any error messages. The ultimate product is the load
tape, which is an application-machine-readable image of the linked
real-time programs.

2.2.4 COMPAS—the COMPOOL Administration System

References to common data, formats, and locations are resolved not
only in the loader stage, but also in the SWAP assembly stage using an
entity known as a COMPOOL or DATAPOOL. COMPOOL is a collection of
commonly used symbolic names, addresses, layouts (patterns) for
locations, and registers, which are assembled and saved on a disk data
set. A number of these preassembled disk data sets may then be used
in subsequent SWAP assemblies to resolve references to symbols.

When used to refer to memory locations, the symbols contain certain
special attributes, such as the address of a table, the address of a word
or structure within a table, or a particular portion of a single word. To
facilitate describing these symbols in a meaningful fashion, a special
language was developed. This language, its compiler, editor, and data
base are collectively known as the COMPOOL Administration System
(coMPAS). The high-level language of COMPAS is used to describe the
entities comprising a COMPOOL, such as tables, words, items, registers,
constants, memory blocks, and holes in a hierarchical and sequentially

432 THE BELL SYSTEM TECHNICAL JOURNAL, FEBRUARY 1978

:SYSTEM BUILD (CCIS)
:MOVEBEFORE TABLEC, TABLEB
:INSERTAFTER MYTABLE

MEMBLK addr1, addr2, PROTECTED, OFFICE _DATA,,,
*space for trunk tables and headcells’

TABLE TRKTABLE

PROGRAMMER ‘name room extension’

SYSTEM CCIS

ORIGIN ABSOLUTE, EVEN, ‘used as list of headcells’

MEMORY PROTECTED, OFFICE _DATA

LENGTH 16, 32, ‘one word per trunk headcell’

QUANTITY 1, 4, 'one table per trunk group — min=1, max=4"

DOCUMENT TTBL, 68009
DESCRIPTION ‘these tables are indexed by trunk group number’

WORD NAME=WORD1. TTBL, WRDTYP=DATA, WRDNUM=0
PLACEMENT ‘these headcells require immediate access’
DESCRIPTION ‘headcell is used to point to array of trunks’

ITEM TTBL_EQUIP, 3, 17, N, ‘eqpd=001, uneqpd=000, maint=100"
ITEM TTBL_PTR, 17,0, N, ‘ptr to trunk tbl’

WORD NAME=TYPE_TTBL, WRDTYP=DATA, WRDNUM=1
PLACEMENT ‘corresponds to tthl_ptr’
DESCRIPTION ‘used for trunk group type’

ITEM TTBL_TYPE, 3, 0, N, 'see document PR-68003. 14 for
bit types’
ITEM FILL, 17, 3,, 'unused bits’, DEFAULT=0

TCONST TTBL_EQUIP_CHK, 1, ‘constant used to check
equipped status’
END_TABLE
REGD TTBL_REG _CHK, E (3], 0, "register definition used
to check trk tbl’
HOLE 128, ‘leave hole 128 words long in memory’
:RENAME TRK_TBL, NEWTRK _TBL
:DELETE HOLE. 17744
:PRINTAFTER *ALL #print formatted list of compaol
:END

Fig. 1—Sample table definition and input commands for a COMPAS run.

ordered structure. Figure 1 shows a typical table definition in COMPAS
format, with examples of the editing and layout commands.

The entities are entered into the data base, and the existing data base
is manipulated by using the COMPAS command language. Thus, COMPAS
provides the COMPOOL administrator with an entity-based editor and
command structure. This feature facilitates the manipulation of com-
plete entities such as tables, which have an arbitrarily complex structure
and length, by using a single command.

COMPAS provides other special advantages over conventional COM-
POOL defining techniques such as SWAP macros. It provides for the
checking of the entity data for consistency. For instance, when the layout
of a particular word is defined, the items can be checked to verify that
all bits are defined once, unless declared otherwise. This provides a level
of checking not possible using conventional SWAP declarations. COMPAS
also provides for the complete description of each entity and its parts.
This helps document the entities and provides for reference to the in-
dividuals responsible for controlling the entities.

DEVELOPMENT TOOLS 433

In addition to the features already described, the COMPAS high-level
language definition of a COMPOOL is transmitted to Western Electric,
where it is used to build a data compiler automatically. This is done using
a system developed jointly by Bell Laboratories and Western Electric
known as the Integrated Data Management System (IDMS). This system
facilitates the automatic updating of the data compiler needed to support
changes to COMPOOL often required with issuance of new generics of the
CCIS programs.

2.2.5 TASM—the Terminal Assembler

The terminal hardware unit,? which is a special purpose computer
used as an interface between data transmission facilities and an appli-
cation processor, is used in several switching systems. Currently, the
terminal is able to communicate with the No. 1 ESS, No. 1A ESS, and SPC
No. 1A processors. The terminal does not contain a peripheral unit such
as a tape unit from which it is capable of loading its application program.
Therefore, the terminal application program must be assembled by the
respective SWAP assembler (Section 2.2.2) into the format of the appli-
cation processor (SPC No. 1A, No. 1 ESS, or No. 1A ESS). That processor
then can transmit the terminal application program to the terminal over
its own communication paths.

The terminal has its own assembly language, so a terminal assembler
(TASM) was written using SWAP macros and pseudo-operations. Thus,
the terminal assembler is imbedded within SWAP in much the same way
as was the CENTRAN (SNX360) assembler for the Safeguard project.
It is a one-pass data handling, two-pass program handling assembler.

The assembler consists of two parts: a common portion and an ap-
plication portion. The common portion consists of approximately 1200
lines of macros and is used without change by all SWAP assemblers re-
quired to assemble terminal programs. The application portion is unique
to each application (system) using a terminal. It consists of approxi-
mately 300 lines of macros which perform the job of packing the as-
sembled data passed to it by the common section into the format nec-
essary for the particular application.

Using this technique, the assembly listing produced contains the
terminal source code lines, the assembled values and addresses in ter-
minal format, and the packed application format, cross-referenced to
the terminal format, in one listing. Also, as a result of this technique, a
single SWAP assembly produces an OPM which can be linked by any one
of the application-processor loaders.

ll. HARDWARE DEVELOPMENT TOOLS

There were two software tools of major importance used in the de-
velopment and testing of the hardware for CCIS. By far the largest and

434 THE BELL SYSTEM TECHNICAL JOURNAL, FEBRUARY 1978

most complex tool was the Logic Analyzer for Maintenance Planning
(LAMP).

3.1 LAMP—Logic Analyzer for Maintenance Planning

LAMP is a large and complex system which runs under several gen-
eral-purpose computer operating systems. It is a circuit simulator ca-
pable of logic, fault, race, and timing analysis of circuits.> It was used
to help design the CCIS circuits through provisioning for diagnostics and
maintenance. It was also used to verify the logic and timing within the
circuits prior to building laboratory models.

LAMP can produce outputs which link it to many other tools, such as
the Diagnostic Language (DIAL) (Section 4.1) and the frame and circuit
pack testing tools (Section VI). In particular, one of its outputs is used
in the production of the Trouble Locating Manual (TLM), as described
below.

3.2 TLM—the Trouble Location Manual Program

In order to locate and diagnose hardware problems in the new elec-
tronic circuits added for CCIS, a printed TLM using a first-failing test
algorithm was provided. Production of such a TLM begins with one or
more LAMP simulations of the circuit; one simulation may be run for each
diagnostic phase. The input to each simulation is the data from the
spC-resident diagnostic programs. Results from multiple LAMP simu-
lations are combined to form one “results” data base. These results,
however, cannot be used directly to generate trouble numbers. Packing
algorithms must first be applied to simulate the packing of results done
within the SPC. The SPC diagnostic programs pack the results because
of the limited SPC memory available for storage of the raw data. Different
packing rules may be applied for each CCIS circuit.

A fault data base is constructed from the LAMP circuit model and from
physical circuit data contained in circuit-pack device files. This data base
associates the fault numbers used in the various processing algorithms
(e.g., in LAMP), with physical locations and fault descriptions, and it
defines the classes of equivalent (logically identical) faults.

The final step in TLM generation is the application of the trouble
number calculation algorithm to the packed simulation results. The
trouble number data is combined with the physical fault information
to produce the printed behavioral TLM.

IV. COMBINATION HARDWARE-SOFTWARE DEVELOPMENT TOOL

DIAL is a macro language used to generate diagnostic tables for CCIS
peripheral units. These tables are stored in SPC memory and in con-
junction with a DIAL table executor, compose a diagnostic program. A

DEVELOPMENT TOOLS 435

typical DIAL statement may specify a peripheral order to the circuit
under test and the corresponding expected reply to that order. The
generation of the diagnostic tables is done using a DIAL-SPC compiler.
The DIAL macros are also compiled using a DIAL-LAMP compiler to
produce LAMP input vectors (Section 3.1). These input vectors are used
to drive a LAMP simulation of the circuit to verify circuit operation
during initial circuit design stages, to design and evaluate diagnostic
tests, and to produce a TLM for the circuit through fault simulation. A
third application of DIAL macros is to generate factory tests. The DIAL
statements generate a data base which is released to Western Electric
to be used to test the peripheral units before shipment.
Among the advantages of using the DIAL language are:

() The same set of source statements may be used during initial
circuit design, in diagnostic generation, and in manufacturing test gen-
eration by inputting them to different DIAL compilers.

(it) Functions are easier to code and understand because DIAL
statements are macro calls.

(i) The language is common to several peripheral units.

(iv) DIAL table-driven diagnostics require less SPC memory than
machine-language code of the same tests.

In addition, because the DIAL compilers are actually a set of SWAP
macros, functions coded in the DIAL language are portable and can be
used in several machines and systems which use the SWAP assembler.

V. LABORATORY SUPPORT SYSTEM

The demand for increased reliability of software systems, coupled with
the high degree of complexity which is characteristic of many modern
software designs, has resulted in the need for effective and efficient
testing methods and sophisticated laboratory support tools. The de-
velopment of CCIS software for 4A crossbar and for No. 4 ESS—systems
where the reliable performance of the software is essential to the conti-
nuity of telephone service—was supported by a number of such tools.
(A discussion of No. 4 ESS support systems may be found in Ref. 7.)

5.1 Utilitles for debugging and testing

When a program module is first introduced into the host processor
in a laboratory environment, the software designer requires special tools
which enable him to execute specific sections of his program, monitor
its operation, detect and analyze performance anomalies, and rapidly
make corrections and modifications. As system integration progresses,
function testing causes increased program interaction, and additional
testing aids are needed which provide for less disruptive collection of

436 THE BELL SYSTEM TECHNICAL JOURNAL, FEBRUARY 1978

large amounts of performance data and rapid resolution of detected
errors. Two independent laboratory utility systems, a host-processor-
resident utility system and a minicomputer-resident noninteracting
utility system, provide the program control and monitoring facilities
required during the early stages of testing.

5.1.1 Resident Utility

Program testing at its most basic level is accomplished with the Res-
ident Utility system, which is illustrated in Fig. 2. In this mode, the user
is provided with the greatest degree of control over the execution of a
program. By the use of the Noninteracting Utility Program Interface
Console (NUPIC), which is used as a manual test console or “T-cart,”
program execution in the SPC processor may be stopped, instructions
may be executed one at a time, or “matchers” may be used to detect the
execution, reading, or writing of a specified memory location.

In addition to these manually controlled functions, the Resident
Utility provides a variety of software-controlled features through a
system of utility programs which “reside” in SPC memory. In either a
batch mode using punched-card input, or interactively with teletype-
writer (TTY) commands, the user is able to establish his test environ-
ment, control the execution of the program sections under test, and
collect the desired run-time data. With the SPC system under the control
of the utility system, the user may initialize internal registers and scratch
memory, and cause execution to begin and end at given locations. By
inserting special instructions at user-specified addresses, the utility
system can monitor program progress at that address, dynamically
modify run-time program parameters, or divert execution to special test
routines. The transfer trace facility of the Resident Utility allows the
printing of program addresses and internal registers each time a transfer
instruction causes a break in sequential instruction execution.

A flexible program modification facility is an essential component of
a laboratory utility system. The Resident Utility Overwrite Assembler
is the means by which corrected program errors and modifications are
incorporated into the machine-language version of the programs as they
are being tested in the laboratory. Input statements to the Overwrite
Assembler are compatible with the SWAP assembler (Section 2.2.2); once
all additions and modifications have been tested in the laboratory to the
satisfaction of the programmer, the overwrites may then be incorporated
into the permanent version of the program using SWAP and its associated
editing programs.

A variety of miscellaneous testing tools and laboratory aids are also
part of the Resident Utility feature repertory. Memory may be dumped
to magnetic tape or to the line printer, memory may be loaded from tape,

DEVELOPMENT TOOLS 437

LINE
PRINTER
SPC 1A .
PROCESSOR
NUPIC
(T-cART) [b———____/
UTILITY

PROGRAMS TTY

CARD

READER

Fig. 2—Resident Utility system.

or data on a magnetic tape may be compared with that in memory.
System software and hardware may be reinitialized in varying degrees
under utility control.

However, a major drawback to the operation of the Resident Utility
is the high degree of direct interaction between the utility and the pro-
grams under test. Execution of programs under test at their normal
speed, without periodic interruption, is sacrificed for the fine control
of program execution and the simplicity of the hardware structure
characteristic of the Resident Utility.

5.1.2 Nonresident Utility

The ability to collect program execution and performance data
without interaction by the utility system becomes essential in the pro-
gram integration phase of testing. In a system such as 4A/CCIS, many call
set-up functions are performed by electromechanical common-control
hardware; the real-time software which controls and monitors this
equipment executes essentially instantaneously relative to the much
slower hardware. Interruptions to normal program flow, such as those
caused by the Resident Utility to collect and print program data, could
delay the initiation or execution of these programs, thereby distorting
normal hardware-software sequences and corrupting test results. This
inadequacy of the Resident Utility is overcome with the Nonresident
Utility, whose noninterfering monitoring and off-line data processing
are better suited to the more rigid environment of the latter phases of
testing. ’

The nerve center of the Nonresident Utility system is a minicomputer

438 THE BELL SYSTEM TECHNICAL JOURNAL, FEBRUARY 1978

SUPPORT
PROCESSOR

DISK PACK

FIXED-HEAD
DIsSK

NUPIC
AND SPC 1A
BUFFER PROCESSOR
TTY
LINE PRINTER

TTY

CARD

READER

Fig. 3—Nonresident Utility system.

support processor (Fig. 3), one of whose peripherals is the NUPIC with
its associated buffer. Under control of the Nonresident Utility software,
the NUPIC is programmed to collect selected SPC program execution
information when one or more of a variety of matchers detects a user-
specified condition in the SPC processor. Among the conditions which
these hardware matchers may be armed to detect are the execution of
a specified SPC program address, the reading or writing of a given bit
pattern at a specified address, and the accessing of a given SPC peripheral
unit. In each case, the user may establish the particular conditions under
which a match should occur either by composing Nonresident Utility
statements interactively at a TTY keyboard or by identifying a previously
created disk file containing images of the desired statements. Once these
commands have been executed and the appropriate matchers armed,
the NUPIC continuously monitors the operation of the SPC processor until
a match occurs. At that instant, without interruption to the operation
of the SPC, the NUPIC gates the information previously specified by the
user’s commands to a buffer which is unloaded by the support processor.
An additional feature may be enabled or disabled when a match occurs:

DEVELOPMENT TOOLS 439

noninteracting transfer trace, which provides a snap of critical SPC op-
erational data each time a program transfer takes place. The autonomous
matching and data collecting processes performed by the NUPIC allow
for the gathering of a large amount of program execution data without
disrupting the normal, full-speed operation of the system under test.

An important component of the Nonresident Utility system is the
off-line data processing capability provided in the support processor
software. While data being collected by the NUPIC is loaded into the
hardware buffer, utility programs are unloading the data in its raw form
onto a disk file. At the user’s option, this data may be immediately
translated into a readable form and printed at high speed, or may be
stored on the disk for later off-line processing. A circular-file feature
allows the automatic, continuous overlaying of the oldest collected data
with new data. In this mode, the unneeded data from passed tests is
automatically discarded, and only after a test failure or other irregularity
is data collection stopped and the current file contents examined. The
printed output of any data collection file may take a number of forms,
including raw octal output, conversion to symbolic program names plus
offsets, or printout only of data collected from a particular selected
program.

Because of its rapid data handling and output capability, and its bulk
storage facilities, the Nonresident Utility provides a number of other
valuable tools and debugging aids. High-speed loading of SPC memory
may be achieved either from magnetic tape or from a support processor
disk file. SPC program and office data information may be rapidly
dumped to tape, disk, or line printer. The noninterfering accumulation
of large amounts of data, together with rapid and efficient off-line pro-
cessing, have made the Nonresident Utility system an extremely effective
testing tool.

5.2 4CAST—automated system testing

With the application of Common Channel Interoffice Signaling bthe
basic No. 4A toll crossbar system, the size and complexity of the soffjvare
system has increased significantly. The architecture of the 4A/cC188 and
STP? machines, indeed, the structure of the entire signaling network,
suggests that traditional testing techniques, while adequate for earlier
switching systems, must yield to more flexible and powerful tools to keep
pace with this advancing technology. The requirements for such a testing
tool are that it be capable of communicating with a 4A/CCIS or STP ma-
chine over any of its various man-machine and machine-machine in-
terfaces; that it be a convenient vehicle for the development, application,
and administration of function and system tests; and that it provide
sufficient flexibility and speed of operation to allow rapid execution of

440 THE BELL SYSTEM TECHNICAL JOURNAL, FEBRUARY 1978

a large number of tests with a minimum of user intervention. These needs
are met with the 4A/CCIS Automated Support and Test System (4CAST),
an implement with which the testing of the large and complex CCIS
software structure can be effectively managed. The 4CAST system con-
sists of a compiler, which converts stimulus-response commands written
in a high-level language into a command-table load module, and a lab-
oratory run-time system, which executes the load module commands.

5.2.1 Compiler

The 4CAST language, consisting of keywords and structures similar
to those in PL/1, enables the test designer to convert test specifications
into sequences of action directives or response monitors in a form that
is easy to generate and understand. A single 4CAST “procedure,” or
compilation entity, is typically produced for each test definition and
compiled by the 4CAST compiler, which runs on a general-purpose
computer center processor. As shown in Fig. 4, the generation of a pro-
cedure begins with the user’s coding of the procedure text in the 4CAST

TEXT
EDITOR

4CAST
PROCEDURE
TEXT

SWAP
MACRO
EXPANSION

COMPOOL
SYMBOL
DEFINITIONS

4CAST
COMPILER

4CAST
LOAD
MODULE

COMPUTER
CENTER DISK
STORAGE

HIGH—-SPEED
DATA LINK

LABORATORY
DISK
STORAGE

Fig. 4—Generation of 4CAST procedures.

DEVELOPMENT TOOLS 441

PROCEDURE TESTX.CONTROL;
DECLARE

INTEGER X =25 Y=81{110100);

INTEGER SPC_ADDR; # definition in COMPOOL;

TEXT ERR1="INVALID DIGITS";

TIMER T1=5(15), T2=MS (200);

SuU ANSWER, HANGUP; # supervisory signals;

1AM ADDR_DIGITS = C (5551212); # telephone number;
END;
START:

RUN INIT (PARAM1, PARAM2); # initialize;

DELAY T2;

SENDSU ADDR_DIGITS. trunk_number; # initiate call;

ON ANSWER . trunk_number
DO;

PRINT “CALL ANSWERED";
IF READSPC (SPC_ADDR) =Y
THEN GO TO RESTART;
ELSE CONTINUE;
END;
WAIT;

RESTART:
SENDSU HANGUP . trunk_number; # disconnect call;
PARAM1 = PARAM1 + X;
GO TO START;

END TESTX;

Fig. 5—Sample 4CAST test.

language. For added flexibility and convenience, user-defined macros
for repetitive or complex functions may be expanded by the SWAP as-
sembler’s macro facility. The 4CAST compiler then converts the text
commands, definitions, and directives into a 4CAST load module con-
taining tables which drive the laboratory Run-Time System. The com-
pilation process also provides access to the common pool (COMPOOL)
of symbol definitions used in the assembly of SPC and CCIS programs.
Figure 5 is a sample of the text of a simple 4CAST procedure. Once
compiled, a procedure’s load module is transported to the laboratory
either on a magnetic tape or directly from a computer center disk file
to the laboratory support processor disk via a high-speed intermachine
data link.

5.2.2 Run-Time Sysiem

Once the 4CAST load modules have been transferred to the 4CAST
processor’s disk, they may be executed by the 4CAST Run-Time System.
In the unattended mode of operation, a list of “master procedure” names
is entered by keyboard command to the Run-Time System. Each master
procedure contains 4CAST directives which load, start, and exit indi-
vidual tests, or “control procedures,” each of which is a 4CAST load

442 THE BELL SYSTEM TECHNICAL JOURNAL, FEBRUARY 1978

MASTER SLAVE
PROCESSOR PROCESSOR
4CAST SIMULATED
RUN-TIME <|5—1_|> SIGNALING INTEROFEICE
| __SYSTEM__ | TERMINALS SIGNALING LINKS
USER—DEFINED /
4CAST
PROCEDURES
ccls
SIGNALING
TERMINALS
DISK
PACK
NONRESIDENT NURIC AND
UTILITY BUFFER
SPC 1A
FIXED—HEAD COMPLEX
STAC
._ SPCTTY e ol
INTERFACE Ty
- 4CAST / 4A XBR
DISTRIBUTOR COMMON
AND SCANNER \ CONTROL
TTY]
@ <
z _Lu.j_ Z
5 2
o o
= =
HIGH-SPEED Z | 4 CROSSBAR | 5
DATA LINK 3
acAsT
TRUNK
INTERFACE
TO COMPUTER
CENTER

Fig. 6—4CAST system in switching office configuration.

module which performs the initialization, defines the required actions,
and monitors the results of a given test. Control procedures are capable
of initiating “subprocedures” to perform basic, repeated tasks, such as
the set-up of a particular type of call, or the removal from service of a
given signaling link. Communication between procedures is accom-
plished either with parameters passed from a calling procedure (master
or control) to a subordinate procedure, or through a common scratch area
accessible by all executing procedures.

As seen in Fig. 6, 4CAST can access the CCIS switching office or STP

DEVELOPMENT TOOLS 443

systems in a variety of ways. The most fundamental communication
channel is through the CCIS signaling links from the 4CAST Simulated
Terminal Interface. It is through this link that nearly all interoffice
signaling is simulated. CCIS call set-up and disconnect, signaling network
maintenance and control, and other interoffice communication can be
initiated and monitored automatically by sequences of user-specified
commands in 4CAST procedures. Conventional call origination and
termination is accomplished through the 4CAST Trunk Interface, which
controls signaling to a variety of conventional 4A trunks. The Distrib-
utor/Scanner Circuit, in addition to driving the Trunk Interface, provides
direct access to and control over functions in the 4A hardware and in the
SPC complex. The primary man-machine interface, the SPC maintenance
TTY, is controllable through the TTY Interface using a number of text-
handling commands and options in the 4CAST language. Using run-time
processing of text variables, the user’s procedure may simulate a TTY
dialogue with the SPC. Under special circumstances, a test sequence may
require that the 4CAST procedure have access to SPC memory or to in-
ternal SPC processes. For this reason, two channels are provided which
allow direct interaction between 4CAST and the SPC processor: the
Nonresident Utility interface using the NUPIC, for performing such
utility functions as setting matchers, and the Simulated Terminal Access
Circuit (STAC), which allows 4CAST to momentarily halt the SPC, al-
lowing the gathering of internal status or progress data, or the reiniti-
alization of large blocks of memory. Additional features of the 4CAST
language and Run-Time System provide for arithmetic functions,
command execution control, timing facilities, and data gathering and
handling control.

Because of the programmable nature of 4CAST test procedures,
changes may be made quickly and easily, allowing test designers to keep
pace with the often rapid evolution of the software system under test.
An easily manageable administration system for 4CAST tests permits
the reapplication of all, or certain subsets, of the existing tests to sub-
sequent issues or generics of the software. For function testing, system
integration testing, and regression testing of CCIS software, 4CAST
provides an important facility for the generation and application of
tests.

VI. OFF-LINE HARDWARE TEST TOOLS

Three categories of testing necessitated the development of off-line
test systems for the new electronic peripherals developed for CCIS. These
categories are:

(t) Laboratory testing of prototype hardware by the circuit de-
signer.

444 THE BELL SYSTEM TECHNICAL JOURNAL, FEBRUARY 1978

(ii) Preliminary testing of diagnostic software against prototype
hardware.
(iii) Manufacturing testing of standard production hardware.

The peripherals for which this capability was developed are the No.
4A, No. 4 ESS, and No. 1 ESS Terminal Groups, the No. 4A Distributor
and Scanner, and the No. 4A/No. 4 ESS and No. 1 ESS terminal units.?
With the exception of the latter two units, these peripherals share a
common characteristic—they are controlled by commands from stored
program processors via well-defined bus structures. This characteristic,
plus the need for interactive testing and access to large, computer-gen-
erated data bases, indicated a computer-controlled system with input
media compatible with the LAMP-generated data bases and output in-
terfaces that simulate either the SPC No. 1A,10 the No. 1A ESS,!! or the
No. 1 ESS!2 processor peripheral bus structures.

In general, each test system is configured as shown in Fig. 7. A mini-
computer controls the application of tests to the peripheral under test
and compares the peripheral’s response with the expected response. The
bus interface, or simulator, generates signals of the level and duration
defined for the processor bus structure being simulated. Manual control
is provided to allow the test engineer to generate special tests which may
not exist in the computer-generated test file.

Test files for each peripheral are typically derived from the LAMP
simulation data base created during the development of diagnostic
programs. As a consequence, the diagnostic information is subjected to
an early test against prototype hardware. Once they are generated and
resident in the minicomputer, a test monitor program allows access to
single tests, groups of tests, or phases, allows repetitive application of
a single test or phase in a loop, and provides for on-line editing of the test

MANUAL
CONTROL
}
J ADDRESS
BUS :
ANSWER BUS
sUS <: PERIPHERAL
MINICOMPUTER (4 siMULATOR UNES%R
ENABLES T
________ SCAN PTS.

MAGNETIC
TAPE
/0

Fig. 7—Test system general configuration.

DEVELOPMENT TOOLS 445

ADDRESS BUSO

—

DATA IN TERMINAL TERMINAL
MINICOMPUTER : ACCESS UNIT
CIRCUIT UNDER
DATA OUT SIMULATOR :TTTBUS1 : TEST

I/0
PERIPHERALS

Fig. 8—Terminal unit test system configuration.

file. Tests for circuits not simulated or tests written for the manufac-
turing testing environment may be run under control of the monitor in
conjunction with the computer-generated file.

In the case of the terminal unit test systems, rather than the processor
bus structure being simulated, the Terminal Access Controller (CONT)?
or Terminal Access Circuit (TAC)?3 interface is modeled. Figure 8 illus-
trates the general test system configuration for these units. The simu-
lation data bases in this case are translated into TAC- or CONT-to-ter-
minal operation codes and data, and the terminal responses are com-
pared by the minicomputer with those predicted by the simulation.

The off-line test system hardware and software designs also provide
flexible and efficient tools with which Western Electric is able to conduct
manufacturing tests on the respective peripheral frames.

Off-line facilities are also provided for the test and evaluation of in-
dividual circuit pack designs, and for testing frames and units at ex-
tremes of temperature and humidity.

VIl. CONCLUSION

From early design analysis through system integration and manu-
facturing tests, support tools provided an environment for the efficient
and productive development of each of the components comprising the
toll ccis switching and signaling systems. As the development of new
features is undertaken to exploit the flexibility and potential of the CCIS
network, support systems will be relied upon more heavily to assist in
the administration and testing of new designs. Advancing technology
in the field of hardware and software support systems, as well as expe-
rience gained during initial CCIS development, will enable us to keep pace
with this demand for increased development support capability.
REFERENCES

1. M. E. Barton, N. M. Haller, and G. W. Ricker, “Service Programs,” B.S.T.J., 48, No.
8 (October 1969), pp. 2865-2896.

2. M. E. Barton, “The Macro Assembler, SWAP—A General Purpose Interpretive
Processor,” Proc. AFIPS F.J.C.C., 37 (1970), pp. 1-8.

446 THE BELL SYSTEM TECHNICAL JOURNAL, FEBRUARY 1978

. B. Kaskey, et al., “ccis: Technology and Hardware,” B.S.T.J., this issue.

B.S.T.J., Safeguard Special Supplement, pp. S161-S172.
. H. Y. Chang, G. W. Smith, Jr., and R. B. Walford, “LAMP: System Description,”
B.S.T.J., 53, No. 8 (October 1974), pp. 1431-1449.

3
4. B. N. Dickman, “CENTRAN—A Case History in Extendible Language Design,”
5
6

=

. T.T. Butler, T. G. Hallin, J. J. Kulzer, and K. W. Johnson, “LAMP: Application to
Switching System Development,” B.S.T.J., 53, No. 8 (October 1974), pp. 15635-
1555.

P.S. McCabe, J. B. Otto, S. Roy, G. A. Sellers, Jr., and K. W. Zweifel, “No. 4 ESS:
Program Administration, Test and Evaluation,” B.S.T.J., 56, No. 7 (September
1977), pp. 1239-1278.

8. K.E. Crawford, C. J. Funk, P. R. Miller, J. D. Sipes, and R. C. Snare, “ccis: 4A Toll

Crossbar Application,” B.S.T.J., this issue.
. P.R. Miller, R. C. Snare, and R. E. Wallace, “ccis: Signaling Network,” B.S.T.J., this
issue.

10. G.R. Durney, H. W. Kettler, E. M. Prell, G. Riddell, and W. B. Rohn, “TsPS No. 1:

11

Stored Program Control No. 1A,” B.S.T.J., 49, No. 10 (December 1970), pp.
2445-2508.
. 1A Processor Special Issue, B.S.T.J., 56, No. 2 (February 1977).

12. J. A. Harr, F. F. Taylor, and W. Ulrich, “Organization of No. 1 ESS Central Processor,”

B.S.T.J., 43, No. 5 (September 1964), Part 1, pp. 1845-1922.

DEVELOPMENT TOOLS 447

