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In Part I techniques for reliably estimating the power spectral den-
sity function for both small and large samples of a stationary stochastic
process were described. These techniques have been particularly suc-
cessful in cases where the range of the spectrum is large. They are re-
sistant to a moderate amount of contaminated or erroneous data. Here
these procedures were demonstrated using examples from the devel-
opment and analysis of the WT4 waveguide medium and compared to
conventional techniques.

I. INTRODUCTION

The use of the spectral density function for the characterization of
mode conversion effects in millimeter waveguide problems has been in
general use since the pioneering paper of Rowe and Warters? and has
subsequently appeared in several other forms (Morrison and McKenna,?
Pusey?). In this paper the emphasis will not be on mode conversion
problems per se but rather on the more fundamental problem of ob-
taining an accurate estimate of the spectrum for the geometric distortion
causing the mode conversion.

In Part I a technique for the estimation of the power spectral density
function was described! which differs from conventional estimation
procedures in several respects. In particular the technique is both ro-
bust—that is, it is resistant to a moderate amount of erroneous or
outlying data—and has the ability to estimate spectra which have very
large dynamic ranges. While Part I was primarily theoretical, Part IT is
devoted primarily to examples of this technique as applied to the analysis
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of wT4 waveguide data and ‘comparisons of this method to standard
techniques. Because of the complexity of the wT4 system these examples
cover a wide range; from the analysis of individual tubes where the
sample is very short relative to the resolution required, to the analysis
of complete mode filter sections where the amount of data which must
be contained in the analysis is almost prohibitive. Some spectra are al-
most white while some cover ranges of 10 to 16 decades.

Briefly, the method described in Part I begins by forming a pilot es-
timate of the spectrum using a modification of Welch’s technique.5 The
pilot estimate is used to form an autoregressive model of the process
which is used as part of a robust prewhitening filter. The final estimate
of the spectrum is the ratio of the spectrum of the prewhitening residuals
to the power transfer function of the autoregressive filter.

While this procedure is clearly motivated by the use of prewhitening
techniques it differs from traditional methods in many important as-
pects:

(i) First, extensive use is made of prolate spheroidal wave functions
as data windows or tapers. These functions, which are described in a
series of papers beginning with Slepian and Pollak,5 are the eigenfunc-
tions of the finite Fourier transform and give greatly improved resolution
and dynamic range from that obtained with conventional ad hoc data
windows.

(ii) Second, adaptive prewhitening forms a central part of this
procedure. This is accomplished by using an autoregressive model of the
process, obtained from a pilot estimate of the spectrum, as a prediction
error filter.

(1if) Third, by starting with the pilot spectrum estimate an effective
autocorrelation function is realized which is both positive definite and
also has low bias. A new technique for generating autoregressive models
is described. ’

(iv) Fourth, by replacing the subset averaging used in the Welch
technique with a robust combination an improved pilot estimate is fre-
quently obtained.

(v) Finally, the robust filter algorithm permits accurate estimates
of the spectrum to be made when the data contains numerous erroneous
data points.

Overall the effect is to give estimates of spectra which are much more
reliable than those obtained by conventional methods. The loss calcu-
lations reported in Anderson et al.? are indicative of its accuracy.

Il. THEORETICAL CONSIDERATIONS

In the problems considered here measurements are made of a par-
ticular geometric distortion in the waveguide over the length, T', of line.
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From these measurements it is desired to estimate the spectrum of the
particular distortion. The estimated spectrum is commonly used for two
purposes; first to estimate the mode conversion loss, and second, to make
inferences on the process used to produce the sample. In both cases
frequency resolutions of 1/T or better are desirable. But, because the
range of the spectra typically encountered in waveguide applications is
very large, such resolutions cannot be obtained from simple techniques
without obtaining unacceptably biased estimates.

In the literature on spectrum estimation there are numerous papers
which are concerned with the trade-off between resolution and variance.
Unfortunately this emphasis on a secondary problem has served to ob-
scure the fundamental conflict between resolution and bias. The source
of this conflict between resolution and bias is a result of fundamental
properties of the Fourier transform (see Landau and Pollak).8 Consider
a direct estimate of spectrum

Sp(w) = I‘I;Tef”tD(t) x(t) dt ’ (1)

in which D(t) is a data window or taper. If the series, x(t), is a sample
of a stationary random process having spectral density function S(w)
the expected value of such an estimate is given by

E{Sp(w)} = S(w)*|D(w)|2 (2)

where * indicates convolution and I is the Fourier transform of D. From
this formula it can be seen that the expected value of an estimate is the
true spectrum convolved with the spectral window, | D(w)|2, so that es-
timates of all nonwhite spectra will be biased.

It is convenient to express this convolution as the sum of a “local” term
and a “broad band” component. If the “broad band” component of the
bias is defined to be the contribution from frequencies differing from
w by an amount Q or more by using results from Slepian & Pollak® it can
be shown that the broad band bias is minimized when D is a prolate
spheroidal wave function. Further it follows from Slepian® that when
prolate spheroidal wave functions are used as data windows, the broad
band bias can be bounded by a quantity which decays asymptotically
as 4627V 7rc e =2 where ¢ = 2T/2 so that an immense improvement in
performance over conventional windows can be guaranteed for moderate
values of c.

Two such windows have been extensively used in the analysis of wT4
data. One of these, used for pilot spectrum estimates and exploratory
work, has ¢ = 47 and so has a dynamic range of over 100 dB while the
second, used in situations where the range of the spectrum is lower and
high frequency resolution is required uses ¢ = 7. These data windows
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Fig. 1—Comparison of direct spectrum estimates using different data windows. The
plotted curves are the average over 2556 data sets.

together with the corresponding spectral windows are shown in Figs. 1
and 2 of Part L.

An example of the different results obtained with different data
windows is provided by an analysis of the measured curvature of indi-
vidual waveguide tubes. The data used here represents the output of a
curvature gauge similar to that described in Fox et al.1® where the cur-
vature is taken from the horizontal sidewall so that the effects of gravi-
tational sag are eliminated and the data are representative of the man-
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Fig. 2—Low-frequency portion of the data shown in Fig. 1.

ufacturing process. Figure 1 shows the average of 2556 direct estimates
of spectra using the two prolate windows described above, and, for
comparison, the default periodogram. The differences are most pro-
nounced in the “hole” near 7 cycles per meter but even at low frequencies
there are important differences. The region between 0.3 and 1 cycle/
meter is particularly important from a mode conversion viewpoint as
this region is responsible for the TM;; and TE; losses. In this region,
shown expanded in Fig. 2, the periodogram is almost a decade higher
than the prolate estimates. Also the “structure” evident on the perio-
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Fig. 3—Expected and standardized sample antespectra for the 19.0 to 20.5 cycle/meter
region of the pilot spectrum estimate from mode filter section 17 horizontal curvature.
dogram, for example the peaks at 0.2 and 0.3 cycles per meter, is largely
characteristic of it’s spectral window (the data sets each contained 808
points spaced 1 cm) rather than the process. It can also be seen that while
the = and 47 windows agree in general the narrower window resolves
peaks, for example at 0.7 and 1.9 ¢/m, much better than the broader 4=
window but is biased at lower values of the spectrum. In these compar-
isons it should be noted that since the averages have over 5000 degrees
of freedom at each point their standard deviations will be only about 2
percent of their value so that almost all differences between the estimates
are significant. Moreover, since the losses are proportional to the spec-
trum the prolate windows predict losses from the tubes which agrees well
with that measured in the field evaluation test whereas those corre-
sponding to the periodogram are considerably larger than the total
measured mode conversion loss.

As outlined in Part I a convenient description of the sampling prop-
erties of direct estimates is given by the antespectrum of the estimate.
The antespectrum is the spectrum of the spectrum estimate and is ap-
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Fig. 4—Antespectra for the 0.5 to 2.0 cycle/meter region.

plicable in regions where the spectrum is constant. In such regions the
magnitude of the antespectrum depends on the level of the spectrum
and on any smoothing or averaging while its shape depends only on the
windows used to generate the spectrum estimate. Since its expected level
and shape are known the sample antespectrum is a powerful tool for
deciding whether a portion of a spectrum is in fact “locally white” or if
in fact it contains significant structure. As an example Fig. 3 shows the
sample antespectrum corresponding to the 19.0 to 20.5 cycle/meter re-
gion' of the pilot spectrum estimate for the horizontal curvature in mode
filter section 17 of the field evaluation test (see Anderson et al.” for the
definition and location of individual mode filter sections such as 17). It

T This region and the one below were chosen as they are both free from obvious peaks and
on a plot of the pilot spectrum appear to be flat and very similar.
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Fig. 5—The vertical curvature for mode filter section 6 as measured by the long-range
mouse. Subsets 1, 3, 5, 7,9, and 11 are used in the test for stationarity; all are used for the
pilot estimate.

can be seen that the agreement with the expected behavior is quite
good.

In contrast the sample antespectrum shown in Fig. 4, corresponding
to the 0.5 to 2.0 cycle/meter region does not conform to the expected
shape but rather shows a series of decaying peaks. This shows that a
considerable part of the apparent variability of the spectrum in this range
is due to the actual fine structure of the spectrum rather than sampling
variability. Consequently smoothing must be done very carefully as a
smoother with an effective span of only +8 points will completely obscure
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Fig. 6—Smoothed spectrum estimates from alternate subsets of mode filter section 6
‘{‘(e)gtical curvature. For plotting purposes the estimates have been offset by factors of
this effect. This fine structure in the spectrum is a result of interactions
between the tilts and offsets at couplings and, as expected, the random
lengths of the individual waveguide tubes is very effective at suppressing
the effect at higher frequencies.

lil. PILOT SPECTRUM ESTIMATE

The method used to compute the pilot spectrum estimate is a variation
of Welch’s technique.® In this method the data is first divided into several
overlapping subsets and a direct estimate of spectrum computed on each
subset. For this purpose the prolate data window with ¢ = 4r is ideally
suited because of its very large dynamic range. For reasons described
in Part I the 800-meter mode filter sections were divided into 12 subsets
each 160 meters long. These subsets are offset from each other by about
28 to 30 percent of their length so that the information recovery is near
optimum. The pilot estimate is a combination of these subset estimates.
Originally the combination consisted of a simple arithmetic average over
the subsets but in situations where occasional outliers are expected a
greatly improved pilot estimate can be obtained by using a simple robust
estimate.
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Fig. 7—Smoothed spectrum estimates from all 12 subsets of mode filter section 3 hor-
izontal curvature.

Figure 5 shows a plot of the vertical curvature for mode filter section
6 with the positions of the various subsets indicated. Figure 6 shows al-
ternate subset spectrum estimates and it can be seen that they agree well.
So that the plot is readable these estimates have been smoothed and are
offset from each other by factors of 100.

By way of contrast, Fig. 7 shows all 12 subset estimates for the hori-
zontal curvature in mode filter section 3 and it can be seen that several
of them are “different.” The cause of this difference appears to be some
small outliers, possibly dust particles. Figure 8 shows the difference
between an arithmetic and robust combination of these subsets using
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Fig. 8—Comparison of pilot spectrum estimates formed by robust and arithmetic average
combinations of the subset spectrum estimates (shown in Fig. 7) for mode filter section
3 horizontal curvature. For plotting purposes both estimates have been smoothed with
an adaptive filter having a span of £10 points.

formula I-5.1 with £’ = 6. It can be observed that the two differ by more
than a decade across much of the frequency band. Integrating the two
estimates one finds that the total power decreases by about 10 percent,
from 1516 microns? for the standard estimate to 1380 microns? for the
robust estimate. Prediction error, however, is proportional to the inte-
grated logarithm of the spectrum, which decreases dramatically, from
15 microns? for the average to 0.101 microns? for the robust estimate.
Comparisons of these pilot estimates with the spectrum of the individual
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Fig. 9—Comparison of the subset spectrum estimates shown in Fig. 6 for homogeneity
using Bartlett’s M statistic as a function of frequency. For plotting and interpretative
purposes the values shown here have been lightly smoothed.

tubes shown in Fig. 1 indicate that, since the higher frequency portions
of the spectrum depend primarily on tubing geometry, the robust esti-
mate is much more believable than the one obtained by simply averaging
the subsets.

IV. TESTS FOR STATIONARITY

An important side use of the subset spectrum estimates is in testing
the data for stationarity. Tests of this assumption are important in
waveguide applications as most models assume that the coupling
mechanism between the different modes is driven by a stationary ran-
dom process and loss estimates made on the basis of such theories will
be unreliable of this assumption is violated.

The only test for stationarity which has been found satisfactory is a
compound procedure of which the first step is to compute Bartlett’s M
statistic!! for heteroscedasticity of variance between subsets as a function
of frequency

- ko
M(w) =kvin S(w) — v} In Sj(w) (3)
j=1
Here S (w) is a slightly smoothed estimate of the spectra of subset j with
v degrees of freedom, and S(w) is the average, over the k subsets of S;(w).
If the test is not to be biased constant weight smoothers must be used
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and smoothing to more than 6 degrees of freedom is inadvisable. Also,
so that the test is not biased by correlations between subsets, the subsets
used in this test are offset about 57 percent of their length so that, as
indicated in Fig. 6, alternate members of the set used to generate the pilot
estimate are used in this test.

The second stage of the procedure is to sample M (w) at steps greater
than 4c¢/l, pool the samples, and test for conformance to the known
distribution of M. Three primary tests of goodness of fit have been used;
the one sided Kolmogorov test D—, the Anderson-Darling!? A test, and
the Cramer-von Mises W test. (The D and W statistics are described in
Durbin.!3) High values of the Kolmogorov D+ statistic usually indicate
too little variation between the subset spectrum estimates. This condi-
tion is normally a result of the subsets being too short.

Figure 9 shows values of M as a function of frequency corresponding
to the subset spectrum estimates shown in Fig. 6. The empirical and
theoretical distribution functions are plotted in Fig. 10. From this figure
it can be seen that the values of M obtained from the different subsets
correspond closely to their expected distribution so that the process can
be assumed stationary. It should also be noted, see Box,!4 that the M test
is very sensitive to departures from the assumed distribution so that,
if the spectrum estimates are not closely x2 the series will appear nons-
tationary. Therefore we can conclude that over the frequency band of
primary interest, 0 to 25 cycles/meter, the process is stationary and also
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that the distribution of losses to a given mode will be x2. Other examples
are given in Thomson.1%

V. SMOOTHING

Almost all work on spectrum estimation recommends that various
linear smoothers be applied to the raw spectrum estimate and while these
procedures are of some value in the present application they can fre-
quently lead to very misleading results. In WT4 applications losses are
proportional primarily to the actual value of the spectrum and only to
a limited extent to the total power available, and as linear smoothers
preserve power rather than spectral amplitudes they cannot be used for
loss estimates.

In numerically less critical applications, for example when the spec-
trum is being “looked at” to study the manufacturing process, conven-
tional smoothing can be seriously misleading and in most applications
of this type various adaptive smoothers have been used. While it is im-
possible to describe the complete details of such smoothers here one of
the simpler methods will serve as an example. For this example the
bottom curve in Fig. 11 shows a portion of the raw vertical curvature
spectrum from mode filter section 14.

(z) From a symmetric interval about the frequency of interest values
of the raw spectrum estimate are pooled and sorted. From these values
a robust estimate of location is made by methods similar to those de-
scribed in Section 5, Part I, that is, the initial estimate is a systematic
function of the order statistics. In this case both ends of the distribution
are censored, typically at the 25 percent points, instead of just the upper
tail. This initial robust location is shown, offset by a factor of 10, as the
second curve of Fig. 11.

(i) The initial robust location estimate is smoothed using a con-
ventional low-pass lifter. The smoothed location estimate is given, offset
by a second factor of 10, in the third curve from the bottom.

(iit) The central value in the spectrum estimate is compared to the
robust local mean. This comparison is made within a window formed by
the asymptotic extreme value distribution for distributions of expo-
nential type. Denoting the raw estimate by S(w) and the smoothed
“mean value function” by S(w) this is accomplished by

S(w)

= S.(w) (4)
so that the window becomes
w = exp{ — v.e~T} (5)
and the “roughened” estimate is given by
Sr(@) = wS(w) + (1 — w)S(w) (6)
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Fig. 11—Steps of a simple adaptive “smoothing” procedure applied to mode filter section
14 vertical curvature spectrum.

This estimate is shown as the fourth curve and the peaks are very evi-
dent. For comparison the top curve shows the results of conventional
linear smoothing. Comparing the raw, conventional, and robust
“smoothed” estimates it is clear that the nonlinear “smoothing” pro-
cedure is very helpful in identifying both the basic structure of the
spectrum and also any potential periodic components.

VI. ROBUST FILTERING

In addition to the problems already mentioned, conventional estimates
of spectra are not robust, that is, they are very sensitive to small amounts
of erroneous or outlying data. This problem is of particular importance
in data of the type obtained in millimeter waveguide problems because
of the large range covered by the spectrum and the fact that we are often,
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Fig. 12—Plot of the horizontal curvature gauge output for an experimental dielectric-
lined waveguide. The insert shows one of two outliers in this data set.

for example in making TM;; and TE;; loss estimates, interested in the
spectral density “at the bottom of a cliff.” In this situation there is an
aspect to robust estimation which does not appear in the usual situations,
namely that an outlier does not have to be “large” to cause serious dis-
tortions of the spectral density estimate, but only large with respect to
the process innovations variance. In many waveguide spectra, where the
innovations variance is less than the process variance by a factor of 108
to 108 or more, this means that outliers in time series may not be obvious.
As an example of this phenomena Fig. 12 shows a plot of the horizontal
curvature gauge output from an early dielectric lined waveguide in which
the outliers are almost invisible under normal plotting conditions but
which can be seen when expanded. As will be shown later, such outliers
can result in large errors in the estimated spectrum. Further examples
are given in Kleiner et al.16

The solution which has been found to these problems is known as the
robust filter algorithm. Basically this procedure uses approximate
knowledge of the structure of the process to predict the process at the
next time step. When the observed value of the process is close to that
predicted, the filter simply copies the data. If, on the other hand, the data
and prediction differ by a “large” amount, the filter output consists of
the prediction. Prediction is used rather than interpolation because the
predictor is based on filtered values of the process whereas interpolation
requires use of data which itself may be contaminated. Also, in the usual
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Fig. 13—Simulated waveguide curvature data with outliers. These data were generated
using a 54th-order auto regression with a normal innovations sequence.

case where the procedure is combined with prewhitening, the predictive
formulation has the important characteristic of having no zeroes in its
transfer function on the real frequency axis.

This prediction is made using an autoregressive model of the process.
Estimation of the parameters of such a model was described in Part I
and further information is available in the recent works of Kailath, Morf,
et al.17.18,19,20

To a large extent the behavior of the robust filtering algorithm de-
pends on the weight function W and, because of the nonlinearities in-
troduced, improper choice of weight functions can drastically alter the
spectrum estimate. To illustrate the behavior of the different influence
functions Fig. 13 shows a section of simulated curvature data with a burst
of errors between 3 and 5 meters and in Fig. 14 the error sequence

Ap=2x, — %, (7)

between the original uncontaminated data, x, and filtered series, i, is
shown. In this case the extreme value influence function (Part I, Section
7.7, ug = 4.5) was used and it can be seen that in the uncontaminated part

0.02 -

-0.02 |

-0.04 1 1 1 1
0 1 2 3 4 5

AXIAL POSITION IN METERS

FILTER ERROR,A

Fig. 14—The error, A, between the original uncontaminated data (The contaminated
data is shown in Fig. 13) and the sequence obtained by robust filtering using an extreme
value influence function with ug = 4.5. Note the difference in scale between Figs. 13 and
14.
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of the series the error is usually zero or very small. In the contaminated
part of the series the errors correspond to the innovations sequence and
error propagation is very limited. By contrast Fig. 15 shows the error
sequence obtained when the common bisquare influence function

ull = (w/ups)?? [u| < ups
0 |u| Z Ups

Wps(u) = (8)
with up, = 6. In this case the error is hardly ever zero, error propagation
is general, and in many cases the errors are larger in the uncontaminated
data than they are in the contaminated region. In the estimated spectrum
these distortions result in spurious peaks and similar errors.

This behavior may be explained by considering the behavior of the
filter on uncontaminated autoregressive data of order p so that the error
sequence is given by

Bn =1 =¥ (6 + kglamn-k) ©)

where I represents the identity function, ¥ the influence function, and
|€} is the innovations sequence. Because £, is independent of preceding
values of A, this equation may be used to compute the probability
density function of the errors.

Figure 16 shows the probability density functions for the filter error
sequences for three influence functions assuming an autoregressive
process of order 1 with « = 0.9 and Gaussian innovations. Here, in
agreement with the examples shown above (which to simulate waveguide
curvature data used an order-54 autoregressive representation), it can
be seen that

(i) The density corresponding to the extreme value influence
function has more than 99 percent of its mass concentrated near the
origin and the continuous portion decays rapidly.

(ii) The density corresponding to the Huber influence function also
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Fig. 16—Probability density functions for the error sequence of a robust filter operating
on a first-order autoregressive process with a = 0.9. For the extreme value case the density
appears to be trimodal with the side modes at +6.5 and a level of about 10~5.

has over 75 percent of its mass concentrated at the origin, but away from
the origin the density decays more slowly than for the extreme value
influence.

(iii) For the bisquare influence the density is large and peaked near
the origin but is basically continuous and compares with the non-zero
error process observed above.

VIl. COMPARISON OF SPECTRUM ESTIMATES

Figure 17 shows the average, over 16 mode filter sections, vertical
curvature gauge output spectrum from the Netcong W4 field evaluation
trial line computed using the methods described here. These calculations
were made separately on each mode filter section and only a single it-
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eration of the robust filtering procedure was used. The solid line in this
plot is an “autoregressive spectrum estimate,” the reciprocal of the power
transfer function of the prediction error filter normalized by the esti-
mated innovations variance. This particular example was obtained by
fitting the averaged pilot estimates with an autoregression of order 54,
the median value chosen by Parzen’s criterion. It can be seen that the
autoregression fits the gross shape of the spectrum fairly well but is
completely useless as a description of the fine structure. As a particular
example consider the two small peaks near 0.32 cycles per meter (see the
expanded portion of the plot). These are completely absent in the au-
toregressive fit but show clearly in the nonparametric estimate. These
peaks, one corresponding to harmonics of the 8.87 meter average tube
length and the other to the ~60 foot sheath length were observed in 14
of the 16 mode filter spectra examined and account for considerable
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Fig. 18—Comparison of three estimates of spectrum for the data shown in Fig. 12. The
systematic oscillations in the center curve are a result of interactions between the two
outliers.

TM;; mode conversion loss which is confirmed by independent mea-
surements (see Anderson et al.”). An even more significant failure of the
autoregressive fit to reproduce details is evident at 8.8 cycles per meter.
This peak, a result of the straightening operation used in the manufac-
ture of the waveguides, exists in every waveguide tube and is detectable
by simple techniques. In this region it can also be noted that, since the
autoregressive fit is made to the pilot spectrum estimate, that the robust
filtering procedure has improved the noise level by almost a decade and
the spectrum estimated for the composite line is comparable with that
expected on the basis of the measurements of the individual tubes.

As an example of how effective the robust filter algorithm can be for
eliminating the effects of outliers in time series data Fig. 18 shows three
different estimates of spectra for the curvature data shown in Fig. 12.
The first estimate was computed using the simple extended periodogram;
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this result is so badly biased as to be useless over 95 percent of the fre-
quency domain. The second estimate was computed using the 4= prolate
taper with the result that, depending on the frequency, the bias of the
estimate is reduced by between 1 and 4 decades. While this result is still
badly in error the cause of the error is the outliers mentioned earlier
rather than limitations of the window. The third estimate uses both the
prolate tapers and two iterations of the robust filter algorithm and again
the estimate changes by over eight decades across much of the frequency
range. In this estimate one can see details of the spectrum resulting from
the manufacturing process rather than from artifacts of the measuring
or analysis procedures.

VIll. CONCLUSIONS

Use of the adaptive and robust prewhitening technique in conjunction
with data windows defined by prolate spheroidal wave functions has
resulted in accurate estimates of spectra where conventional estimates
fail. The bias of conventional estimates in situations commonly en-
countered in the WT4 development is so high that excessive levels of
mode conversion are estimated if they are used. The high resolution and
low bias properties of these estimates have proven extremely useful in
understanding the measured field evaluation test loss data (see Anderson
et al.,” Carlin and Moorthy?!). In particular, since the high bias of con-
ventional estimates would have resulted in much higher loss predictions
for the TM;; and TE;; modes (higher in fact than the measured loss)
these techniques must be considered a significant factor in the discovery
of second-order TM3; mode conversion loss.

These procedures also allowed the identification of promising man-
ufacturing techniques and were used extensively to develop, improve
and control the manufacturing process. They were incorporated in the
continuous monitoring of the waveguide tubing as it was being produced
and were a major contributor to the high quality of the present wT4
waveguide.
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