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In this paper we examine the relationship between the loss of the
TE o, mode in a multimode circular waveguide and the waveguide ge-
ometry. First-order perturbation theory solutions of the coupled line
equations were used to predict the loss from measurements of the
waveguide geometry. The predicted loss disagreed with the measured
loss for the 14 km long waveguide line in the WT4 field evaluation test.
An analysis of the coupled line equations which considers the effects
of both first- and second-order mode conversion is described. The ap-
propriate coupling coefficients are derived and discussed. Second-order
perturbation theory solutions of the coupled line equations are devel-
oped and examined. Losses predicted from the measured waveguide
curvature and the second-order theory agree well with measured loss
data. The results indicate that axial curvature leads to significant mode
conversion-reconversion effects between the TEq;~TM11, TE0;-TEn2,
TM,,-TMs;, TE15-TMg; modes in the installed waveguide of the wr4
field evaluation test. The TM2, conversion is due to curvature fluctu-
ations with a characteristic wavelength of 10 to 30 m.

I. INTRODUCTION

The transmission characteristics of the TEg; mode in circular wave-
guide are quite different from the characteristics of cable or wire
transmission media currently used in the Bell System. The waveguide
medium has the unique property that its heat loss decreases with in-
creasing frequency. Heat losses! as low as 0.3 dB/km are obtained at 110
GHz in 60 mm diameter waveguide. However, since the diameter of the
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waveguide is much larger than the operating wavelength of 2.75 mm at
110 GHz, several hundred spurious modes can also propagate, in addition
to the TEy; mode. The spurious modes have slightly different phase and
group velocities than the TEy; mode. Spurious modes are excited in
practice because the waveguide is not a geometrically perfect right cir-
cular cylinder, and there is a continuous exchange of energy between the
TEq; and spurious modes. This mode conversion-reconversion results
in added loss and delay distortion. A detailed understanding of the re-
lationship between spurious mode generation and waveguide geometry
is required since even small distortions in the guide cross section (of the
order of 1 um) can cause substantial loss.?

The mode conversion problem can be modeled by an infinite system
of coupled transmission line equations® for which approximate solutions
have been obtained by first-order perturbation theory.* At the beginning
of the WT4 field evaluation test the first-order theory was considered
to be a valid and accurate method for predicting the TEy; mode con-
version loss. Detailed measurements of the waveguide cross-section
geometry were carried out in the laboratory on 9 m long individual sec-
tions of waveguide. The curvature of the waveguide axis, in two or-
thogonal planes, was also measured over the 14 km field evaluation test
route. The curvature and cross-section geometry data and the first-order
perturbation theory solutions were used to predict the TEy; mode con-
version loss. Waveguide curvature was found to be a significant source
of TM;; and TE;s mode generation with a predicted TEy; mode con-
version loss of approximately 0.2 dB/km at 110 GHz. All other predicted
first-order mode conversion effects resulted in an additional TEy,; loss
of less than 0.03 dB/km at 110 GHz.

The measured loss disagreed substantially with those first-order
predictions. The measured loss indicated a total TEy; mode conversion
loss of approximately 0.5 dB/km at 110 GHz.

In this paper, we show that the generation of the TMy; mode is a sig-
nificant source of TEy; mode conversion loss in curved waveguide. The
TMp2; mode is not coupled directly to the TEg; mode and therefore is
ignored in the first-order perturbation theory. It is excited via the TM;;
and TE;s modes and hence can be thought of as a “second-order” phe-
monenon. However, as we shall see, the energy coupled into the TM3;
mode exceeds the energies coupled into the “first-order modes” TM;;
and TE;s under certain conditions. Therefore the term “second order”
is used to describe any theory which includes the TMz; mode, only in
the sense that it is a mode which is indirectly excited from the TEg;
mode.

An approximate model and a second-order perturbation theory is
developed for the TMpy; conversion in curved waveguide, which, in
conjunction with the first-order theory for TM;; and TE;2 conversion,
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yields results which agree well with measured results. The source of the
TM3, generation is identified as waveguide curvature with low spatial
frequency components with a characteristic wavelength of 10 to 30 me-
ters.

Il. PROBLEM FORMULATION

Mazxwell’s equation in the deformed waveguide may be transformed
to an infinite set35 of coupled transmission line equations expressed in
terms of the normal modes of the undeformed guide:

2 4@ = T Knmn@)An(@) = jhnAn )

dz n¥m
The unknowns in eq. (1) are the normal mode amplitudes A,, while &,
are the normal mode propagation constants in the undeformed guide.
The sum over n extends over an infinite number of modes, and the
coefficients K, , in the infinite system of equations consist of the
product of a geometry deformation factor and a normalized coupling#5:6.7
coefficient Cp, ,. The derivation of the coupled line equations and the
normalized coupling coefficients, as well as some notation for normal
modes, is outlined in the appendix.

We shall use single subscripts m and n when referring to a general
normal mode. A double subscript pn is used in referring to a specific
normal mode such as TE,, or TM,,. Here the p refers to the order of
the azimuthal variation (cos p¢ and sin p¢) while the n is the order of
the radial variation J,(x,r). The modes in dielectric-lined waveguide,
the principal transmission medium in the field evaluation test, are not
strictly®.7:8 “transverse electric” TE or “transverse magnetic” TM but
we will retain the notation. The axis of the installed waveguide is a curve
in three-dimensional space. The polarizations of the locally excited
spurious modes are related to the orientation of the osculating plane,
and since this is continuously changing, the polarizations of the modes
are also changing continuously along the waveguide axis. The net spu-
rious mode amplitude is the sum of the locally generated modes, and to
determine this sum it is necessary to resolve the local polarization into
two orthogonal polarizations. Furthermore, it has been shown* that the
same results are obtained by using the curvature of the projections of
the waveguide axis on two orthogonal planes. We shall use superscripts
t and — to denote the two distinct polarizations, e.g., TEI,,, or TE,,. We
shall use TE,, with no superscripts in discussions which apply for both
polarizations. The two polarizations for the TM], and TM;; modes are
given in Fig. 1. Note that the plane of curvature determines which po-
larization is generated. The waveguide installed for the field evaluation
test has independent curvature characteristics for the two planes, hor-
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Fig. 1—Normal mode electric fields in dielectric-lined waveguide.

izontal and vertical, shown in Fig. 1, and the polarization of the spurious
mode must be carefully accounted for when estimating the TEg; loss.
Previous analyses* assume K, () to be sufficiently small so that the
total loss can be obtained by a superposition of a number of two mode
problems in each of which the TEy; mode and one spurious mode is
considered. As a specific example, the TEy;—-TM;; mode conversion loss
due to axial curvature ¢(z) in a single plane may be determined from

d [Am] Ty [hm 0 ][Am]
dz A11 0 hll All

.fo COLII][AOI]
+ 2
! [Cm,n 0 An c@) @)

An approximate? expression for the expected TEy;-TM;; mode
conversion loss (a}}) in eq. (2) is

1
aff = 2 C?1.11 Sc(ABo1,11/27) (3)

Here S, is the spectral density function for ¢ and the differential prop-
agation constant Ay 1; is defined as

ABo1,11 =hor — hn (4)

Expression (3) is valid in loss-free waveguide, real h,,, and for long
lengths of line with a slowly varying power spectrum, S,.4 It is an exact
solution for (2) in the case of a white power spectrum.® Computed power
spectral density functions of the installed WT4 field evaluation test
waveguide®1? diameter, curvature, ellipticity, and higher-order geometric
distortions were substituted into the equivalent of (3). The resulting
values of loss indicated that approximately 90 percent of the total TEq,;
mode conversion loss, o€, was accounted for by TM},, TM;;, TEl,, TE;
conversions due to the curvatures ¢y and cy of the waveguide axis in the
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horizontal and vertical planes, respectively. Thus the predicted mode
conversion loss was expected to be

aplC == Cm 11 [Sev(ABo1,11/27) + Scp(ABo1,11/27)]

+ 2 Cgl.lz [Scy(ABo1,12/27) + Scp(ABp1,12/27)]  (5)

The mode conversion loss predicted by (5) differed significantly from
the measured loss!? as discussed in greater detail in Section IV. Moving
piston measurements!! in regions of the field evaluation test line with
high curvature indicated the presence of significant levels for the TMg,
mode as well as TM;; and TE,3 modes.

The measured results implied that second-order conversion processes
of the form TEy; <> TM;; <> TMjy, are also significant and must be
considered along with the first-order processes, TEq; <> TMj, in esti-
mating the total TEq; loss. Instead of considering the two-mode model
in (2), we must examine a three-mode model of the form

d Aoy 0 JAn
| Aun| ™ =i 0 hin 0 JAn
ho1 LAz

. A Cm‘u 0 A(]l
+J E(Z) COl,ll 0 011,21 All (6)
0 Cuar O Az

In (6) we are considering only one of the possible TMy; conversion paths,
as the curvature c(z) is assumed to be in a single plane. The other paths
are given in Fig. 2. The coupling model in Fig. 2 leads to the following
set of coupled transmission line equations for the determination of TEy,
mode conversion loss due to curvature of the waveguide axis:

< [4] = = j[RIA] + jen@)[CallA] + fev@ICVIIAl (1)

where
A= [Ag,Al Al AL ALLAG AT (8)

Here the A,,’s are the transmission line voltages corresponding to the
TEo;, TM],, . . ., TM;5; modes. The propagation constants hoy, ki1, . . .,
h3; of the modes in straight waveguide are the elements of the diagonal
matrix [h]. Note that h}, = h,; and that no superscript is required for
the TEg; mode. Corresponding differential propagation constants, A »
are given in Fig. 3.
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Fig. 2—Curvature coupling mechanisms.

The coupling coefficient matrices [Cx] and [Cy] consist of the nor-
malized curvature coupling coefficients C, , from mode m to mode n.
They may be determined from eq. (57) in the appendix. The normalized
curvature coupling coefficients in 60 mm diameter guide, with a 180-um
polyethylene liner are shown in Fig. 4. [Cy] and [Cy] must be multiplied
by the local horizontal or vertical curvature, cg(2) or cy(2), respectively,
to obtain the local coupling coefficients. From Fig. 2 we have

[ 0 jCon jCoriz 0 0 0 0
JCopn O 0 JjCiyaa O 0 0
JCoriz 0 0 JjCig21 O 0 0
JICxl=| 0 jCiyo1 jCiz221 O 0 0 0 (9)
o 0 0 0 0 0 jCum
0 0 0 0 0 0 JjCin
0 0 0 0 JjCuo1 JCizz1 O
F 0 0 0 0  JjCouu JCoiz O
0 0 0 0 0 0 JCi,21
0 0 0 0 0 0 JCi2,:1
jlCvl=]| © 0 0 0 —jCu,21 =jCi221 0
7Co,1n O 0 —jCua 0 0 0
jCot12 0 0 —jCig2 0 0 0
L 0 jCu2jCi221 O 0 0 0 |
(10)
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Fig. 3—Differential propagation constants in 60-mm lined waveguide.

Prediction of TEq; loss based on the set of coupled line equations in (7)
agrees well with measured results as discussed in Section IV.

lil. SOLUTIONS—COUPLED LINE EQUATIONS

The set of seven coupled line equations in (7) has been integrated
numerically for sets of measured curvature data up to 800 m in length.
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The numerical method yields solutions with an accuracy of better than
1 percent. The method consists of a direct numerical evaluation of the
transmission matrix for incremental sections 5 em long. Direct multi-
plication of the individual matrices yields the transmission matrix for
the desired sections of line. The results agree well with measured data

as discussed in Section IV and

are a confirmation of the validity of the

mode conversion model in Fig. 2. The numerical integration must be
carried out at a number of discrete frequencies to determine the loss
characteristics over a given frequency band and is an expensive process,
since 10 minutes or more of computer time may be required for a 500 m
length. Thus approximate solutions are required.
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For the case of weak coupling, the seven-mode system of equations
in (7) can be reduced to a superposition of three-mode equations similar
to (6). It is convenient to define a normalized mode amplitude G,, in
terms of A,,

Ap = e hm2G,, (11)

On applying Picard’s method* of successive approximations to (6), we

find that G,; and G, are given to first- and second-order respectively
by

Gu=j fz Co1,11¢(s)e~/Afornsdyg (12)
0

z . s .
Gop = — f C1]_,21C(S)E_JA'8“-215‘I; Cm‘nc(t)e_maﬂl-lltdt ds (13)
0
For slowly varying curvature, c¢(z), it can be shown that

Ga=~]j f [C1121C(5)( — LI C(S))] e ~JABo218dg (14)

ABo1,11

There is a simple physical interpretation for the terms in (14) which
we will examine instead of presenting the details of the analysis. As the
TEq; mode travels through a region of waveguide with slowly varying
curvature in a single plane, the local field structure for the TEy; mode
is slightly distorted from the structure in the straight waveguide. The
degree of distortion can be quantified by expanding the fields in the
curved guide in terms of the normal modes for the straight waveguide.!2
In doing so, it is found that the TM;; component has a magnitude given

by
( Co11 c (z))
ABor11

which is one of the terms in (14). The TM;; component travels with the
same phase velocity as the TEy; mode and couples to the TMy; mode
with a coupling of strength C1; 2; ¢(z). This is the second coupling term
in (14).

Thus the net coupling between the TEg; and TM3; modes in wave-
guide with slowly varying curvature, c, is

Cor11C1121 ¢2(2)
ABor11

Equation (14) is similar in form to (12) and thus the three-mode
mechanism, TEy; <> TM;; <> TM;;, has been converted to an equivalent
simple two-mode mechanism TEg; <> TMy; with an effective normalized
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coupling coefficient, Co; 21, given by

C Cor11Cri,21
oL ABo1,11 G

The waveguide geometry enters (14) via the factor ¢2(z). The reader is
cautioned against confusing (15) with the normalized coupling coefficient
between the TE); and TMy; modes due to ellipticity of the wave-
guide.

The formula for the expected value of the TEqy; <= TM32; mode con-
version loss, o], is similar to (3) and is given by

21 —
apy =

Cf1,215:2(ABo1,21/27) (16)

BO | =t

The loss in (16) is proportional to the spectral density function for the
square of the waveguide curvature at a spatial frequency of ABo1,21/27
¢/m. From Fig. 3 it may be observed that ABp; 21/2 is less than 0.1 ¢/m
for frequencies greater than 80 GHz, and thus curvatures with long
wavelengths, 10m or more are the source of TEq;—-TM3; mode conversion
loss in (16).

In Ref. (10) it is shown that the curvature power spectral density for
the field evaluation test waveguide in the 0 to 0.1 ¢/m region of the
spectrum is three orders of magnitude larger than the spectrum in the
0.3-1 ¢/m region which causes TM;;, TE;5 conversion. Thus the as-
sumptions in previous analyses* of a slowly varying spectrum are clearly
not true and the existence of additional mode conversion loss compo-
nents is not surprising.

In general, for curvature in two planes, we must consider all of the
mechanisms in Fig. 2 to determine the total TEq; loss. It is convenient
to define an equivalent normalized coupling coefficient, Ko; 21

Co1,11C11,21 , Co1,12C12 21]
Koy = 2 | 2ouL-12L , ZoLizeis, (17)
oLzl AB1 ABy2
where
_ A + A — A + A
AByy = B11,.21 B11,01 BBy = B12,21 B12,01 (18)

2 2

A plot of Koy,21 vs. frequency is given in Fig. 4.

We then find that the mode conversion due to curvature may be ap-
proximately treated as a superposition of the two-mode process shown
in Table L.
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Table | — Mode conversion due to curvature

Normalized
Conversion Geometrical  coupling
process factor coefficient  Af Loss

TEo-TM|, cH Coin ABo111 %CEI.IIScH(AﬁOl.Illzf)
TEq-TM;j cy Coin1 ABo111 % C31.115¢y(ABor,11/27)
TEo-TEl; CH Cor12 ABo112 % C1.125cx(AB01,12/2)
TEo-TEq; cy Cor1z2 Afor12 ';' C1,128cv(ABo1,12/27)
TEo1-TM}, ch—c} Koi21/2  ABoi1 % [K01,21/2]%Sc3—c3 (ABo1,21/27)
TEo1-TMg; CHEY Koiz1 Ao121 %K 81,218 enev (ABor,21/27)

IV. COMPARISON OF APPROXIMATE AND EXACT SOLUTIONS WITH
MEASURED RESULTS

In this section the approximate results obtained in the last section for
TEo:—TM3z; mode conversion, the measured results, and the results
from a numerical integration of the coupled line equations in (7) are
compared for different curvatures of the waveguide axis. Let us first
consider an idealized bend, as shown in Fig. 5a, having constant curva-
ture in the horizontal plane and a sinusoidally varying curvature in the
vertical plane

cu(z) = 1/Ry

cy(z) = Ay sini—wz (19)

From Table I, we can approximately model the TM;; conversion
process with the following set of two coupled equations. Since S is
much greater than S?, and th, at ABo1,21/2m ¢/m the TMy; level is much
greater than the TM}, level, which is neglected.

d . ) 1 . /27 .
;,;Am = — jhorAor + jKo12 EAV sin (E Z) Ay

d . . 1 . /2w . .

aAz: =JK01.21§;AV sin (E 2) Aor — Jha1Aa (20)
The coupling term in (20), sin (27/A, )z, is sinuosoidal, and an analytic

solution for this case has been obtained by Miller.!? Miller’s solution for

(20) will be compared with both the numerical solution and the sec-
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Fig. 5—Comparison of predicted losses for constant curvature bend with sinusoidal

curvature in orthogonal plane.

ond-order perturbation theory solution in the following. After the so-
lutions for Ag; and A3] in (20) are determined as in Miller,!3 the nor-

malized TM;; level, G5, follows from (11):

/2
C.L sin [c.|1 + (%)2 ' L]
GailL) = AB.\2 1/2
C.li+ (=—
e+ Ge) 77
where
1 1 2
C.= '2"K01,21 ﬁ;Av, AB. = ABo121 — i

The corresponding value of Gy is

[Gor(L)|? =1 —|Gai(L)|?

(21)

(22)

(23)

from which the loss is readily obtained. From (14) we obtain the sec-
ond-order perturbation theory solution for G for the two curvature
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functions in (19) as
Gsi(L) =C.L (24)

In Figure 5b, we compare the results from (21) and (24) with a direct
numerical integration of the corresponding seven-mode system in (7)
for the curvature data in Fig. 5a. We see that there is a substantial dis-
agreement at 100 GHz, the frequency at which AByy 2 is equal to 27/Am,
because the propagation constant of TEq, in a bend is slightly different
from that in the straight waveguide. This causes the frequency at which
we obtain coherent coupling to differ slightly from 100 GHz. On per-
forming the numerical integration at a number of frequencies in the vi-
cinity of 100 GHz, it was found that a frequency of 101.5 GHz resulted
in a maximum TM;] conversion as also shown in Fig. 5b. The 101.5 GHz
curve differs by less than 2 percent from the result predicted by (21). The
second-order perturbation theory solution in (24) is also in good agree-
ment for small TM3; levels, as for C,L <0.1, C.L =~ sin C,L. From the
results in Fig. 5 we draw two important conclusions. The equivalent
two-mode model in (20) can be summed to give an accurate represen-
tation of the seven-mode system in (7) and the second-order perturbation
theory solution (14) is valid for small couplings, C,L <0.1.

A controlled experiment was conducted in order to compare the an-
alytic results discussed above with measured data. An experimental bend
was constructed having constant curvature in the horizontal plane and
either “zero or very small” curvature or a sinusoidally varying curvature
in the vertical plane. The measured curvature for this line is given in Fig.
6. Shuttle pulse loss!4 measurements were carried out on this bend for
the two different vertical curvature cases. From the difference of the two
measurements the loss due to TM3] conversion was determined and is
shown in Fig. 7 (curve A). Two predicted loss curves are also given in Fig.
7; curve B from a numerical integration of the coupled line equations (7)
for the data in Fig. 6, and curve C from the sinusoidal coupling theory
(21). There is excellent agreement between all three sets of curves with
the exception of some slight frequency shifts. The frequency shift be-
tween B and C has been discussed. The shift between A and B is probably
due to small errors (<1 percent) in our estimated values for the differ-
ential propagation constant ABp1,21.

A similar comparison has been carried out on a 720 m long section in
the wT4 field evaluation test. The measured curvature for this section
is given in Fig. 8. There are substantial changes in profile in this section
and vertical curvatures greater than 0.020 m~! were measured in several
regions. The measured loss characteristic for this section is given in Fig.
9. A numerical integration of the coupled line equations, for the measured
curvature data in Fig. 8, was carried out at discrete frequencies, as in-
dicated by a circle or cross in Fig. 9 for two cases. The first case allowed
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Fig. 6—Measured curvature data for experimental route bend.

only for first order TM],, TM7;, TE],, and TEf; conversion, and it can
be seen that the predicted losses are much lower than the measured
losses. The second case allowed for TM};, TMi;, TEl,, TEf;, TM};, and
TMs;; conversion. It can be seen in Figure 9 that there is excellent
agreement between the measured loss and the numerical integration
results. The absolute loss for the peak at 114 GHz is ~ 1.5 dB. Thisis a
fairly large loss, and because of this the perturbation theory will yield
losses that are too large. The perturbation theory losses are approxi-
mately 30 percent greater than the numerical integration estimate, as
also shown in Fig. 9.

The large measured loss peak at 112 GHz is principally due to TM},
conversion occurring at the large vertical curvature peaks at 125 and 250
m in Fig. 8. This is readily seen in the measured “moving piston” trace
of Fig. 10. Here we are measuring!! the reflected TEy, level at the end
of the line as a perfectly reflecting piston is moved through this mode
filter section in a left-to-right direction in Fig. 8. The large increase in
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Fig. 7—TEqo loss due to mode conversion in modulated bend at Chester.

the TEq; ripple at points A and B corresponds to regions of high vertical
curvature in Fig. 8.

The numerical integration used in solving (7) consists of an evaluation
of the transmission matrix for 5 cm long incremental sections of the
waveguide line. A predicted moving piston trace is readily obtained on
multiplying the transmission matrix with its transpose. The final result,
given in Fig. 11, agrees well with the measured trace in Fig. 10.

V. LOSS VARIATION IN BENDS

In the preceding discussion we have seen that TEy-TMg; mode
conversion effects result in sizable losses for the TEy; mode in bends.
This will have a significant impact on repeater siting and spacing for a
commercial system and it is desirable to determine the sensitivity of this
loss component to system parameters such as guide size (a), frequency
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(), bend radius (Rp), rms curvature (cy,,), etc. On examination of the
loss components in Table I, we see that the TMj; loss depends on the
product of a coupling coefficient K¢ 2; and a geometrical factor S¢;;c,
or S¢z—2. The coupling coefficient K, 2; is the product of two curva-
ture coupling coefficients, e.g., Co1,11 and C1; 91 which vary as af, and the
inverse of a differential propagation constant, e.g., AByt';;, which varies
as a2f. Thus Ky, 21 varies approximately as af3. The TMjy; conversion
loss is proportional to K3, 5;, and varies as a8f6.

In a plan bend with an arc length >100 m and a constant radius Rg
< 100 m, the geometrical factor S,y (ABo1,21/27) is approximately equal
to 1/Rp? S.(ABo1,21/27). The magnitude of S, is much greater than
in nominally straight waveguide. Thus the TEq; loss due to TMj; con-
version is much greater in a plan bend than in straight waveguide.
Conversely, the value of S, 2 _05(A601,21/21r) is increased to a lesser degree
from the value in straight waveguide for spatial frequencies greater than
0.04 ¢/m and thus the increase in TEg; loss due to TM},; conversion is
of less significance.

With the above assumptions the additional TEy; loss per unit length
in a plan bend may be approximately written as
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Here a is the guide radius in mm, f is the frequency in GHz, Rg the bend
radius in m, and S., the vertical curvature power spectral density in
1/m2/c/m. As an example, from (25) a 95 m radius bend with a net angle
of 75 degrees or an arc length of 131 m has an average added loss of 0.12
dB at 110 GHz assuming a value of 7 X 1075 1/m?/c/m for S,,. This value
of S, is typical of the wT4 field evaluation test.1?

Figure 12 is the measured curvature for a bend in the wT4 field eval-
uation test with nominal parameters similar to those in the preceding
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paragraph. The T'Mj; mode conversion loss for this bend was calculated
directly using the result of perturbation theory from Table I in Section
IV. This agrees fairly well with the numerical integration of the coupled
line equation as shown in Fig. 13. Several bends from the field evaluation
test were analyzed and exhibited similar agreement. The perturbation
theory losses were generally 10 to 20 percent higher than the losses
predicted from the numerical integration. The fine structure of the loss,
with the exception of small shifts in the loss peaks, was similar for both
cases. Figure 13 also gives a comparison of the average added loss pre-
dicted from (25) and the actual loss for the bend. In general (25) is useful
only for estimating the average loss for a given bend. The actual loss for
a given bend exhibits significant fluctuation about this average value
as shown in Fig. 13. Any practical installation will contain several route
bends in a given repeater span. These bends are independent and thus
an expression similar to (25) is useful as it gives an accurate estimate of
the average added bend loss.

VI. CONCLUSION

A coupled line system of equations has been presented which predicts
the effect of second-order TMj; mode conversion on TEg; loss. A nu-
merical integration of the coupled line equations developed from this
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Fig. 11—Calculated TEy, level for 720-m-long section at 113 GHz.

model agreed very well with measured results for a bend experiment
designed to have high TMa; conversion and also agreed with measure-
ments on sections of the WT4 field evaluation test. A second-order per-
turbation theory solution for the TEq; loss due to TM3; conversion was
derived and discussed. The perturbation theory results agreed well with
the results obtained by numerical integration of the coupled line equa-
tions for typical sets of curvature data from the w4 field evaluation test.
The perturbation loss estimates were approximately 20 percent higher
but the two loss predictions had the same fine structure except for slight
shifts in the frequencies of the loss peaks.

An approximate formula for the additional loss due to route bends was
given. The added loss is proportional to the inverse square of the bend
radius. The added loss increases as the eighth power of guide radius and
the sixth power of frequency. The added loss is approximately propor-
tional to the mean squared vertical curvature. This approximate formula
works well on the average but does not predict the fine structure of the
loss for a given route bend.

There are several areas worthy of further investigation. Additional
work is required on the statistics of the TMj; mode conversion loss,
particularly the loss statistics for a single bend or pair of bends. We have
also assumed, without proof, that the TM;; and TE;; loss is given by the
first-order perturbation theory* and is little affected by TMg; conversion.

TEo1 TRANSMISSION WITH AXIAL CURVATURE 1867



0.020

0.013—

0.0065 k

HORIZONTAL CURVATURE, m~!

-0.0065 | | | | | 1 | 1
0.020

-1

0.013r—

-

0.0065

o
[

—0.0065—

VERTICAL CURVATURE, m

-0.013 | ] L 1 | | | 1
0 20 40 60 80 100 120 140 160 180

POSITION, m

Fig. 12—Maeasured curvature for plan bend in WT4 field evaluation test.

Note that significant energy passes through these modes to the TMg;
mode and an examination of higher-order terms is desirable. Finally,
the three-mode set of equations (10) has great significance for a practical
dielectric-lined waveguide system and is of as much interest as the
two-mode systems investigated to date. Improved approximate solutions
for systems of this type would be desirable.
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APPENDIX
Derivation of coupling coefficients
In many cases of interest!23 circular waveguide with a complex jacket
structure may be replaced with a simpler “wall impedance” model with
a resultant simplification in the analysis. This is true for the wT4
waveguide and thus we have the following set of equivalent boundary
conditions at the inner waveguide surface r = a:
Z¢ = E¢/Hz|r=a
Zz == Ez/H¢p|r=a
The total fields within the guide can be expressed as a superposition of
two scalar functions.

(40)

T, = N,Jy(x,r) sin p¢

; 41
Tv=Nva(xur) cos p¢ ( )

Here v and p are integers and the eigenvalue x,a is defined by
k,=x,a (42)

w2ugeg = k2 = x2 4+ h?

The fields vary as e ~/+2 in the axial direction and k, is the solution of
the characteristic equation

JwegaZ,
kel (k) [J;,(ky) +jweoz¢ng(k.,)]
Y =0 (43)
k2k2J2(k )+ J,(k,) [J (k,) +1weOZ¢,k2J (k, )]

The total fields are expressible as a superposition of normal mode
fields

E=Y A} (z)efeinz+ Y A (2)e etite (44)

H= ZA F(2)h}e ‘»""v2+ZA (2)h;e*ihz

where

ooV (a2 /B (0 8T

weg wep

+ 8o V22 T k; T, (45)
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Rt = r‘-(¢)\/w€0(ra¢ 12T

l’

aT, h2oT, ‘h, , x2,_,
+ ¢(:I:) Vweo ( +d, ﬁ 645) + Zjweg \/;6—0 d”ﬁ T,

The separation constant d, is given by

_pP JwegaZ
S

-1

212
- 5’—’% (v, + jlweoaZs) (46)
h;
= Tk ki (k,)

The modes are orthonormal as the vector cross product

j‘ J‘ rxht-ds =+, 7

The normalization constant N, is given by
L djh? p?
SNk [ (1+55) (1- 5+ 20+ k2)
hX , p
2(145:) v ] 1 (48)
for p # 0, and by
d?h?

WN2k2JO(k ) l(l + kvyu + 2}’»)] =1 (49)
for TEy, modes, and by
aNZRIJGR N + E2y2+ 2y,) =1 (50)

for TMg, modes.

For a nonideal waveguide where the inner surface is of the form r =
a + ep1(¢,2) where € << 1, we may express the total field in the distorted
guide (E,H) as a superposition of the normal modes® in an ideal guide
of radius a. On taking Maxwell’s equations, multiplying by A* or g%,
integrating by parts over the guide cross section and adding we find

fj'(vxE=—jwm,H)-E:ds+ff(va=jme“)-§fds
5 s
reduces to

_a_ + i l Al I+ o =+
- A%) ﬂ:zlﬁquh# ral+ 8 Hxe fdl} (51)
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We now apply the boundary condition in (1) at r = a + ep1(¢,2). For
any initial field Eo, Ho in undistorted guide the distortion ep; yields a
distorted field E, H to first order of

E=E0+EE1

il St (52)
H=Hy+ eH;
At r = a + ¢p; we have to first order from (40)
14p, IEos dp1 6H0z
Ep+p—2+E,=2Z Hoy+p1——+Hy; 53
2 36 ot 1o 16 ® [ 0 o 1 ] (563)
apl aE 1 ap]_ 8H0
— Eo + =—-7Z,|-—Hy +
gz CorF e [ 3 ot 1 +H1¢]

From (51) we need to determine
[EXh;+HXe||r=-F
On substituting [from (52)] for E and H and using boundary condi-
tions (40) at r = a for Eg and H, we find
[EXhi+HXe|-*la=¢E.Xh]+H Xe]-Fl. (54)

The right-hand side of (54) may be reduced to terms containing only Ey,
H,, and h* by expanding and substituting for (E1, — Z,H.) and (E;,
+Z.H,y) from (53).

On letting

Eo=YAk, and Ho=YAh;
we finally obtain a system of coupled equations of the form
;;A;'(z) = Zu: KA (z)el =iz + KR DIAT (2)elhuthnz  (55)
Only forward coupling is significant as h, =~ h, and we need concern

ourselves only with the forward coupling coefficient, Kt which is of
the form

1 oo d de.. ,
Ki’.’»’”‘-'gj; f[- [pleur+ple—+2(lgﬂhur g )]

d; ar a d¢ ar
14 de, ad oh,.
+h“z|:-a——;§e,,,—p1 : +2Z, (ﬂhur+ or ):”adqﬁ (56)

This is similar to Unger’s!® result for helix waveguide (Z4 = 0) coupling
coefficients but contains several additional terms.

K" is the coupling coefficient for displacement of the waveguide walls
from a right circular cylinder. If p;(¢,2) is of the form
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ep1(,2) = € cos ¢f(2)

we can determine the curvature coupling coefficient (C;;") from K3
as in Rowe and Warters. Since the curvature 1/R(z) is approximately
equal to —¢f”(z) we have

Citt =K ik, — h,))? (57)

This is the normalized curvature coupling coefficient referred to in the

m

ain text of this paper.

REFERENCES

G o OB

©w o o

10.
11.
12,
13.

14
15,

. H. L. Kreipe and H. G. Unger, “Imperfections in Lined Waveguide,’

. D. A. Alsberg et al., “wT4 Millimeter-Wave Transmission System Overview,” B.S.T.J.,

this issue.

. R.D. Tuminaro et al., “Waveguide Design and Fabrication,” B.S.T.J., this issue.
. S. A. Schelkunoff, “Conversion of Maxwell’s Equations into Generalized Telegraphists

Equations,” B.S.T.J., 34, No. 7 (September 1955), pp. 995-1043.
. H. E. Rowe and W. D. Wart.ers, “Transmission in Multimode Waveguide with Random
Imperfections,” B.S.T.J., 41, No. 5 (May 1962), pp. 1031-1170.
. S. P. Morgan, “Mode Conversion Losses in Transmission of Circular Electric Waves
téhroug Slightly Noncylindrical Guides,” J. Appl. Phys., 21, April 1950, pp. 329-
38

H. G. Unger, “Lined Waveguide,” B.S.T.J., 41, No. 3 (March 1962),1;)5. T45-768.
'B.S.T.J., 41, No.
7 (September 1962), pp. 1589-1619.
. J. W. Carlin and P. D’Agostino, “Normal Modes in Overmoded Dielectric Lined Cir-
cular Waveguide,” B.S.T.J., 52, No. 4 (April 1973), pp. 453—486.
. H. E. Rowe and D. T. Young, “Transmission Distortion in Multimode Random
gagtgglslides," IEEE Trans. Microwave Theory Tech., MTT-20, June 1972, pp.
dJ. C. Anderson et al., “Field Evaluation Trial —Medium Objectives and Results,”
B.S.T.J., this issue.
M. A Gerdine et al., “Electrical Transmission Measurement System,” B.S.T.J., this
18s8ue.
H. G. Unger, “Circular Electric Wave Transmission in Dielectric-Coated Waveguide,”
B.S.T.J., 36, No. 7 (September 1957), pp. 1253-1278.
S. E. Miller, “Some Theory and Application of Periodically Coupled Waves,” B.S.T.J.,
48, No. 7 (September 1969), pp. 2189-2219.
. A. P. King and G. D. Mandeville, “The Observed 33-90 kMc Attenuation of 2-Inch
Improved Waveguide,” B.S.T.J., 40, No. 7 (September 1961), pp. 1323-1330.
. H. G. Unger, “Noncylindrical Helix Waveguide,” B.S.T.J., 40, No. 1 (January 1961),
pp. 233-254.

1872  THE BELL SYSTEM TECHNICAL JOURNAL, DECEMBER 1977



