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We generalize the concept of rearrangeability to a finer measure of the
connecting power of a network, called the c-rearrangeability function. It

can be

interpreted as the proportion of calls a neftwork guarantees to

connect under a given traffic load. We study the c-rearrangeability function
SJor many well-known rearrangeable networks, including one-sided rear-
rangeable, two-sided rearrangeable, as well as several other kinds. We also
give constructions for some new classes of networks, study their c-rear-
rangeability functions, and describe conditions under which the networks
are rearrangeable. We show that these newly constructed rearrangeable net-
works compare favorably with the well-known ones with respect to the
number of crosspoints.

I. INTRODUCTION

A multistage connecting network can be described by the following
(see Fig. 1 for a three-stage example) :

(7)

(i)

(27)

There are s ordered stages, where s > 1 is arbitrary. The ith
stage, 1 = 1, - - -, s, consists of r; copies of a switch »;. The jth
copy of »; is denoted by »;;.

Links can exist only between switches of adjacent stages or
between »,(v,) and input (output) terminals of the network.
The set of links incident to a particular »; is partitioned into
two subsets. Those which are linked to either »;_; or input
terminals are called input links of »;, and those linked to either
viy1 Or output terminals are called output links.

The r, copies of vy are called input switches of the network.
Each », is connected to n, input terminals. The r, copies of
v, are called output switches of the network. Each », is con-
nected to n, output terminals.

The three-stage Clos network is a special case of a multistage con-
necting network, satisfying the additional restrictions that s = 3 and
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STAGE 1 STAGE 2 STAGE 3
Fig. 1—Generalized three-step Clos network.

that there is exactly one link between every pair (vi, v2) and every
pair (ve, v5). When vy, »s, vs themselves are allowed to be multistage
connecting networks, then a three-stage Clos network is called a
generalized Clos network. For simplicity, we assume n; = n3 = n
throughout this paper. Then, a generalized Clos network can be
denoted by C(v1, vs, va, 71, T2, T3, n) (see Fig. 1).

Define a request to be a pair of idle terminals seeking connection.
A request becomes a call once the two terminals are connected in the
network. An assignment is a set of requests and the size of an assign-
ment is the number of requests in it. An assignment is said to be realiz-
able if every request in it can be simultaneously connected in the
network without any link being used more than once. A network is
said to be rearrangeable if it can realize every possible assignment.

Consider a multistage connecting network ». Let g be the set of
input terminals, © the set of output terminals of », and 4 + © = T. In
many actual cases, not every possible pair in T' will generate a request.
In general, there could be two subsets I, @ C T such that all requests
are generated in the product space I X @. However, the four most
important cases are:

(7) the one-sided case: I = @ = T.

(#7) the two-sided case: [ = 4, 2 = 0.
(772) the input-mixed case: I = 4, 2 = T.
(iv) the output-mixed case: I = T, @ = ©.

The last two are often combined and called the mixed case.

A network is said to be one-sided rearrangeable if it can realize
every one-sided assignment. Similarly, we can define two-sided re-
arrangeable, input-mixed rearrangeable, and output-mixed rearrange-
able. Thus, a one-sided rearrangeable network means that every set
of pairs of terminals can be simultaneously connected, and a two-sided
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rearrangeable network means that every set of (input link-output
link) terminals can be simultaneously connected. It is clear that one-
sided rearrangeability implies mixed rearrangeability, which, in turn,
implies two-sided rearrangeability.

Rearrangeability is a strong condition which is manifested in two
aspects. First, all the requests in an assignment must be simultaneously
connected ; i.e., if one request fails, the whole assignment fails. Second,
every assignment must be realizable; i.e., if one assignment fails, the
whole network fails. Even for a nonrearrangeable network, it is still
of interest to know the degree of its nonrearrangeability. We introduce
a new concept of rearrangeability in this direction. First, we score an
assignment by the largest number of requests it can guarantee to
connect simultaneously. Second, we partition the set of all assignments
into classes according to the size of an assignment. We score a class by
the lowest score achieved by any member in this class. Now, a bad
assignment can still bring down the score of its class, but not of the
other classes, and not to a score of zero. Thus, we define R,(c), the
c-rearrangeability function, as the largest number of requests the
network » can guarantee to connect given any assignment of size c.
Thus, E.(c)/c is the proportion of requests » can guarantee to connect
given that the traffic load is approximately ¢/ (capacity of »). When
R,(c) = ¢, we say v is e-rearrangeable. If » is c-rearrangeable for all ¢,
then ¢ is rearrangeable in the classical sense.

In this paper, we study the c-rearrangeability functions for some
well-known rearrangeable networks. We also construct some new
classes of networks, study their e¢-rearrangeability functions, and de-
seribe conditions under which the networks are rearrangeable. We show
that these newly constructed rearrangeable networks can save a sig-
nificant number of crosspoints over the well-known networks.

Il. ANALYSES OF SOME WELL-KNOWN REARRANGEABLE NETWORKS

As switches are the basic components of a network, to understand
the rearrangeable property of a network, we have first to know what
the rearrangeable properties of its switches are (the switches mentioned
in this paper are all cross-point grid switches). For a switch, the
definition of rearrangeability is similar to that for networks, except
that input links and output links replace the roles of input terminals
and output terminals in a network.

Two links of a switch have direct access to each other if they inter-
sect at a crosspoint. In many networks, the cost of crosspoints still
dominates the other costs. Therefore, we would like to minimize the
number of crosspoints in a network. A relevant question is, for a given
rearrangeable property, which switch has the minimum number of
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crosspoints? This problem has recently been solved by Chung.! How-
ever, in our networks, we will stick to the more traditional switches
for their engineering feasibility and for ease of comparisons with
existing networks. Consider a switch with n input links and m output
links. It is called a triangular switch if there is a crosspoint between
every pair of links, input or output. Therefore, a triangular switch
has [(n + m)(n + m — 1)]/2 crosspoints and is clearly one-sided
rearrangeable. The switch is called a rectangular switch if there is a
crosspoint between every input link and every output link.

A rectangular switch has n X m crosspoints and is two-sided re-
arrangeable. The switch is called a trapezoidal switch if there is a
crosspoint between every pair of links with at least one of the links be-
longing to a fixed side. A trapezoidal switch either has n(n — 1)/2 + nm
or m(m — 1)/2 + nm crosspoints and is either input-mixed or output-
mixed rearrangeable, depending on which side is the fixed side. Note
that an n X m rectangular switch is in fact input-mixed rearrangeable
if m = n — 1. This is because any pair of input links can be connected
through an output link, and there are always enough output links to
do it. While the existing networks always use trapezoidal switches
when mixed-rearrangeable switches are needed, we will use rectangular
switches to save crosspoints when the condition m = n — 1 for input-
mixed and n = m — 1 for output-mixed is met.

In every network we discuss in this paper, », and », are always
assumed to be two-sided rearrangeable (or stronger). Hence, two
terminals from two distinet »; and/or », can be connected if and only
if their corresponding switches »;(v,) can be connected. Thus, we can
redefine a request as a pair of », and/or », and an assignment as a
collection of requests where each »1; or v,; can appear at most n times.
If a request is (v1i, ¥15) OF (v4j, vs;), then we have to discuss separately
how they ean be connected.

Consider » = C(vy, va, vs, 1, 72, 73, n) shown in Fig. 2. (In our figures,
A represents a one-sided rearrangeable »;, [] a two-sided rearrangeable

nxry . . ryXry M . rp%n

nxr, E . ryxrgy . E fpxn

-

Fig. 2—Ordinary three-stage Clos network.
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viy, 1] an input-mixed rearrangeable »;, and [N\ an output-mixed
rearrangeable v;. The number of input links and output links will be
shown inside these figures.)

Theorem 1: (See Slepian,? Duguid,® and Bene&.4) » is two-sided rearrange-
able if and only if r» = n.

Theorem 2:

=~min {rs/n, 1}, for ¢ > ro;
B,(c)/c =1, for ¢ £ 7.

Proof: Actually, we will prove an exact expression for R,(c)/c. We need
only consider the case n > 7, and ¢ > r; since the other cases are
trivial. Consider any assignment of size ¢. Let ¢ = pn + ¢ where
0 = ¢ < n. We can assume that the r, real v; are embedded in a set
of n imaginary »;. Then by Theorem 1, all requests can be simul-
taneously connected by the nv.. Rank the n »; according to the number
of calls they carry and select the r; v, with the highest ranks to be the
re real ones. They must carry a total number of calls not less than
min {rs, ¢} X (p + 1) + max {r. — ¢, 0} X p. On the other hand,
when all the requests in an assignment involve only a few v, say as
few as possible, then every v; carries essentially the same number of
calls, differing at most by one. Hence,

(rap + @)/ (np + q), if r: 2 gq;
(rep + 1)/ (np + @), if 12 < q.

Theorem 2 gives a good approximation to this when ¢ and »7p are
large relative to g.

To eompute the number of crosspoints of a network, we always
make the simplifying assumptions that r; = r3 = n and all »; are
nonblocking switches so that we can easily compare the various net-
works. Under these assumptions, then, the current network for ro = n
has 3n® crosspoints.

Next consider vs = C (1, ve, v3, 71, 72, 73, n) shown in Fig. 3a.

R.(e)/c =

Theorem 3:%=7 y is one-sided rearrangeable if and only if r« = | 3n/2,
where | 2| 1s, as usual, the integer part of z.

Theorem 4:

~ 3 - 3” .
Ro(0)/c =~ min {12/l§J,1}, for ¢ > ry;

=1, for ¢ £ rs.

Proof: Again, we need only consider the case [3n/2| > rs and ¢ > ra.
The proof that R,(c)/c = rs/[3n/2] uses a similar argument to that
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Fig. 3—Mixed three-stage Clos networks.

in the proof of Theorem 2. To prove the reverse inequality, label all
the v, and »s by the numbers 1 to r; + rs. Consider the | 3n/2 ] requests,
(1,2), --+, (1,2), ([n/2] of them),
(11 3): Ty (1? 3)1 (Ln/z_l of them):
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No two of them can be carried by the same »,, since otherwise the
two will share a link, Consider an assignment whose requests can be
partitioned into sets of | 3n/2 ] requests of the above type and a re-
mainder set which is a subset of the above type of | 3n/2] requests.
Then the number of calls carried by each v, can differ at most by one.
Hence, R,(c)/c < ry/|3n/2] + (a constant)/c = ry/[ 3n/2]. The proof
is completed.

Under the simplifying assumptions previously stated, the number
of crosspoints for this network for r» = [ 3n/2] is 7n®. Note that this
compares favorably with the one-sided network® obtained from a two-
sided rearrangeable network where both sides are 4 + ©. Such a
network needs 12n° crosspoints. It is also better than the one obtained
by joining three two-sided networks together, the first having 4 in
both sides, the second having © in both sides, and the third having 4
in one side and © the other. Such a network needs 9n3 crosspoints.

We can easily obtain an input-mixed rearrangeable network from
the above one-sided rearrangeable network by changing »» from one-
sided rearrangeable to input-mixed rearrangeable and »; from output-
mixed rearrangeable to two-sided rearrangeable (Fig. 3b). Let » be the
network shown in Fig. 3b.

Theorem &:

R,(c)/c gmin{rz/l?J,l}, for ¢ > 7y,

=1, for ¢ < ra.

Proof: The proof is similar to the proofs for Theorems 3 and 4.

For rs = 3n/2, this network has (23/4)n® crosspoints. However, we
can also obtain an input-mixed rearrangeable network by joining two
two-sided rearrangeable networks together; one is (4, ©)-two-sided
and the other has g in both sides. Such a network needs 6n? crosspoints.

lll. A NEW INPUT-MIXED REARRANGEABLE NETWORK

Consider » = C(vy, va, vs, 71, 72, 73, n) shown in Fig. 3c.
Theorem 6: v is input-mixed rearrangeable if

() ra = n,
(#7) (re — D)y = nry.

Proof: We first explain how a request is connected in this network. A
(v1i, vs;) request is still connected through some »» which has an idle
link to »;; and an idle link to »3; just as is done in the networks of
Section II. But a (v14, »1;) request cannot be connected in this manner
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since g cannot connect two input links. Instead, we will connect both
vi; and »y; to some vz and then use the input-mixed rearrangeable
property of »; to complete the connection. One question is whether
there are enough input links of v; to accommodate all (vy, »1) requests.
Now each (v, vs) request takes up one input link of », and one of »s,
and each (v, 1) request takes up two input links of »; and two of »s.
Hence, regardless of the distribution of (vy, 1) requests relative to the
(v1, vs) requests, the maximum number of »; input links needed is,
except for a minor correction, the maximum number of »; input links
available, which is nr,. The minor correction is because each (vi, »1)
request takes up a pair of »; input links from the same »;. Hence,
occasionally, a vz input link may be wasted since it has no partner.
Discounting one input link from each v;, we obtain condition (4%).

If condition (i%) is satisfied, then each (vy; vy;) request can be re-
placed by two requests (v1;, »s:) and (v1j, vsx). Hence, an input assign-
ment is turned into a two-sided assignment. The requirement that each
v3: must appear no more than n times is irrelevant here because the
connection of (vy;, vsr) does not involve any output links of va:. By
Theorem 1, the derived two-sided assignment is rearrangeable if r, = n.
Theorem 6 is proved.

If r; = 73, then r; = n + 1 satisfies both conditions of Theorem 6.
Furthermore, since the size is right, we can use rectangular switches
for vs for mixed-rearrangeable property. This network has 3n* + 3n*
crosspoints (under the simplifying assumptions) as compared to
(23/4)n? for the input-mixed rearrangeable network in Section II.

Since a (vy;, »1;) Tequest takes twice as many links to connect as a
(v11, v3;) Tequest, one might suspect that the blocking probability for
the former request is much larger. This is not necessarily true, however,
since there are only r; distinct connecting paths of two links for a
(v1i, v3;) Tequest but (3)r; paths of four links for a (v1; »1;) request.

Theorem 7: Let v be the network in Theorem 6. Then

max {2¢ — nry, 0} + (ra — Drs
2¢

R.(c)/c =2 min [1, r_?:} X min {1,

Proof: For the time being, suppose r; = n. Consider any assignment
of size ¢ and let u be the number of (v;, vs)-type requests in it. Then
u = max {2¢ — nry, 0} since u 4+ 2(c — u) = 2¢ — u input links of »
are required while only nr; are available. If there are not enough input
links of »; to take care of all ¢ requests, then priority should be given
to (v1, v3) type requests to maximize the number of requests connected.
The priority is due to the fact that a (v;, vs) request needs only one
input link of »s while a (v5, »1) request needs two. For u = rars, the
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maximum number of requests connectable is ryrg; for u < rars, the
maximum is approximately
(re — Urs —u _ u+ (r2 — 1)rs
2 2

The worst case oceurs when % is at its minimum, i.e., © = max
X {2¢ — nry, 0}. But still the network guarantees to connect at least
1 [max (2c — nry, 0} + (r: — 1)r5] requests. Now look at the dis-
tribution of these calls in the va. If 72 < n, seleet the rowe that carry
the most calls. In this way, we obtain Theorem 7.

u + < Tors.

Corollary : v is tnpul-mizved c-rearrangeable if r» = n and either

(?‘2 - 1)7‘3
2

(re — D)ry >
2 = 2

IIA

c c=
IV. A NEW ONE-SIDED REARRANGEABLE NETWORK

Consider v = C(vy, ve, v3, 71, 72, T3, n), Where »; and »; are input-
and output-mixed rearrangeable and »; is one-sided rearrangeable.
Also assume n and r. are even. We construct a »' from » by inserting
something between the pair (vs i1, v2,2:) foreachs = 1, - - -, rs/2 (see
Fig. 4) to provide some limited access between links of vs,2;_; and links
of vs,2:. One way to do this is to insert two two-sided rearrangeable
networks i, and u;» between vs iy and vz, The input links of u;
are the extensions of the n links of »s.2,_1 and the output links of ;s
are the extensions of the n links of v2,2:. 1 has 3(r1 + 73) output links
that become the input links of w;». Thus any link of v2,i—1 can seize
an output link of u;; and then connect to any link of vs,2; in pia. Of
course, 1(r; + ;) such connections can be made simultaneously.

V22i-1 Vazi
==
_ | __ |
I T I I
: r,o+r , | ry,

I D I I I
1 T r1r— | T~ 1
| — . |
| ] |
| ! ! - r1+l'3 I

3
| | | I
- 1 - _ _
Hi HKi2

Fig. 4—One-sided rearrangeable networks.
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Theorem 8 v is one-sided rearrangeable if and only if ro = n.

Proof: For a given assignment, define an assignment graph by taking
all », and »; as vertices and every request as an edge. We can augment
the assignment graph to become a regular graph of degree n by adding
suitable edges to it. By a theorem of Petersen (see Refs. 9 or 10), a
regular graph of even degree is 2-factorable; i.e., the assignment graph
can be decomposed into (n/2) 2-factors, where a 2-factor is a subgraph
in which every vertex is of degree 2. Hence, a 2-factor consists of a set
of disjoint circuits. Now any circuit of length 1 represents a request
from two terminals of the same switch. We can connect them within
that switch because of its mixed-rearrangeable property. Aside from
that, we can partition all edges in an odd circuit into three sets such
that edges in the same set are all disjoint; and we can partition all
edges in an even circuit into two such sets. Since all circuits in a 2-factor
are disjoint, we can combine those sets into three large sets A1, A2, As,
such that the edges in each large set are all disjoint. As each edge
represents a request, all the requests in A, can be connected through,
say, va1, since they are all disjoint (we can ignore those edges which
are augmented to the assignment graph). Similarly, all the requests
in A, can be connected through vss. For a request in As, say (z, y), if
(z, y) is disjoint with every request in 4,(4.), then we can connect
it through vei(vs). Otherwise, suppose z has appeared in A4, and y
in A,. Then we connect z to vss and y to »2; and then connect them
through w11 and p1s. We do this for every request in As. Therefore, all
requests in a 2-factor can be connected by a pair of v;. There are n/2
2-factors; hence, n/2 pairs of »s will suffice. If we have less than n/2
pairs of »s, then there is no way to handle the 3n/2 requests given in
the proof of Theorem 4. Hence, Theorem 8 is proved.

Theorem 9:

Emin{r—z,l}, for c>%,

n 2

R,(c)/c 3
=1, for ¢ = g

Proof : Omitted.
For ry = n, this network has (16/3)n® crosspoints versus the 7n®
for the standard one-sided rearrangeable network.

V. A c-REARRANGEABILITY THEOREM

We have seen that the c-rearrangeability functions of many net-
works discussed in previous sections are such that R,(c)/c = e, a
constant, over most of the range of ¢. Consider v = C(v1, vz, v3, Ty
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T2, 73, 7) such that R,,(c)/c = a; for two-sided assignment. What ean
we say about R,(c) for two-sided assignment? If the blocking in »;,
vz, v3 and the blocking due to the structure of » all act independently,
then we should have

T9 .
"max {a, az} X n

R.(c) = ajosz min {1

The reason for the last term is because at most max {ay, as} X n
requests from the same switch can get through to the second stage.
However, we show that the blocking in », and the blocking in »; can
be coordinated so that the requests blocked in one stage form a subset
of the requests blocked in the other stage. Without loss of generality,
suppose e; = aj. Then

Theorem 10:
Ry(C) g d1a1miﬂ [l, ﬁ ] '

on
Proof: For any given assignment, consider its bipartite assignment
graph (. Let d; be the degree of vertex <. We want to find a subgraph
G’ such that the degree of vertex » in ' is d; = oad; (treating it as an
integer). Then G’ is the set of requests that will get through both »;
and v;.

Let V, be the set of vertices corresponding to v, and V; the set
corresponding to v;. Let d(X) denote the sum of degrees over all
vertices of X in @, and define d'(X) similarly for X in G’. Finally, let
dy(X) denote the degree sum of X in G when the set ¥ is deleted from
G. Then a theorem of Gale on network flows has the following
interpretation.!?

Gale’s Theorem : G’ exists if and only if there do not exist two sets S C V,
T C V3 such that either

d'(8) > d'(T) + dr(S),
or
d'(T) > d'(8) + dg(T).

In our case, d'(S) = @:d(S) and d'(T) = a,d(T). Without loss of
generality, suppose d(S) = d(T). Then the second inequality in Gale's
theorem certainly cannot hold. To check the first, note that

dr(8) = d(8) — d(T) = 01d(8) — a:d(T) = d'(S) — d'(T).

Hence, the first inequality also does not hold. We conclude that G
exists and Theorem 10 is proved.

When the involved numbers are large, the discrepancy caused by
assuming «,d; an integer is certainly negligible.
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