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We present an exact description of scattering of an incident plane wave
with TE-polarization at an interface between two dieleciric media that is
deformed by a grating with triangularly shaped teeth. The theory employs
an expansion th plane waves outside of the grating region and describes
the field in the grating region as a double Fourier series expansion. The
results of this theory are represented graphically. That blazing provides
substantial discrimination of the scattering process in favor of beams
scaltered into one or the other of the two media ts shown. The exact theory
18 used to check an approximation for the effective reflection plane that is
useful for future applications of the theory to scattering by gratings of
guided waves in thin-film waveguides.

I. INTRODUCTION

This study of dielectric sawtooth gratings with deep grooves serves
several purposes. Its principal aim is to investigate a particular analyti-
cal method for describing deep gratings with the view of applying it
(at a later time) to waveguide-grating couplers. However, even without
the added complication of one more dielectric interface that charac-
terizes the waveguide problem, an examination of the response of
dielectric gratings with deep grooves to a plane wave, incident at an
angle that would lead to total internal reflection at the corresponding
smooth surface, can teach us much about the expected behavior of
waveguide-grating couplers.

The literature on the electromagnetic theory of diffraction gratings
is vast. However, most papers are limited to discussions of metallic
gratings,!? and only a few papers mention dielectric gratings with
sawtooth-shaped grooves and plane waves incident at angles larger
than the eritical angle for total internal reflection.? When it comes to
providing numerical information for a given particular case, each
worker must write a computer program to solve the problem at hand,
since no publication can cover all conceivable cases in graphical form.
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Developing the computer program for the study of deep gratings was
one of the aims of this work.

Our method for treating Te-wave interaction with deep dielectric
sawtooth gratings is basically simple and exact. We express the field
above and below the grating as a series of plane waves using the periodic-
ity imposed by the grating. In the grating region, the field is expressed
as a double Fourier series expansion whose terms are not individually
solutions of the wave equation. The unknown coefficients entering the
various series expansions are determined by the requirement that the
field in the grating region must be a solution of the wave equation and
by enforcing the proper boundary conditions along two mathematical
planes just above and below the grating region. By varying the number
of terms used in the series expansions, it was found that the series
converge very well, and good accuracy is obtained with relatively few
terms. However, the required number of terms increases with increasing
depth of the sawtooth grating.

The simple grating problem described here has the advantage that
only an inhomogeneous equation system needs to be solved. Since the
problem does not contain unknown eigenvalues, no search for suitable
eigenvalue conditions is required. The exact solution of the correspond-
ing waveguide problem would lead to an eigenvalue equation. A very
large determinant with complex coefficients would have to be forced
to vanish by proper choice of the propagation constant of the leaky
wave inside the guide, one of whose interfaces between core and
cladding is formed by the grating. The simple grating furnishes im-
portant information about the phase shift suffered by the reflected
plane waves. This information can be used to estimate the eigenvalues
of the modes inside of the waveguide with a grating on one of its
interfaces. This information is useful for finding approximate solutions
of the waveguide grating problem without the need for solving a
costly and time-consuming eigenvalue problem.

For shallow gratings, our theory is in complete agreement with
perturbation theory. Some of the features of deeper gratings with
groove depth on the order of the wavelength can be explained by
geometrical optics coupled with simple grating conditions. The ray
paths in deep gratings (groove depth larger than the wavelength) are
so complicated that an explanation of maxima or minima in terms of
geometrical optics fails.

The sawtooth-shaped interface deformation is a blazed grating. It
has the advantage that its shape can be adjusted to enhance certain
grating orders. In particular, it is possible to let a high grating order
predominate over lower orders. Furthermore, the grating shape can
be used to favor scattering into the air space above the grating or, cor-

12906 THE BELL SYSTEM TECHNICAL JOURNAL, NOVEMBER 1976



Fig. 1—Triangularly shaped dielectric grating as an interface between the two
media with index n, and ns. (This figure defines grating parameters and incident and
scattered beams.)

respondingly, to favor scattering down into the higher dielectric region,
the substrate, from which the incident wave impinged on the grating.
This preferential scattering behavior is very useful for the construction
of grating couplers. Additional grating responses, other than those used
for the coupling beam, decrease the overall efficiency of a grating
coupler. If unwanted grating lobes can be suppressed by properly
shaping the grating teeth, higher coupling efficiencies are obtainable.
Gratings that show strong asymmetry in favor of a certain grating
order provide also high-reflection losses for the zero-order grating lobe
(that would correspond to the guided mode field of a waveguide). The
waveguide mode thus would decay rapidly over a few periods of the
zig-zag path of the guided ray. This means that high-efficiency grating
couplers based on this principle would have to be very short.

1.1 Theory of the dielectric sawtooth grating

Figure 1 shows the geometry of our sawtooth grating. A ray labeled
7 is incident from the medium with refractive index n; on the dielectric
interface with the medium n, whose shape is a sequence of sawteeth.
The specularly reflected beam is labeled 0. Also shown are two scat-
tered beams labeled 1 which escape into the medium with index n.,
(subsequently to be called the air space) and into the medium with
index n; (subsequently to be called the substrate). The grating period
is D; D, is the distance along the base of each sawtooth from its begin-
ning to the point underneath its peak. The grating amplitude is defined
as 2a.

We consider only TeE-waves with the electric field component E, and
the magnetic field components*

$ 2% M)

w, 02

H, = —
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and
_ 1 9K,

H z = w‘uoa (2)
(w and p, are, respectively, the angular frequency of the wave and the
magnetic permeability of vacuum.) The grating is infinitely extended
in y direction, so that all y-derivatives vanish. The field components
E., E,, and H, do not exist. The periodicity of the infinitely extended
(in z direction) grating forces the electromagnetic field to be of the
following form:

Ey = e® | APeins + 3 AngimsegicriDmel  forz <0, (3)

m=—

and

E, = ¢ i CneipmzgiriDime  for x 2 2a. (4)

m=—rw

Since E, must satisfy the wave equation

P8y + Z0 1 wiem, = 0 )
with
k= i_vr = wVesko (6)

(A, = free space wavelength, ¢, = dielectric permittivity of vacuum,
n = m, or ng refractive index of the dielectric medium), the parameters
appearing in (3) and (4) must have the form,

B D I
O D I

A; is the amplitude of the incident wave with propagation constant

and

Bi = nik cos 8. (9)

The term propagation constant is used here in the same sense as in a
waveguide ; it is actually the z component of the plane wave propaga-
tion vector.

Note that the superposition of plane waves (3) and (4) was chosen
so that the traveling parts of the wave move away from the grating
with the exception of the incident wave of amplitude A{? [the time
dependence is understood to be exp (iwt) ]. It is clear that only a small
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number of waves in the field expansions actually propagate in 2 direc-
tion, because almost all terms of the form (7) and (8) are imaginary.
The signs of the imaginary quantities must be chosen, so that the
evanescent fields decay in the direction away from the grating,

om = —1|om|, P = —12|pm]|. (10)

Every term in the expansion (3) and (4) is a solution of the wave
equation, but a similar expansion cannot be written down for the field
in the grating region 0 = 2 = 2a. Instead, we simply use a doubly
infinite Fourier series.

B, = ez Y. Beitugiendm (< g < 2. (11)

n,m=—00

Except for the phase factor exp(—48,z), the field solution is periodic
in z with period D. This periodicity is a very important feature of the
field solution and is imposed by the periodicity of the grating. The
function (11) is also periodic in & direction with period length 2b. This
periodicity is quite arbitrary. It would appear natural to let b = a.
However, this choice of b would force the field to have exactly the same
values at # = 0 and x = 2a, which is physically unreasonable. For
this reason, we must allow b to be arbitrary, but use b > a. As a
practical matter b = v2a has been used for the numerical caleulations
in the hope that this choice would facilitate the convergence of the
series. Clearly, b should not be made too large and, of course, it must
not be smaller than a.

It now remains to determine the expansion coefficients An, Cn,
and B,,. This is accomplished by substituting (11) into the wave
equation (5), multiplying the resulting equation with exp(—iwn 2/b)
exp(—1i2mm z/D) and integrating over z from 0 to D and over x from
0 to 2a. Continuity of the fields at the planes # = 0 and 2 = 2a re-
quires us to force E, and its z-derivative to be continuous at these
planes. After elimination of 4, and €, from the equation systems, we
are left with the following three infinite simultaneous equations:

% _(on+ ) Bunettie = . (12)

n=—w

3 (o’m _ %\n) Bom = 20,495, (13)

n=—wx

n',m’ =

® mn' \?
S W = [() # 8] M| B = 0. 19
6mm+ is Kronecker’s delta symbol. In (12) and (13) m is allowed to be
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any integer, and, similarly, n and m are allowed to be any integer in
(14). The first two equations stem from the boundary conditions,
while (14) expresses the requirement that the field expansion (11)
satisfy the wave equation (5). The three sets of infinite equations (12)
through (14) are used to express B, in terms of A{. The coefficients
No_am—m and M, .- are listed in the Appendix; B, is defined as

2
Bm = Bi — j”m. (15)

The amplitude coefficients A, and Cn are obtained in terms of B.. as
follows:

Am = ( i Bnm) - Aéﬁama- (16)

The power of the incident wave flowing through an element of unit
area parallel to the = direction is given as

To
Pi=g- [AP ]2 (18)
It is convenient to express the power carried away by the scattered
beams in terms of the power of the incident beam. For the grating
orders carrying power into the air space, we obtain the relative power
from
APma _ Pm rcmlz
P, o |An(i)|2'

(19)

Similarly, we obtain the relative power carried into the substrate,

APma U'mlAm|2

P = o 49T =0

Let us close this section with a few remarks about the numerical
solution of the equation systems (12) through (14). As mentioned
above, the terms in the series expansions (3) and (4) represent traveling
as well as evanescent waves. It is clear that all terms corresponding to
traveling waves must be included in the truncated series expansions
used for approximate numerical solutions of the problem. According
to (7), propagating grating orders are associated with m values in the
interval

D D
(5 Gi—mi)| <m<[m@mr+sr] - @

The label “int”’ is a reminder that the integer, whose absolute value is
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just smaller than the value inside of the bracket, must be taken. Those
terms in the series expansion (3) whose m-values lie outside the interval
(21) belong to evanescent waves that do not carry away power. As
a practical matter, we found that sufficient accuracy is obtained if just
one—or at most a few—evanescent waves on each side of the interval
(21) are included in the series expansions. The terms in the expansion
(11) cannot be interpreted as traveling or evanescent waves. The sum
over m is, of course, intimately related to the m-summations in (3)
and (4), and an equal number of terms must be taken in all m-summa-
tions. We found that the n-summation in (11) converges more slowly,
so that usually more terms are required in this series. In all numerical
calculations whose discussions follow, we never used more than 11
terms in the n-summation, and often as few as 7 terms proved to be
sufficient, if the grating amplitude remained below 2a/\, = 0.5. The
total number of unknowns B, in the equation system (12) through
(14) is, of course, the product of the number of terms in both series
expansions, n and m. For large values of 2a, for example for 2a/)\, = 2,
we used 66 unknowns B,., and for 2a/\, < 0.5, 36 unknowns seemed
to be sufficient.

The fact that the equations stemming from the boundary conditions
(12) and (13) must be included in the equation system to be solved
prevents us from using an equal number of terms in the #’, m’ summa-
tions of (14) and for the ““free’’ indices » and m. Obviously, the number
of m-values [the number of equations of the type (14)] that are used
must be two less than the number of terms under the m-summation
sign.

1.2 Geomeirical optics considerations

Figure 1 shows the principal function of the diffraction grating. The
incident plane wave breaks up into several components after striking
the dielectric interface. The strongest wave leaving the grating region
is usually the zero-order grating response that leaves in a direction
corresponding to the specularly reflected beam at an ideal, smooth
interface. Throughout this discussion, we assume that the incident
.wave strikes the interface at an angle 8, that remains below the critical
angle for total internal reflection at the unperturbed, smooth boundary.
In addition to the incident and specularly reflected plane waves, a
discrete number of scattered plane waves are generated. These waves
emerge in directions that are defined by the condition that all scattered
waves interfere constructively. The condition for such constructive
interference is expressed by the relation

B = B — 2 m. (22)
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The B; and 8., are the z-components of the propagation vectors of the
incident and scattered waves; m is a positive or negative integer. The
angles 8, of scattered waves in medium 1 are obtained from (9) and
(22) as follows,

??,110

6. = arccos ('B—"‘) , (23)
and the corresponding scattering angles in medium 2 are

¢m = arccos ( Bm ) (24)

N2

The integer m defines the grating orders of the scattered beams. The
direction of the specularly scattered plane-wave is obtained by using
m = 0, and m = 41 gives the first grating orders, etc.

The intensities of the scattered beams decrease with increasing
grating order, if the grating amplitude 2¢ is much smaller than the
wavelength. However, for deep gratings whose amplitude is comparable
to, or larger than, the wavelength, higher grating orders may well
predominate over lower grating orders. In particular, it is possible
to predict maxima of scattered waves based on geometric optics con-
siderations. Such maxima occur when the direction of a grating lobe
defined by (23) or (24) coincides with the condition of specular reflec-
tion of the incident beam on one of the facets of the grating teeth.

Consider the situation shown in Fig. 2. Geometrical optics allow us
to calculate the angle 6, of the reflected wave as

O = 26\:2 + @.. (25)

If 6,, simultaneously satisfies (23), a strong grating response may be

o

Fig. 2—Specular reflection from grating faces can be used to explain maxima of
the grating lobes.
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Fig. 3—Grating lobes in air can be enhanced by specular reflection from the grating
teeth as shown.

expected. From (23) and (25), we find the following condition for as,

2
as = L arccos Bi — D ™| — arccos Bi \1. (26)
2 _— nik
nik
The grating angle a, is defined in terms of the other grating parameters
as:

2a
0y = arctan (m)' (27)

Maxima for grating responses into the air space can occur in many
different ways. One possibility is depicted in Fig. 3. The geometric
opties condition for 8, is computed in several steps. The refracted
angle 6, follows from Snell’s law,

6, = arccos (%1 cos (a2 + B,,)) — o, (28)
2
and the angle of the mth grating response in air follows from
) 2a ,
¢m = 207 — 6, = 2 arctan (-D—) — B, (29)
1

The conditions that must be satisfied by the grating parameters to
achieve equality of (24) and (29) can be found by an iterative
calculation.

Geometric optics conditions leading to maxima of the grating re-
sponse in air can be complicated in many ways. For example, the ray
escaping into the air space shown in Fig. 3 may be intercepted by the
grating tooth through which it just passed and may suffer further
refraction. Another possibility is depicted in Fig. 4. The fact that many
geometric opties conditions exist that may enhance the grating re-
sponse in air makes it difficult to account for the maxima of the air
lobes of deep gratings.
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Fig. 4—The incident ray is bent back into the waveguide by successive refraction
at the grating teeth. Scattering takes place at every tooth and may be enhanced if
the specular reflection condition is satisfied.

Figure 4 not only shows how a ray may escape through the grating
following a complicated path, but it also indicates that the unscattered
portion of the ray is diffracted back into medium 1 following a path
that takes it inside of the grating. This geometric optics picture sug-
gests that the effective penetration depth of the reflected light field
can be estimated by geometric optics methods. For this purpose, we
assume that the grating acts on the refracted ray as a graded-index
medium with an index distribution

2a — x
2a

m(z) = n + oo nd (30)
We can now use the wks method® to determine the phase of the wave
that penetrates into the grating region. It is well-known that the wave
penetrates into the graded-index medium until it reaches the turning
point of ray optics at z = ¢. The phase of the reflected wave taken at
the reference plane x = 0 is given by?®

¢ 8aq? T
= 7 2 _ @y — ¥ = %% T,
¢ 2 j; [n(z)k:l lai dx 2 3(”’% — ﬂg)kﬂ 2 (31)
We define an effective reference plane by assuming that the medium
with index 7, reaches into the grating region to a depth & = dupp. The
phase of a wave reflected at this reference plane (that is assumed to
consist of the index discontinuity from n; to ns) is

¢ = 20,d.,, — 2 arctan i (32)

To
with
v = (8% — ndk?)L (33)
The first term in (32) accounts for the phase shift caused by the round
trip from x = 0 to * = d.pp, and the second term is the additional

phase shift on reflection from the index discontinuity.® By equating
(31) to (32), we obtain the following expression for the depth of the
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effective reference surface inside of the grating:

4ac? 1 ( T

30—l e \d a,rcta.nZ—n)- (34)

dﬂ?]’ = 4

If the tangent of the phase angle ¢ of the reflected wave is known, for
example, from the numerical solution of the grating problem, the
effective reference plane can be calculated from the expression

2 arctan - — ¥ =+ pr
To

d, = %, . (35)

Note that the approximation (34) holds only for gratings that are
sufficiently thick so that the turning point of the rays is located deep
enough inside the grating, so that the evanescent field beyond the
turning point has decayed to insignificant values by the time it reaches
the top of the grating. Furthermore, (34) is certain to represent the
effective reflection plane better as the grating period is short. Numerical
comparisons of the two expressions (34) and (35) will be presented in
the next section.

1.3 Examples and numerical evaluation

The boundary between the two media with index n; and n. is
described by the function

ki Oé éDl,

fz) = (36)
Di—GDI(D—z) Di<z2D,

n

which is periodic in z with period D. Its Fourier coefficients are:

aD2e—i*m(DyD)

_ . D,
on = TSIty (D — Dy O (mn ﬁ) (37)

This Fourier coefficient is important, because for the first order of
perturbation theory*? the grating responses are proportional to |¢,|%

In the remainder of this section we present the results of numerical
evaluations of our theory in graphical form. Figure 5a shows the
relative power that is scattered into the air space above the grating.
The incident plane wave always arrives at an angle that is small enough
(measured with respect to the plane interface) to ensure total internal
reflection at the smooth interface between the two media. In Figs. 5
through 9, we use B\, = 8.5. The grating period was chosen as
D = 1.3\, resulting in three grating lobes labeled m = 1, 2, and 3.
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Fig. 5—Relative scattered power for the three grating lobes for D/x, = 1.3,
B\, = 8.5, and ny = 1.5, n, = 1.0, and for a grating amplitude of 2a = 0.1X..
(a) Shows the grating responses in air as functions of the grating shape factor D./D.
(b) Shows the grating lobes in the substrate (index n,).

The refractive index of the medium below the grating (called the
substrate) is n; = 1.5, and the medium above the grating is assumed
to be vacuum (or air) with ns = 1.0. The grating amplitude in Fig. 5a
and b is 2¢ = 0.1A,. This grating amplitude is already too large for
perturbation theory to be accurate, but the zeros (or minima) and
maxima of the grating responses can still be identified with the help
of (37). Consider, for example, the second-order grating lobe with
m = 2. First-order perturbation theory predicts that it has zero power
at Dy/D = 0.5. Figure 5a for the grating responses in air shows that
the zero of the second-order grating lobe is indeed very close to this
value. The corresponding minimum (the power does not actually go
to zero) for the substrate beam with m = 2 is, according to Fig. 5b,
located at Di/D = 0.4. Its position is shifted from the value that
perturbation theory would predict, but the reason for the occurence
of this minimum is still clearly discernible. The zeros for the third-
order grating lobe, m = 3, would be located at D)/D = § and
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D,/D = %, if perturbation theory would apply. Correspondingly,
Fig. 5a and b show that the zeros of the third-order grating responses
are indeed close to these values.

Another interesting relationship results if we compare the power
carried by the beams at D:/D = 1. According to perturbation theory,
we should find that the power ratio between the grating lobes m = 1
and m = 2 is 4, while the ratio between the lobes with m = 1 and
m = 3 should be 9. According to Fig. 5a these power ratios are 4 and
8.8, respectively. The substrate beams shown in Fig. 5b give ratios of
3.8 and 1.8, respectively. The third-order grating response in the
substrate is thus already considerably larger than perturbation theory
would predict.

Figure 6a and b prove that all resemblance to perturbation theory
is lost, if we increase the grating amplitude to 2a = 0.5\,. According
to perturbation theory, an increase of the grating amplitude by a
factor of 5 should increase the scattered power by a factor of 25. No

10°
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Fig. 6—Similar to Iig. 5a and b, except that the grating amplitude is 2a = 0.5\,.
(Arrows indicate the position of scattering enhancement by specular reflection from

grating teeth.)
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Fig. 7—Similar to Fig. 5a and b with 2a = 2.0)..

such increase is apparent for the first-grating order, nor is it indeed
possible since the power in the scattered beams cannot exceed the
input power. However, it is now possible to identify certain features
of the curves by using geometrical optics. The arrows in Fig. 6a indicate
the position where maxima of the grating lobes would be expected
because of a coincidence of the direction of the grating lobes with
specular reflection from the grating faces. The position of the arrows
in Fig. 6a was computed from (24), (27), (28), and (29). Even though
the agreement is not perfect, there is a strong indication that the maxima
of the grating responses are indeed caused by specular reflection at the
grating faces. The position of the arrows in Fig. 6b was computed from
(23), (26), and (27). For the substrate lobes, the condition of specular
reflection from the grating faces agrees very well with the actually
observed grating maxima.

These figures show, furthermore, that very good discrimination be-
tween different grating responses can be obtained by a blazed grating.
Consider a grating with D;/D = 1. The first-order grating lobe in air
carries 0.12 relative power while the corresponding substrate beam
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carries only 0.02 relative power. The power of the higher-order grating
lobes is less than one-third of the power in the first-order grating lobes.
This observation has important consequences for grating couplers with
blazed gratings, since loss of power to unwanted grating lobes can
clearly be minimized. We shall see that even better results are obtain-
able with gratings that have only first-order grating lobes.

Finally, we let the grating amplitude grow to 2a = 2\, and show in
Fig. 7a and b how the third-order grating lobe now dominates the
grating response. The maxima and minima of these curves cannot
easily be identified by ray tracing because of the many possible ray
paths. However, the maximum at D,/D = 1 of the curve with m = 3
in Fig. 7a seems to be caused by the specular reflection indicated in
Fig. 4. The accuracy of the curves in Fig. 7a and % is not as high as that
of the other figures. Whereas 42 simultaneous equations were sufficient
to solve the problem with sufficient accuracy for 2a = 0.5\, 66 simul-
taneous equations were used to produce Fig. 7a and b. Computing
time increases with the third power of the equation number. The ac-
curacy of the curves in Fig. 6a and b is better than 10 percent, but the
accuracy of the curves in Fig. 7a and b is poorer. However, these
curves are certainly correct to order of magnitude and have the cor-
rect shapes.

10°

L
\

\
SUBSTRATE BEAM
/

AIR BEAM

i -
— -
AP, | } P -~
[ P
7
-
102
- 2a/Ag=05 D/Ap=05 [B;A,=85
| n, =15 ny = 1.0
1073 ] | | |
0 0.2 0.4 06 0.8 1.0
D,/D

Fig. 8—Grating with only first order lobes. D/A, = 0.5, 8\, = 8.5, n, = 1.5,
ng = 1.0, and 2a/A, = 0.5. The dotted line represents the relative scattered power in

air; the solid lines represent the power in the substrate.
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To gain insight in the beneficial effects of blazed gratings, a grating
with only first-order lobes, D/A, = 0.5, 8:A, = 8.5, and an amplitude
of 2a = 0.5\, was investigated. The results are plotted in Fig. 8. It is
apparent that power is scattered predominantly into the substrate
(solid line), if Dy/D is small and predominantly into air (dotted line)
if D,/D approaches unity. Figure 9 shows the ratio of air-to-substrate
beam power for D;/D = 1 as a function of the grating amplitude 2a.
Also shown in this figure is the power-reflection coefficient of the
specularly reflected component; that is, the zero-order beam in the
substrate. As the grating becomes deeper, the power discrimination
between air and substrate beams becomes better, but the power re-
flection coefficient of the specular-beam component becomes lower. If
we apply this situation to waveguide geometry, the incident plane wave
and the reflected wave with m = 0 would both correspond to the guided
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Fig. 9—Ratio of the powers AP,/AP, that are scattered into air and substrate and
also the power reflection coefficient R of the zero-order beam in the substrate as
functions of the normalized grating depth 2a/A.. It is D/A, = 0.5, B, = 8.5,
DI/D = 1.0, n = 1.5, and Mng = 1.0.
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Fig. 10—Normalized scattered power into air (dotted line) and substrate (solid
lines) for a grating with n, = 3.5, ny = 1.0, D/A, = 0.26, D,/D = 1.0, and B\,
= 19.83. The arrows indicate the position of points where specular reflection from the
grating teeth coincides with the grating condition.

mode. The power loss on reflection expresses the mode attenuation per
“bounce.” A grating with good power discrimination between air and
substrate beams suffers very high scattering losses.

Figures 10 and 11 complete our investigation of the scattering
properties of blazed gratings with large-grating amplitudes. These
figures apply to a substrate with high-refractive index, n; = 3.5. The
gratings have Dy/D = 1 in Fig. 10 and D,/D = 0 in Fig. 11. In both
figures we used D/\, = 0.26 and 8\, = 19.83. These figures show the
scattered power as functions of the grating amplitude. It is obvious
that the scattering levels off with increasing grating amplitude, so
that it does not help to increase the grating depth beyond a certain
point. However, the discrimination between air and substrate beams is
affected by the grating depth. The arrows indicate points where specular
reflection from the grating faces should enhance the scattered power.
Except for obvious interference effects by some other ray path, it seems
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Fig. 11—Similar to Fig. 10 with D,/D = 0.

that the maxima tend to be located where geometrical optics would
prediet.

We have extracted information about the effective reflection plane
of the incident and specularly reflected plane waves. The theory of the
effective reflection plane was presented in eqgs. (34) and (35). Figure
12 shows the position d (normalized with respect to \,) of the effective
reflection plane measured from the lower edge of the grating at x = 0.
We assume that the phase of the zero-order beam in the substrate can
be accounted for by reflection from an effective plane interface of the
two media with index n; and n. located at x = d. The solid lines in
Figs. 12 and 13 are obtained from our exact theory. The dotted curves
represent the results of applying the wkB approximation to a con-
tinuous refractive index distribution as explained in connection with
eq. (34). Figure 12 applies to a long grating period of D/\, = 1.3 and
ny = 1.5, while Fig. 13 was drawn for D/A, = 0.26 and n, = 3.5. For
large grating amplitudes the agreement with the approximate theory
is apparently better for shorter grating periods. It might be expected
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that the approximation would become very good for D/A — 0. Qur
use of the wkB approximation becomes inapplicable to 2 — 0. In
this limit the effective reflection plane is better approximated by d = a.
However, it is clear that the wkBs approximation provides a useful
estimate of the position of the effective reflection plane for deep
gratings. This information is very important for an application of our
theory to an approximate description of scattering by gratings on
dielectric film waveguides.

The final figure, Fig. 14, shows a comparison between first-order
perturbation theory and the exact grating theory. This figure repre-
sents the relative scattered powers in the first-order grating lobe (the
only lobe that propagates in this case) as a function of the grating
amplitude 2a for D/\, = 0.5, B\, = 8.5, n; = 1.5, and np = 1.0, Tt is
interesting to observe that the air beam is actually stronger than first-
order perturbation theory would predict, while the substrate beam is
considerably weaker. It is furthermore of interest that the relative
strength of air to substrate-scattered power is predicted in reverse
order by perturbation theory for large grating amplitudes. Whereas
perturbation theory prediets that more power is scattered into the
substrate than into air, the exact theory predicts just the opposite. At
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Fig. 12—Position d of the effective reflection plane as a function of grating ampli-
tude 2a for D/A, = 1.3, BiA, = 8.5, n, = 1.5, and n, = 1.0. The effective reflection
plane is Bﬁactically independent of D;. The solid line is obtained from the exact
theory while the dotted line was computed from the wks approximation.
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Fig. 13—Similar to Fig. 12 with D/A, = 0.26, 8\, = 19.83, n, = 3.5, and ns = 1.0.

this point our theory is at variance with claims made by Tamir? whose
results are in qualitative agreement with perturbation theory but dis-
agree with our theory.

The arrow in Fig. 14 indicates the point at which the specular reflec-
tion condition from the faces of the grating teeth is satisfied for the
substrate beam as shown in Fig. 2. This point is in good agreement with
the maximum predicted by the exact theory. Perfect agreement cannot
be expected for such small grating amplitudes and short grating
periods, because geometrical optics cannot be expected to hold under
these conditions.

Figure 14 shows that for this type of grating first-order perturbation
theory is reasonably accurate for grating amplitudes below 2a = 0.05)..

Il. CONCLUSION

We have found that our exact treatment of deep dielectric gratings
with triangularly shaped teeth provides a satisfactory method for
computing the scattering problem. Our theory has only been applied
to incident plane waves of TE polarization. The field outside of the
grating region was expanded in a series of plane waves, while the field
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in the grating region was expressed as a double Fourier series expansion.
Numerical evaluation of this scattering theory requires a modest
computational effort. The required number of simultaneous equations
that must be solved increases with increasing grating amplitude. The
computer time increases with the third power of the number of equa-
tions used. For gratings with an amplitude of 2a/A, = 0.1, 28 simul-
taneous equations were used, 42 equations were necessary for 2a/A
=(.5, and 66 equations were used for 2a/)\, = 2.0; however, somewhat
greater accuracy seems desirable for accurate results in this latter case.
We found that blazed dielectric gratings are able to provide good
discrimination of one grating lobe at the expense of other grating re-
sponses. The position of maxima and minima of the grating lobes as
functions of the grating shape can be accounted for by perturbation
theory for small grating amplitudes and by geometrical optics for
larger grating amplitudes. However, multiple ray paths make the
geometrical opties interpretation difficult for very deep gratings.

100
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Fig. 14—Comparison with first-order perturbation theory. D/A, = 0.5, Dy/D =1,
Biho = 8.5, 71 = 1.5, and nz = 1.
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It is possible to define an effective reflection plane for the zero-order
reflected grating lobe. This concept is useful for an approximate de-
scription of grating scattering of guided modes in thin dielectric films.
Once the effective width of the film is known for the guided modes,
scattering losses can approximately be calculated by accounting for
the scattered power by means of a theory that is essentially no more
complicated than the theory presented here. We have shown that the
position of the effective reflection plane can be estimated by means of
the wkB approximation.
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APPENDIX

We list here the coefficients that enter in the equation system (14).
Nn’—n.m’—m

_mi—mdkb [ [ (Di, ., . a,,_

= ol — n) 1 — exp |27 D (m' — m) + 3 (n' —mn)

Dy _ D—-D

.D]_ ' a ;o
5 M —m) + 3@ —mn

X

for n' # n and m’ # m;

n} — ng) kD o @,
Narcnp = (ZHJ;QWz——n)”_a {1 — exp [erE (n" — n):”
k2bD )
+ ;-(%T—_m {nzf — nd exp [?.21r % (n' — n)]l»
for n’ # n;
_ aD3(n} — nd)k? o D1, , ] _
Nu,m"—m = 27l'z(m’ — 7n)2D1(_D _ Dl) exp 12 D (m m) 1

for m’ = m;
b

No,o = ak®D(ni + nj);
2 Dbeirialb) (n'—m)

Mo = m(n' — n)

sin [w% n — n)]

for n’ # n;

Mau.n = 2aD.
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