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A sample function from one of two stable, stationary, independent-
increment processes is observed for a finite time interval. For differing
location, characteristic index, skewness, or scale, the probabilities measures
induced by the process under either hypothesis are found to be mutually
orthogonal. By suitably modifying the Lévy measure associated with each
probability measure, continuous-time tests for differing characteristic
indices, skewness, or scale parameters can be posed as nonsingular detec-
tion problems; distinguishing location remains a singular detection
problem. For the nonsingular problems, the likelihood functional s
Jound explicitly, and performance limitations are determined. As an
alternative approach, the observed sample function is sampled at discrete
time instants over a finite ttme interval, and the performance of log likeli-
hood test is studied as a function of sample spacing with a fized, total
number of observations.

I. INTRODUCTION

In this paper, the work begun in Part I' on discrete-time hypothesis
testing of stable probability measures is extended to continuous time.
In contrast to the earlier work, analytic closed-form expressions are
found for both the log likelihood functional and Chernoff-type upper
and lower bounds on various error probabilities for the log likelihood
test. As in Part I, the singular role played by the gaussian probability
measure within the family of stable probability measures is em-
phasized, both in terms of the form of the log likelihood functional and
the expressions for Chernoff-type bounds on error probabilities. The
earlier work dealt with observing N samples from a stable process
with one of two sets of parameters at time instants At apart; here, we
fix the observation interval at duration T, and allow the number of
observations to become infinite while the spacing between samples
shrinks to zero (N — =, At — 0, such that N-At = T').

Section II briefly reviews some properties of independent-increment

1183



processes and infinitely divisible distributions that were touched on in
Part I. Section III draws on this tutorial material by considering an
elementary hypothesis-testing problem for discriminating between two
Poisson distributions with differing parameters.* Section IV briefly
reviews some work by Newman?? and Newman and the author*® on
calculating log likelihood functionals and Chernoff-type bounds on
error probabilities for the path-space probability measures induced by
independent-increment, processes. These results are used in Section V
to show if one or more of the parameters of the two stable-probability
measures (0 < a < 2) differs, then the two path-space measures are
mutually orthogonal. Section VI develops one remedy to this so-called
singular detection by modifying the Lévy measure of the two distribu-
tions to account for the real physical limitation that the process can
only be observed to within an accuracy intrinsic in all measurement
apparatus. Section VII considers a different but related issue, where
the observed sample function is sampled at discrete time instants over
a finite time interval, and the performance of the log likelihood test is
studied as the sample spacing shrinks to zero; this allows one to trade
off the sample spacing, or the rate at which samples are observed, for
the total duration of the observation interval, or the total number
of samples.’

The results developed here are novel in that one can immediately
ascertain explicit bounds on the performance of the likelihood ratio
test, while it is not clear how to do this after reading the literature
(e.g., see Refs. 6 through 10). The method of proof here relies on
probabilistic semigroup tools or on the explicit nature of the sample
paths of an independent-increment process, and this appears to be
novel when contrasted with such approaches as those referenced above.

Il. MATHEMATICAL PRELIMINARIES *

Let r;(t) (j = 0, 1) be a scalar real-valued random process, with
right continuous sample paths with left-hand limits everywhere de-
fined. More explicitly, let r;(f) be the sum of a deterministic drift
process, 8;f, and N independent Poisson processes (labeled by k,
1 £k £ N), where each Poisson process has rate A\j and hops of
height Aj. In words, 7;(f) has simple jump discontinuities of heights
hjt, 1 < k < N, at random times. The characteristic functional of

* The results in Sections ITI through VI were first announced in Proceedings of
the 13th Annual Allerton Conference, University of Illinois, Champaign-Urbana,
Illinois, October 1-3, 1975, pp. 234-239.

The results in Section VII were first announced in Proceedings of the 1976 Johns
Hopkins Conference on Information Sciences and Systems, Baltimore, Maryland,
March 30-April 2, 1976, pp. 151-154.

¥+ Bee Ref. 1, Section 3.1 and its list of references for much more information.
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r;(t) is easily seen to be (¢ > s),
N
E[eiv[ri(!)—rj(a)]] = exp {(t — S) [iyﬁj + kZ Ajk(gt'vhjl— —_ 1)]} .
=1

If we now pass to the limit of an infinite sum of Poisson processes,
then the jump amplitudes {h;:} take on a continuum of values, and
the characteristic functional becomes (¢ > s)

E[ewtrito—ri@N] = exp { (t — s) | 08; + (e — Ddv;(u) [,
u0

where v is called the Lévy measure associated with the path-
space measure of r; and generalizes the rate parameter set {Aj};
(t — 8) Suea dvi(u) is the expected number of jumps of r; whose
amplitude falls in the set A, in a time interval of duration (¢ — s).
Lévy and Khinchin showed the following remarkable generalization
of this heuristic development:

Theorem (Ref. 11, p. 76): Let r;(t) be an R"™ valued random process
with independent increments. Then

E(exp {0 [r;(t) — r5(s)]}) = exp {(t — 9 [wms,- — 1S

. wTEy
+f“#0 (exp (iwTRy) — 1 — 14 ulhy uTRu) dv,-(u)“ ,

where §; & R", S; 1s an n X n positive semidefinite malriz, and

uTfy
Jowa T ) <

In words, any independent increment is the sum of three independent
processes: (¢) a purely deterministic drift process, completely specified
by 8;, (#4) a purely nondeterministic gaussian process with zero drift
and almost surely continuous sample paths, specified by S; and
(#42) a purely nondeterministic jump process with zero drift, a
sum of independent Poisson processes with different rates and jump
amplitudes, specified by »;.

Historically, the mathematical study of independent increment
processes concentrated first on the purely gaussian case (v; = 0); then
on the purely stable case (S; = 0, dv; = du(8)dr/ret!, 0 < a < 2,
where p is a positive measure on the unit sphere in E* and [r, ] are
polar coordinates in B™); and lastly on the general case, building on
the insight gained in the first two cases.’> A second reason for wishing
to study the gaussian and stable (0 < a < 2) probability measures is
that they arise naturally from studying limiting distributions of
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suitably scaled and translated sums of independent, identically distrib-
uted, random variables in the central limit theorem, and have found
application in modeling noise in communication channels such as
telephone lines.”® These two reasons, as well as others, provide the
major impetus for the study to follow. The richness of the structure
of independent increment processes suggests they may find more and
more application in model building as their properties become more
widely known.

1ll. DISTINGUISHING POISSON PROCESSES

In this section, r;(f) (j = 0, 1) is observed on the interval [0, T),
and is the sum of a purely deterministic drift process (specified by §;)
and a purely nondeterministic Poisson process (specified by rate A; and
jump amplitude k;). What is the log likelihood functional, and what
is its performance?

First, suppose the Poisson process has the same jump amplitude
under either hypothesis, but the drifts differ. Then it is straightforward
to show that the two probability measures Py and Py, associated with
r; under hypothesis H;, are mutually orthogonal, so (z) observing r
over any finite interval, the log likelihood functional takes on the
value + o if H, is true, — « if H, is true, and (z2) the probability of
ineorrectly choosing one hypothesis when the other is true is zero.
The reason for this is clear on physical grounds: the Poisson component
has constant sample functions with simple jump discontinuities at
random times, while the drift process is continuous with constant
slope. Thus, ignoring the jumps in the observation process, the slope
of the continuous part of the sample path is é;, and to discriminate
between the two hypotheses is now trivial. From this point on, there-
fore, it is assumed &; = §, and, without loss of generality, set
5 =0(7=0,1).

What if the Poisson processes have different jump amplitudes? As
s00n AS one or more jumps occur, it is possible to discriminate per-
fectly between the two processes, since the size of the jump h; is
associated with hypotheses H; To avoid this indeterminancy, it is
assumed from this point on hy = he = 1. Thus, P, and P,, the
probability measures associated with Hj;, are mutually absolutely
continuous.

Lemma 1: Let r; be as just defined. Let

r k 1
Pj [r,(——;l; T)

denote the conditional probability of r; at time [(k + 1)/n]T, given r;

r;(%T)], 0=k=n-1;=0,1
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at time (k/n)T. Then [r;(0) =0 as.; 7 =0, 1],

(i) A = ln (r) = hm Z lnP (r).
(77) Hq(P, 1) = lim [Hq (Po, P1) ]
Proof: The proof follows from standard limit theorems (Ref. 7, Lemma

1.1), Q.E.D.
We now explicitly evaluate the limits in Lemma 1:

Proposttion 2: Given the conditions of Lemma 1,

@) A = f{—(al—xﬂwz[m( )]au-m]
=LT[—(A1—AU)dt+ln( )dr,],

where N, is the a.s. finite number of time instants {i:} where
r, changes state.

(#3) Hg(Po, P1) = exp { —=T[gh + (1 — @ho — AN}
Proof:

(¢) Given r; at time (k/n)T, it will remain in that state in the next
time interval (7'/n) with probability 1 — X;T/n + o(T/n), and
will increase by one with probability N (T/n) + o(T/n). The
desired result now follows Lemma 1.

(¢7) If r; changes its state in the next time interval of duration

(T/n), then

r ’ T
H(Py, Py) = n AMANTE 4 o(T/n);

while if r; stays in its present state in the next (T/n) time
units, then

Ho(Poy P = 1~ [gha + (1 — 9N + o(T/n).

Hy(Pg, P1) = exp [— %(q?\l + (1 — @ro — M'?\l’]_“)]
+ o(T/n),
H,(Po, P1) = exp | —T[grh1 + (1 — @)ho — ANTY]},

where the last step follows from Lemma 1.
Q.E.D.

Recall from Part I that a crude bound on the total probability of
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error Pg for a log likelihood ratio test is provided by
fmin (71, 7o) H} = Pr = Nmy, woll,
where ; is the a priori probability hypothesis that j is true. Here,
Hy = exp [— (VA — Vh0)Y/2]

and hence for fixed T, one would like to have the difference in the
square roots of the rates as large as possible.

To gain further insight into H,(Po, P.), we rewrite it as the ex-
pectation of a third Poisson process. Let x,(f) be a Poisson process
with rate A{A3~¢, hops of height +1, and z,(0) = 0 a.s. (intuitively,
the probability measure P, associated with z, has support on the
common support of Py and P;). )

Proposition 3:

Hy(Py, Py) = f dP, exp {— L i D[a:q(t)]dt}

E., (exp {— f: D[ﬂ?a(t)]dt}) ’

D(zg) = gh1+ (1 — @ho — AN

Proof: The proof follows from the definition of D, P;, and z,.
Q.E.D.

To the best of our knowledge, this result is new, and will be generalized
in the following section and elsewhere.*® Its significance lies in the
fact that there exists a large body of results in both the mathematics
and physics literature for studying properties of expectations of
multiplicative functionals of random processes, so called Feynman-Kac
functionals; now we can immediately draw on this body of knowledge.

IV. DISTINGUISHING INDEPENDENT INCREMENT PROCESSES

In this section, the results of Section III are extended to arbitrary
independent increment processes. Here, r. € R is observed over
[0, T), and has one of two sets of parameters (5;, S, »;) (j = 0, 1). As
before, define for 0 < ¢ < 1,

dP;\? [ dPy\'*
dhe(Po, P1) = (Ef) (—d—u—“) du, Py, Po <K u

H, (P, Py) = j dhe(Po, Py,

where H, is the Kakutani product associated with Py, Pi. Next, it is
useful to define a nonnegative measure j,(vo, »1) [ the generalization of
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the point measure at +1 with mass gh\; + (1 — @)Ag — AA}™? in
Section III],

djc(”ﬂr Vl) = qd"'l + (1 - Q)d"ﬂ - dhﬂ(vlh ”1):
To(ve, v1) = j djo(ve, 1),

and J, is nonnegative and may be infinite, since v or »; or both may
not be finite measures. If J, < =, it is convenient to define

r u
6; = 0; —fu#o 1+ ulfy dv;(u),
u .
a!‘ = 9‘51 + (1 - Q)ED _-fu;éo 1+ uhy dJG(Vﬂs Vl)'

Finally, if 8; = 8¢ = 8§, and J, < », a third independent increment
process z,(t) is defined with parameters [8,, S, hq(vo, v1) ]

Theorem 4: For Py and P, not to be mutually orthogonal, it s necessary
and sufficient for the following three conditions to hold:

(2) Jo(wg, v1) <
(%) S1=8 =820
(#72) 8, € range (S).

If these three conditions are satisfied, then

_[" dn — —
(@) A(ry) = L [ f 52 W fm (dny dvo)dt:l
+ 8728 [rr — jr — 3(6 + 1),

where d,r: assigns a point mass at time instants where r; — 7~ = u,
i.e., where r, hops with amplitude u, and j, is the jump process com-
ponent of r,.

(b) H (P, Py) = exp [—-TJ,(vo, vy) — gq(l - q)ﬁfRS‘lé,,]-

Proof (sketched)*: The proof is broken into two parts, one part dealing
with the jump process, the other with the gaussian process (including
drift). The part dealing with the gaussian component is classical,® and
vields conditions (#Z) and (#iz), above. The main method employed
in showing condition (z) for the jump-process component is to ap-
proximate the jump process by a sum of independent Poisson processes
with different rates and jump amplitudes. As more and more Poisson
processes are included in this sum, it can be shown that the approxi-

* From a detailed proof in Ref. 5.
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mation converges weakly to the actual jump process. The Kakutani
inner product of the probability measures of the approximations is
simply the product of the Kakutani inner product associated with
Poisson processes of the same jump amplitude (but possibly different
rates) ; again, the delicate part of the proof is to show this approxi-
mation converges to the actual Kakutani inner product of the path-
space probability measures of the two independent increment processes.

The program is to use this theorem in the remainder of this paper
to exhibit the log likelihood functional and ascertain bounds on its
performance in hypothesis testing for stable processes. Skorokhod™®
has obtained conditions (¢%) and (#44) in Theorem 2, and instead of
condition (i) obtained two conditions which must hold:

f (g — 1)dvwo < and (9 — 1)*dvo <,
lo=1|>%

lo—1 =4

where g = (dvi/dvo); it is easy to show these two requirements are
equivalent to J3(ve, v1) < . Hence, these conditions appear simpler
than those of Skorokhod. Moreover, it is obvious how to use J, to
determine performance limitations, while it is not obvious at first
glance how to apply Skorokhod’s work. Also, the method of proof is
different and may be easier to follow.

Finally, it is instructive to rewrite H, as a Feynman-Kac type of
functional of z,:

Proposition 5: Let z, be a stationary independent increment process
with parameters (8, S, ) as defined previously. Then,

H,(Po, Py) = Eu, [exp (— / ) D(J:,,)dt)]
= fdP, exp [— fDTD(xq)dt] ,

D) = (1 — Qo7*S74/2 + [ die

where

Proof : The proof follows immediately from the definitions of D, x4, Pq.
Q.E.D.

Again, note that

DG = L[mmsan + [ (V2 - ) ae] e

can be immediately used to provide a crude upper and lower bound on
the total probability of error. As in the Poisson case, one desires the
differences in the square roots of the Lévy measures (suitably defined)
as large as possible, for good performance.
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V. DISTINGUISHING STABLE PROCESSES

Let z;(f) (j = 0, 1) be a scalar real-valued representation of a stable
(0 < a < 2), stationary, independent increment process, ¢t € [0, T),
with characteristic functional [2;(0) = 0 a.s.; j =0, 1].*

E(etv2i(t)) = exp {t [z‘ﬁjv + o (e""“ —1- Y + )dy,(u)]l»
oy _ v =cllulmy uw <0
vilu) = [vf = —clue u>0.

Following Section IV, it is clear that Jg(vo, v1) diverges (to + =),
from simply substituting in the explicit form for »; and carrying out
the calculations. Hence, Py and P, are mutually orthogonal if one or
more of the parameters differ, the log likelihood functional is either
4 @ or —« on hypothesis one or zero, respectively, and the prob-
ability of incorrectly choosing one hypothesis when the other is true
is zero.

Since J4(vo, v1) diverges because v; diverges as |u| — 0, this suggests
that being able to observe the process perfectly, down to jumps of
vanishingly small amplitudes, may be the mathematical reason for
singular detection; but therein lies the flaw: it may well be physically
impossible (the mathematical model is inadequate) to achieve this.
Frost® apparently first popularized this idea in the engineering litera-
ture; here we reach the same conclusions by entirely different methods.
Sections VI and VII deal with two distinct methods for overcoming
these flaws in the mathematical model.

VI. DISTINGUISHING PSEUDO-STABLE PROCESSES

Let z;(f) (j =0, 1) be a scalar real-valued representation of a
stationary independent increment process just as in Section V, except
that the Lévy measure is now written as

el |u| =i u<—L
) = M@ —L<u<0
! M (u) 0<u<R
—cdhus R <,
where
-__u s _u i
[0 i <=, [Cmate <e,
and
5; = ai _-[#D 1+ ungJ(u)

* The case @ = 2 is well known®'° and, for brevity, is not included here.

PROBABILITY MEASURES—II 1191



AL, A, are absolutely continuous with respect to Lebesgue measure,
and »; is nondecreasing on (— =, 0—), nonincreasing on (0+, «).
The limit, as both R and L approach zero, of a sequence of such pro-
cesses can be shown to converge weakly to a stable process, and hence
these processes are christened pseudo stable processes. Here L and B
quantify that the fact that no negative jumps can be observed with
amplitude less than L, no positive jumps can be observed with ampli-
tude less than R. Both the properties of the sample functions and the
one-dimensional distributions are radically different here from stable
processes: (i) pseudo-stable process sample functions are of bounded
variation w.p.1, with only finitely many nonzero jumps in any finite
time interval ; stable process sample functions are of either unbounded
(1 < « < 2) or bounded (0 < & < 1) variation w.p.1, with the set
of time instants at which nonzero jumps occur being dense in any
finite time interval, and (i) the set of one-dimensional distributions
of pseudo-stable processes is clearly not closed under convolution,
which was the defining property of stable distributions, but the
asymptotic tail behavior is the same, since

Prlz(t = 1) > 2] ~0 ([” dv,-(u)) ,
Pr [z;(t = 1) <—x]~o(f': dv,-(u))-

For this special case, it is straightforward to show that J,(ve, v1) <=,
and hence condition (z) of Theorem 2 is satisfied. However, 8, is not
in general in the range of S(=0), and again singular detection is
possible. The reason is clear on physical grounds (cf. Section III, the
Poisson case) : the slope of the sample paths of z;(t) is 3;, ignoring the
jump discontinuities, and hence it is trivial to discriminate between
two pseudo-stable processes with different drifts. Two approaches are
available: either let S be nonzero, which we do not pursue here because
this seems ad hoc, having introduced L, R, already, or make the drifts
match, 8, = 8, which we assume from this point on.

The log likelihood functional is thus

A(r) = [o "t [ f__: In (dvy/dve)dr: + fR “In (dvl/dvo)dr.]
+ [ a [j:(—dul ) + [ (= dw)],

where, for simplicity, it was assumed

M. = L=, A\, =—c}R=.
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As expected, the form of the log likelihood functional is quite sensitive
to whether @« = 2 0or 0 < a < 2 (e.g., see Refs. 7-10 for a = 2).

To obtain upper and lower bounds on the probabilities of an error
of the first or second kind, and on the total probability of error, the
Kakutani inner product H, must be calculated. Assuming AL = ¢L L=,
M = —c} R, the result is

Hy(Po, P1) = exp [—TJ(ve, v1) ],
Jo(vo, v1) = g(c L= + ¢} R—=) + (1 — @) (XL~ 4 % R~=0)
— ——__(aocn_)l—q(alcl_)gL—uml—(l—e)nu
goar + (1 — Q)ao
_ (aocg_)l—'I(alcfl_)ﬂ R-ea1—(—g)en
qay + (1 — Q)ao !

H,(Po, Py) = E., {exp [—LTD(xq)dt]} ,
D(xy) = Jo

In summary, discriminating between Wiener processes (e = 2) with
different variances leads to singular detection, while if the variances
are identical then the detection problem is nonsingular.®~!% Discriminat-
ing between stable processes (0 < a < 2) with one or more different
parameters leads to singular detection. If the Lévy measure is modified
to be a finite measure, then if the drifts differ, singular detection oceurs,
while if the drifts are identical, then the detection problem is
nonsingular.

Vil. DISTINGUISHING SAMPLED STABLE PROCESSES

The previous sections show that it is quite easy to find examples of
continuous time singular-detection problems. In this section, it is
assumed that N samples of a stable process with one of two sets of
parameters are observed, and we wish to study the effect of choosing
the sample spacing and the total length of the observation interval
on the Kakutani inner product H,; the goal is to make H, as small
as possible.

Attention is confined solely to scalar processes from this point on.
The distribution of ;[ (k + 1)At] — z;(kAt) is given by P;(At; 8;,S;, vj).
The Kakutani inner product of the new two discrete time distri-
butions is

17, 80 = | [ @Py/aye@pyani-iaa]"

For At 0 or T —=, with (T/At) = N fixed in both cases, fixed,
that H, can approach one, some number between zero and one [say
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e+, where k = k(d, 8o, S1, So, #1, »o)], or zero. It is obvious that
if the two continuous time independent increment process path-space
measures are nof mutually orthogonal, then the only approach to
reducing H, is to fix At and increase 7. However, if the two con-
tinuous time independent increment processes have mutually orthog-
onal path-space measures, then it is possible to reduce H, by decreas-
ing At with (T/At) fixed. To state the result, a lemma is needed:
Lemma 6. If u is an infinitely divisible probability measure, with
v(u) ~0(|ul~®) as |u| = 0,0 < a < 2, then

fexp (tvr)du(z) = exp [—S|v|=+ D(v)], 0<a=2

where if
u
8= [ TH @ =0
then
Lim D(v)/|v|® = 0, 0<a=2;
|v| =+
otherwise,

D(v) = dvs + D' (v), Lim D'(v)/|v|= = 0, 1sa=2
|v] =+

Proof: The proof follows from properties of », and is found in Ref. 5.
Q.E.D.

The main result can now be stated:

Proposition 7: For 0 < ¢ < 1, with a zero-drift gaussian component
(@ = 2) present in either z,, or zo, or both, if (7'/At) is fixed
Lim H (T, At) =
A0

(a) 1iff 8, = So> 0.

(b) Exp (—kN) iff S;# S, 81 > 0, and S, > 0,

k = In [¢(So/S1)*" + (1 — @)(81/80)* %
(C) OlffSl;é 0= SoOI‘Sl = 0?5 So.

If a zero-drift nongaussian stable (0 < a < 2) component is present
in either ry or 7o, then

Lim H (T, At) =

Atdo

(d) 1 lff a; = y, 81 = So.
(e) Exp (—kN) iff a1 = ao, S17 8o, S1 > 04, So > 0.
(f) 0 IE [+ 3] ;é &g,
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Proof: The proof follows from scaling arguments, and is found in

Ref. 5.
Q.E.D.

If a gaussian component is present in both processes, then decreasing
the sampling interval has no effect on decreasing H,, and T must be
increased to decrease H,. However, if no gaussian component is present
in one or the other of the processes, or if a; # a,, then it is possible to
decrease H, by decreasing At with (T'/At) fixed.

Analogous results for T — « with (7'/Af) fixed are presented in
Ref. 5, as well as some results on the rate at which H, approaches its
limiting value.

Related work on nonuniformly sampling a continuous time inde-
pendent increment process with one of two drift parameters is available
in the literature.* A typical result is that sampling two stable processes
with identical characteristic index, skewness, and scale, but differing
drifts, is a singular detection problem if

i (Lipr — )i
J=0
diverges, where {¢;} are the sampling epochs,
2 (g — ;) = T.
=0

Thus, spacing the samples apart by tjz1 — ¢; « j~™(m > 1) results in
singular detection, but ({;+1 — ¢;) < e ™/(m > 0) may not.
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