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Part I: Discrete Time
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A sequence of N, independent, identically distributed, random variables
is observed from one of two stable distributions with known parameters.
The likelihood-ratio test for discriminating between these two distributions
18 found explicitly and performance limitations are delermined.

When the two distributions differ only in location, the likelihood-ratio
lest is sensitive to whether the distribution is nongaussian stable
(0 < a < 2) when nonlinear soft limiting of large deviations is used, or
gaussian stable (e = 2) when linear processing is used.

When the two distributions differ only in scale, the likelihood-ratio
test is sensitive to whether 0 < a < 2 when nonlinear soft limiting of
large deviations is used, or gaussian (a = 2) when a chi-squared test
18 used.

The analysis of the lwo remaining cases, distinguishing between one of
two characteristic indices, and between one of two skewness parameters,
parallels the analysis of distinguishing between one of two scale parameters
and 1s only touched upon briefly.

Il. INTRODUCTION

The problem of classifying a series of observations as coming from
one of two or more possible classes or hypotheses has received a great
deal of attention in the statistical and engineering literature. In many
physical situations, a variety of disturbances corrupt the observations;
rather than model each disturbance separately, it is often argued on
physical grounds that the disturbances add and are independent, and
the central limit theorem is invoked to model this sum using a gaussian
distribution. This approach is adequate as long as the sum is not
dominated by one or a few of the summands; if one or a few of the
summands does dominate the sum, the disturbances can possibly be
modeled as a stable distribution, one member of a family of probability
distributions which includes the gaussian, by invoking a frequently
overlooked generalization of the central limit theorem.
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The gaussian distribution has enjoyed great popularity in hypothesis
testing because it is analytically tractable and because it is the only
stable distribution with finite variance. Although it may be argued
that mathematical models with infinite variance are physically in-
appropriate, this view conveniently overlooks the fact that the gaussian
distribution is unbounded, which is also a physically inappropriate
mathematical model. The gaussian model may adequately model dis-
turbances over a narrow range of amplitudes; an infinite-variance,
stable-distribution model may adequately model disturbances over a
larger range of amplitudes. Both distributions may be physically in-
appropriate mathematical models, but the infinite-variance distribu-
tion may, in this sense, be the better model. This paper examines
several stable-distribution hypothesis-testing problems.

The primary motivation for this work on stable probability measures
is drawn from a recent statistical analysis! of noise on various telephone
lines. This analysis indicated telephone noise may be adequately
modeled (on the lines examined) by a sum of sinusoids at various
frequencies plus a purely nondeterministic random process that is well
characterized by a stable distribution (either gaussian or nongaussian
stable). Since only a small number of lines were examined, this analysis
is preliminary, awaiting other independent investigations.*

Indirect motivation for this work is drawn from detecting electro-
magnetic signals at frequencies of 100 kHz or less. Noise at these
frequencies is claimed to be nongaussian ; unfortunately, adequate sta-
tistical evidence to substantiate this claim is lacking, with one
exception.?

A final source of motivation is found in finanecial problems. Over the
last decade, a large body of statistical evidence has been amassed which
indicates that the differences of logarithms of successive equally spaced
prices of ecommon stocks can be adequately modeled using stable
distributions.*4

Il. OUTLINE OF DISCUSSION '

A sequence of N random variables is observed ; for simplicity, it is
assumed they are independent and identically distributed—drawn
from one of two stable distributions with known parameters (charac-
teristic index 0 < o’ < 2, skewness parameter —1 < 87 < 1, scale
parameter v/ > 0, location parameter —« < 8 < »;j =0, 1)} It

* AEplications of this work to removing telephone noise will be presented elsewhere-

T These results were first presented at the Eighth Annual Princeton Conference on
Information Sciences and gyst,ems, March 28-29, 1974, p. 405, and at the 1975
Johxzag Igclzpk'ms Conference on Information Sciences and Systems, April 24, 1975,
PP —al.

* Both subscripts and superscripts will be used to denote the stable-distribution
parameters under hypothesis H;(7 = 0, 1); these parameters will be discussed more
fully in Section III.
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is well known that the likelihood-ratio test is a decision rule that is
optimum with respect to either a Neyman-Pearson or Bayes criterion.5
Here, the likelihood ratio is found explicitly and performance limita-
tions of the test are determined. The extension of these results from
two to M stable distributions is well known and will not be dealt with
here.5

The (log) likelihood decision rule, because of the independence as-
sumption, takes the following simple form:

Al

N H,
2 lry 2 L
i=1 Ho
; p(ri; &, B, 7, &)
) = I s o, B, )

where {r;}{ are the N observed random variables, drawn from a dis-
tribution with probability density p(z; o/, 87, 47, §7), and L' is a thresh-
old. Since I(r;) can be rewritten as the sum of four functions,

Ny — p(?‘,-; o', B 7Y, 81) plri; o B v, 8Y)
Uri) = In pre; o, B 4%, ) T In p(ri; o, 8% 7', &)
i ad @, ! 61) p(r,-‘a“ 8, v° 51)
ln'p(rsasﬁ,’Y} In X B, Y,
+ p(ri; a’, £ &Y, 51) + P('n"i; a’ g% +° 5(1) !

each of which tests for only one different parameter, this suggests
studying each of these four situations separately.

Two special cases are examined in detail: when the distributions
differ only in location and when they differ only in seale. The proba-
bilities of error of the first and second kind are found for three analyti-
cally tractable cases (gaussian, Cauchy, and Pearson V) by calculating
the characteristic function of the log likelihood probability measure
induced under each hypothesis; the general case is apparently analyti-
cally intractable, and quite expensive to tackle numerically at present.
Exponentially sharp upper and lower bounds on both types of prob-
abilities of error, and also the total probability of error, can be simply
derived from the Laplace transform of the log likelihood probability
measure induced under each hypothesis. These bounds are found
analytically in three cases, and relatively inexpensive numerical results
are presented for selected other cases.

When the two distributions differ only in loeation, the likelihood-
ratio test is shown to be extremely sensitive to whether the distribution
is nongaussian stable (0 < a < 2), when nonlinear soft limiting of
large deviations is employed, or gaussian (¢ = 2), when linear process-
ing is used. When the distribution is nongaussian stable, performance
is found analytically to be quite sensitive to whether a linear (sub-
optimum) or likelihood (optimum) decision rule is used: the total

PROBABILITY MEASURES—I 1127



probability of error for the linear test behaves asymptotically (N >> 1)
as O (AN'<), while the total probability of error for the likelihood-ratio
test is upper bounded by exp(—BN + C), where (4, B > 0, C) de-
pend on parameters of the two distributions and are independent of N.
(For related work that complements the results in our discussion, see
the list of references and particularly Refs. 6, 7, and 8.)

When the two distributions differ only in scale, the likelihood-ratio
test is extremely sensitive to whether the distribution is nongaussian
stable when nonlinear soft limiting of large deviations is used, or
gaussian when a chi-squared test is used. Performance for nongaussian
stable distributions is extremely sensitive to whether a suboptimum
(chi-squared) or optimum (likelihood-ratio) test is used: the total
probability of error for the chi-squared test behaves asymptotically
(N >> 1) as O(FN—(=/2-1) while the total probability of error for the
likelihood-ratio test is upper bounded by exp(—GN + H), where
(F, G > 0, H) depend on parameters of the two distributions and are
independent of N.

The analysis of the two remaining cases, distinguishing between one
of two characteristie indices and between one of two skewness parame-
ters, closely parallels the analysis that distinguishes between two scale
factors and is only touched upon here.

The continuous time analogs of these discrete-time problems are
studied, where a sample function from one of two stable, stationary,
independent-inerement processes is observed for a finite time interval
in the second part of this work. In contrast with this work, the analysis
is simpler, and it is possible to obtain many results analytically in
closed form.

Section III deals with various mathematical preliminaries. A brief,
selective, tutorial overview of the central limit theorem, infinitely
divisible distributions, and independent-increment processes is pre-
sented to place this work in perspective (as well as to fix notation). No
attempt is made to be exhaustive in the discussion.

The length of the discussion is due to the many special sets of
parameter values that must be taken into account to be thorough. The
main reason for this completeness is to adequately cover all cases where
uncertainty is modeled using a distribution arising from a central-
limit-theorem type of argument. The main contribution here is the
results per se, many of which are presented here for the first time, which
unfortunately often involve either tedious algebraic manipulation or
machine calculations. It is hoped this will not obscure the surprising
(at first glance) nature of the results: the quite singular behavior of
both the log-likelihood-ratio test and (perhaps more importantly) its
performance, for the gaussian vs nongaussian stable distribution, in
distinguishing either location or scale. The generalization of these two
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results to a wide class of infinitely divisible distributions (which
include the family of stable distributions) is immediate, and is sketched
at the end of Section IV.

IIl. MATHEMATICAL PRELIMINARIES

The reader is assumed to be familiar with the fundamentals of
measure theory and probability theory, as found in standard
references,* 12

Underlying the discussion to follow are:

() The notion of a probability space: a triple {2, A, P}, where
Q is the set of elementary events, A is a o-algebra of Borel
measurable subsets of @, and P is a probability measure on A.

(#2) The definition of a stochastic process z(f, w) defined on a
parameter set £ (henceforth called time), with t € E, w € Q,
which is a function mapping the direct product E X @ into the
real line, and the associated probability measure induced by
z(t, w).

(772) The measure theoretic concept of absolute continuity of one
measure with respect to another, and the measure theoretic
Lebesgue decomposition theorem.

3.1 Infinitely divisible distributions and independenti-increment processes

In this section, various properties of infinitely divisible distributions
and independent-increment processes are briefly reviewed. The inter-
ested reader is referred to the literature for much more information.*-16

This tutorial section serves several purposes:

(?) It gathers together for convenient reference all material on
stable distributions to be used in Part II.

(#7) It fixes notation.

(#7¢) It emphasizes the central role played by stable distributions
in understanding both the central limit theorem and the Lévy
decomposition of the infinitely divisible distributions.

(v) Finally, it alerts the reader to the rich structure and variety
of infinitely divisible distributions, in general, and stable
distributions, in particular, in the hope that they will find
greater use in modeling uncertainty.

The characteristic function of a (first-order) probability distribution
P(z)* is defined as

C.(v) = f ¢ dP(z) = E(e)  as.

* Upper case P(-) will denote a probability distribution, while lower case p(-)
will denote the associated probability density function; all probability distributions
examined here in any detail are absolutely continuous with respect to Lebesgue
measure.
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It ean be shown that two probability distributions are identical if and
only if their characteristic functions are identical (Ref. 14, page 28);
thus, there is a one-to-one correspondence between characteristic func-
tions and probability distribution functions. A random variable is
said to be infinitely divisible if, for every natural number n, the random
variable can be represented as the sum of n independent identically
distributed (i.i.d.) random variables, or equivalently if its charac-
teristic function can be written as

C.(v) = [C‘z(!}, n)]” n=12"...,

where C, is the characteristic function of some probability distribution
which may depend on n. Two well-known examples of infinitely
divisible random variables are the gaussian [taking wvalues on
(—w, «)] and the Poisson (taking values at nonnegative integer
multiples of ) :

Gaussian: C.(v) = _/: (A @ exp{— (z — m)?/2¢%}dx

= exp(z'mv — 1697

Poisson: C.(v) = Z‘, M : (eih)k = exp[A(e™ — 1)].
k=0
De Finetti conjectured that any infinitely divisible distribution could
be written as the convolution of a gaussian and a generalization of the
Poisson ; the resulting characteristic function can be written as

In C.(v) = imv — 3o%? -+ f (e — 1)dF (u),

where the measure F (u) specifies at what points the Poisson variable
takes on nontrivial values. However, this conjecture was shown to
hold only for a subset of the infinitely divisible distributions by Lévy;
if one desires a canonical form of the characteristic function of an
infinitely divisible distribution, then the following remarkable theorem
can be proved (Ref. 13, page 76).

Theorem (Lévy): Any infinitely divisible characteristic function can be
uniquely written in the canonical form

In C.(v) = ibv — 3o%* + f (e —1- )dv._(u)

+ / (eum —1 - 1 'i:u )dv.,.(u),

where 6 15 a location parameter (— o < § < «), ¢* > 0 15 the variance
of the gaussian component, and (v_, v,) are called the Lévy measure of the
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generalized Poisson disiribution. The conditions the Lévy measure must
satisfy are (i) v_ and vy are nondecreasing on the intervals (— «, 0) and
(0, =), respectively, (i1) v—(— =) = vy (=) = 0, and (i12) for every
finite € > 0,

0— €
f wldv_(u) < « f wldvy(u) < .
— o

Some examples now follow :
Ezample 1 (Poisson):8 = whA/(1 + #?),e* = 0,v_ =0, —o <u <0

-\ 0<u<h
0 h=u< o’

In Cz(v) = A(e?™ — 1).
Example 2 (Cauchy):q* = 0,6 = 0,

vy =

c

v = —— —wo <u<0
7| ul

v ==° O<u< »;

+ — ’

In C.(v) = v — c|v].
Ezample 3 (Gamma): e =0,v»- =0, —0 <u <0

©  p—qu d
§=p f i<
dvy (u) = pe~d(ln u);

C.(0) = (1 - i;)““.

Most of the attention here will be focused on one particular class of
infinitely divisible distributions, the stable distributions.

Definition: A probability distribution is said to be stable if, for all
a; > 0, az > 0, by, by, there exist constants a > 0, b such that

P(axz + b)*P(ax + bs) = Plaz + b),

where * denotes convolution. In other words, stable distributions are
closed under the action of the group of linear affine transformations on
the real line.

An important reason for examining stable distributions is found in
the central limit theorem (Ref. 13, page 162; Ref. 15, page 168):

Theorem : P(z) is a limiting distribution for a sum of suitably scaled and
translaled, independent, identically distributed, random variables if and
only if P(x) is stable.
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In many practical problems, a large number of independent dis-
turbances add and introduce uncertainty in a measurement. To
analyze the effects of uncertainty, it is often convenient to replace this
sum by its limiting distribution, which must be a stable distribution.
The reader is referred to the bibliography for references on exactly
what conditions govern the limiting distribution being gaussian vs
nongaussian stable (Ref. 12, pages 171-190; Ref. 15, pages 165-169).

Stable distributions are infinitely divisible; the associated Lévy
measures can be shown to be v»_(u) = c_|u|™% v, (u) = —cu—"
(Ref. 13, pages 164-168; Ref. 14, pages 128-133). Requirement (%)
that the measure be nondecreasing leads to « > 0, while the final
requirement (7i7) forces a < 2. Substituting this into the canonical
representation of the characteristic function of an infinitely divisible
distribution and explicitly evaluating the integral over the Lévy
measure results in the following theorem:

Theorem (Ref. 13, page 164 ; Ref. 14, page 136) : The characteristic func-
tion of a stable distribution can be expressed as

—y||e [1 + i8 —— tan (E)] +i0  a s,
1 ; | 2
n F(eis) = 9

—v|v| [l-i—iﬁrzl;lnhvl]-l—iav a=1,

where 0 <a =<2 —128=51,vy>0(y=c¢%), —o <§< =, For
O<a<l,f=c—cfe—te;forl 2a=s28=c—c_Jey + c_.
Note that for & = 2, the characteristic function, as a complex-valued
function of v, is C=, but for 1 < a < 2,itisonly C',and for0 < o =1
is only C".

For fixed 8 (8 # 0), the characteristic function is discontinuous (as
a function of «) in the neighborhood of @ = 1. One approach to this
problem is to rewrite the characteristic function (a # 1) as

o

In E(ei=®) = —v|v]< [1 + i8 = tan (7)]

|v]

+'£v(8+7ﬂtan£§— —ystan"—;)

—vlv] =+ dyBotan T [1 — [o] 1]
+ w (6 -+ TBtanL;)-
If a new parameter §' = § + 8 tan (we/2) is defined, then for g fixed

i To — a—1 =?"_
‘l'liritan 5 [1— |v|="] _n_ln |v].
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By inspection, this form of the characteristic function is not discon-
tinuous in the neighborhood of a = 1.

Since the characteristic function is in L;(— =, «), all stable dis-
tributions are absolutely continuous with respect to Lebesgue measure,
and have analytic probability density functions. Four parameters com-
pletely specify a stable distribution:

() @, the characteristic index of the stable distribution P(X ; «, 8) is
associated with the asymptotic behavior of P(X; «, 8). For
—1<p<],0<a<?,

lim |X|*P(—X) =k >0, lim X<[1 — P(X)]= ks > 0.
X —>—c0 X s

For 3 = —1 (a similar argument holds for § = +1), Lipschutz!® and
Ibragimov and Linnik (Ref. 17, pages 62 to 66)* have shown that for
1<a<?,

P(X) = 0{k(a)| X| =20 exp[ —c(a)| X|=/=1]} as X — —
lim Xo[1 — P(X)] = ks > 0,

b ]

while for 0 < @ < 1,

P(X) = 0{k(a)X20-® exp[ —c(a)X—*'-2]} as X |0+
lim Xo[1— P(X)]=ky >0,

X -»w

where k(a), c(a) are constants which depend only on «. For the asym-
metric Cauchy probability density function, it can be shown (Ref. 17,
pages 57 to 60) that

pX;a=1,
g=—1) = O[BXP(E | X| —'?r—ZeEXp(ﬂ'lX|/2))]X—>—w

limp(X;a=1,8= —1)X*=Fk; > 0.
X >

(#) B characterizes skewness of the distribution: if 3 = 0 the dis-
tribution is symmetric about z = §. Otherwise,

o 1= P(X;e,8) = P(—X;a,6) _ _
AT P(X;0,8) T P(—X;ap)
 P(=X;e,8) 148

M P X ap)  1-8

For 1 < a < 2, the distribution is skewed to the left for —1 = g8 < 0,
since P(8) < 1 — P(§), with the degree of skewness increasing as §

B

* Note typographical errors in egs. (2.4.30) and Theorem (2.4.7), of Ref. 17.
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decreases. It suffices to consider varying 8 over one half its range be-
cause from the characteristic function it follows that the probability
density p(z) obeys the relation

p(zx a8, 0= O) = p(_I: a, —f, 7,86 = O)

(772) vy(or ¢ & Y*) is a measure of the dispersion or spread of the
distribution.

(i) & is a location parameter, and for 1 < « = 2, § is the mean.

Only three analytic closed-form expressions for stable probability
density functions are known at present.:

Gaussian (o« = 2, —1 = g = 1):

1 —38)\?
v = o[- ((57) ] —ecre
Cauchy (a = 1, 8 = 0):

p@) = [ — 9+ —o <z <

Pearson V (a = §,8 = —1):

o= m(5) w[-my | e

and its conjugate density
piz;e=5B8=17486=0)=p(—z,a=1%8= —1,7,8=0).

Series expansions are known for the remaining stable density functions
(Ref. 14, pages 138—148):

p(z;,B,y=18=0

Coa(te)
=:'k= A ‘“"_lsin%w“") 1<az2
p(z;a B, , 8 =10)
L k
7”‘2( I)P(k“+l) —uk—lsm (g_a) 0<a<l,
=1

p(z; e, 8,7 =1, 5——0)
i ( ) [fw tk{sin (1 + B)t}e-@B/mtln ‘dt]‘ a=1,
0

1r.e.=o

where
tan (r/2) = B tan (ra/2), and z>0.

* For asymptotic expansions for @ = 1, see Ref. 17, Theorem 2.4.3 and Ref. 18.
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The reader can check that the series for @ = 2 reduces to the series for
the gaussian, and the series for 0 < @ < 1 and |3| = 1 are zero on a
half line (cf. Pearson V). For (0 <a <1l —-1<g<1) and
(1£a=2 —1=8=1), stable probability densities have support
on (— «, =), The series expansion for the density for 0 < @ <1 can
be used as an asymptotic expansion for the density for 1 < a < 2 for
|8| 5= 1. It can be shown from the characteristic function directly that
all stable distributions are unimodal (Ref. 13, pages 158 to 161; Ref.
17, pages 66 to 76).

Figure 1 is a plot of various stable probability density functions for
fixed a (1 < a < 2) and several 8; for a near two, it is quite difficult to
distinguish symmetric (8 = 0) and asymmetric stable distributions.
Figure 2 shows that around the mode, all stable distributions appear
roughly gaussian, for 1 < @ < 2 (note the logarithmic scale).

For « in the neighborhood of two, the gaussian and nongaussian
stable distributions are virtually identical around their mode, and it is
only in the tails of these distributions that the differences are pro-
nounced. One crude measure of the point at which the gaussian and
nongaussian stable distributions diverge is the point at which the first
term in the asymptotic series (@ < 2) equals the gaussian density:
for @ = 1.90, 1.95, 1.99, this occurs at 3.342, 3.635, 4.158 gaussian
standard deviations, respectively.

One reason stable distributions have attracted little attention in the
mathematical modeling of uncertainty is found in the theorem from
Ref. 14, page 169: A stable distribution with characteristic index « has
all absolute moments of order p, 0 < p < a < 2: E(|z|?) < «. Con-
versely, E(|x|?) does not exist, i.e., it diverges, for p = a, a < 2.

This suggests (albeit heuristically) that stable distributions may find
application in modeling uncertainty when, as the number of observa-
tions increases, for 0 < a < 1, both the sample mean and sample
variance ‘“‘wander erratically,” being dominated by one or a few ob-
servations, while for 1 < @ < 2, the sample mean stabilizes but the
sample variance does not [cf. Refs. 1, 2, 3, 4].

The generalization of these ideas from discrete time sequences of
independent, identically distributed, random variables drawn from an
infinitely divisible distribution to continuous time sample functions
of an independent increment process is clear. The characteristic fune-
tional of a stationary independent increment process can be uniquely
written as

In El:el'u[:(t)—z(n)]]
0—
—(t—9 [z’&u — Bout + (e"’" — - )dv_(u)

+ f (e"" -1 %) dv+(u)]

PROBABILITY MEASURES—I 1135



1.4
CHARACTERISTIC INDEX a = 1.1
SKEWNESS PARAMETER §
12 Py ———— §=-075
IJ"| sesseeinen = 0,60
I\ —temseme f=-026
1~ [ g= 00
[
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I 1a
B
08 R
5 I !
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06 iy
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i
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|
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|1 —— 6= 00
A
0.3
x
=
0.2}
0.1
-
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Fig. 1—Stable probability density functions [« = 1.1(0.2)1.7, 8 = —0.75(0.25)0.07;
scale factor ¢ = 1.0; location parameter § = 0.0.
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for0 = ¢ < ¢ < T. The parameters §, ¢%, and (v_, v;) have been aenneu
already. In words, any independent increment process can be decom-

posed into
(7) A singular piece, called the drift, specified by &.

0.4
CHARACTERISTIC INDEX a= 1.5
SKEWNESS PARAMETER 8

——— =075
sreresnins f= 060
g=-0.25
g= 00

0.3

0.2

p(X)

0.1—

0.4
CHARACTERISTIC INDEX a=1.7
SKEWNESS PARAMETER g

—_—— §=-075
. f=-0.50

——— 3=-025

03F — = 00

02—

p(X)

Fig. 1—(continued)
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CHARACTERISTIC INDEX a
SKEWNESS PARAMETER § = 0.0

o ——— a=1.1
——== =15
— =10

—_2

—a

LN p(X)
|
(=]
|

-8

—14 | 1 ] | |

CHARACTERISTIC INDEX a
SKEWNESS PARAMETER f = —0.25

2

—4

LN p(X)
|
[=2]
[

10

—14 ] ] | | 1
—-30 —20 —10 0 10 20 30

X

Fig. 2—Stable probability density functions (semilogarithmic) [« = 1.1(0.4)1.9,
g =—0.5(0.5)0.57; scale factor ¢ = 1.0; location parameter § = 0.0.
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(73) A gaussian component, a component with continuous sample
paths that have unbounded variation with probability one
(w.p.1), specified by o2

(7i7) A generalization of the Poisson process called a jump process,

)

CHARACTERISTIC INDEX a
SKEWNESS PARAMETER § = —0.50

——— g =11

n
i

————a=15

— =19

LN p(X)

CHARACTERISTIC INDEX a
SKEWNESS PARAMETER g =-0.76

————— =1.1 .
o @ \

——— =15

/
—_—a=19
]

_4

6

LN p(X)

~14 ] | | 1 ]
-30 -20 -10 [} 10 20 30

Fig. 2—(continued)
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with sample paths that are constant except for simple jump
discontinuities at random times with random amplitudes,
specified by the Lévy measure (v_, »).

A (separable) pure jump process, a stationary independent increment
process with no gaussian component, has sample functions that are of
bounded variation® with probability one if and only if

f_ul_ |uldv_(u) + [0: udvy (u) < .

An example of an independent increment process with bounded varia-
tion (w.p.1) is a stable independent increment process (0 < a < 1)
while stable independent increment processes (1 < a = 2) have un-
bounded variation (w.p.1). The intuitive meaning of the Lévy measure
is that first proposed by De Finetti: the Lévy measure specifies the
density of the amplitudes of the jumps of the Poisson process, provided
the process sample paths are of bounded variation (w.p.1).

By allowing 3, ¢2, and (v_, »;) to depend upon time, a time-varying
generalization of infinitely divisible distributions or nonstationary in-
dependent increment processes is obtained. By examining nonanticipa-
tive functionals of either a discrete time sequence of i.i.d. random
variables drawn from an infinitely divisible distribution, or a con-
tinuous time independent increment process, a wide variety of Markov
processes are derived. Thus, the generalizations of the results presented
here to many other situations may sometimes be immediate. The
richness of this class of random processes suggests these results may
find wide application.

Historically, the mathematical study of independent increment
processes concentrated first on the gaussian case, then on the stable
case, and finally on the general case. To date, most of the engineering
literature has concentrated on the gaussian case or the purely Poisson
case, with the notable exception of Frost.”® It is hoped this work will
suggest promising avenues of constructive research by studying the
stable case, as well as shedding light on some of the quirks of the
gaussian case.

IV. DISCRETE TIME DETECTION OF TRANSLATES OF STABLE MEASURES

One of two sequences of independent, identically distributed (i.i.d.),
stable, random variables is observed, under one of two hypotheses
(H 0y H 1) H

H, T = 8+ ng
H 0 Ty = s° + Nk
* The variation of a function f(¢), 0 < ¢ < T, is defined assup X" | f(tiy1) — F(t) |

where the sup;emum is over all possible partitions of the interval [0, T]:0 =ty <1
<ooe <ty =

1=k =N
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The observed or received sequence is denoted {r¢}y, while {n;}? is a
sequence of iid. stable random variables with known parameters
(e, B, v, 8 = 0); both s' and s° are known. The a priori probability of
H;is denoted =; (j = 0, 1). (The extension of allowing s, s° to depend
on k is immediate and is not dealt with here.)

The measures induced by {r:}Y¥ under H, and H, are clearly not
mutually orthogonal. Two cases oceur: for (0 < e <1, —1 <8 <1)
and (1 £ @ =2, —1 = 8 = 1), the stable measures have support on
the whole real line, and hence are equivalent. For (0 < a < 1,8 =1
or —1), the stable measures have support on a half line, and hence one
measure is absolutely continuous with respect to the other but not
vice versa: the supports of the two measures overlap except for the
interval [, s'). In either case, since the measures are not mutually
orthogonal, the decision rule, which as is well known minimizes both a
Bayes criterion as well as a Neyman-Pearson criterion, is the likeli-
hood-ratio test.® The goal is to find the exact form of this test, and
characterize its performance.* Performance here means calculating the
probability that H, is chosen given that H,is true, and the probability
that H, is chosen given that H, is true; these are called probabilities
of error of the first and second kind, and are denoted Py and P,
respectively. A quantity which is also of interest is the total probability
of error, defined as (moP10 + mPun) = Pg

4.1 The likelihood-ratio test

The structure of the optimum detector is handled in two separate
cases. First, when 0 <a<1l], —1<B8<1) or (1=2a=2
—1 £ 8 £ 1), the likelihood ratio is always strictly positive and finite,
and is

_ pa(r: — s 4
A=Al -ymw) = ';III Palri — &) £<u L,

where p.(-) is the probability density of ni. An equivalent test is to
compute the log likelihood ratio,
lnA—Zl(r) lnL L,

where

Palrs — 87
l(?‘,‘) In m,

and this can be explicitly calculated using the series expansions de-
scribed earlier. Before doing so, it is worthwhile to examine two

* A discussion of the power of this test (or any other test) is deliberately omitted.
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analytically tractable cases:

Gaussian (@ = 2, —1 < g = 1):

g2t 4et —o <z < ™,

pa(z) = ,\[41—”
Ur) = — 5o L0 — % — (s — 9)7]

4o L2 — #) — (&9 + (7;
N=ma="2FF S rn- (402) [(s)? — (s°)2] L= L.

The log likelihood test can be implemented using only linear process-
ing. The rule has the interpretation of comparing an energy-like
quantity, the received signal suitably translated and squared, with a
threshold. Equivalently, the test defines a hyperplane in B¥, and de-
pending upon which side of the hyperplane (ry, - - -, ry) lies, H; or H,
is chosen. All of this is well known (see Ref. 5, pages 94-97 and 163—
173).

Cauchy (. = 1,8 = 0):
pa@) = 2@+ )7 —w <z < w;
(ri — 92 + ¢

(ri — )% 4 ¢’
(ri — 82 +c* 4 > ,

A’ ;z—:ll (ri — )+ 2HnlnL L.
Unlike the gaussian case, the Cauchy log likelihood detector operates
nonlinearly on the observation. A straightforward Taylor series ex-
pansion of the log likelihood about »; = %(s' + s) shows that for small
perturbations about this point the log likelihood is linear in the perturb-
ing quantity. On the other hand, for large excursions in any one
observation,

l(?'.') =1In

, — ol . — @0
T8 s, B E g,

this one term in the sum behaves as O(r;!) or, in other words, very
large excursions in the received signal are essentially (but not entirely)
discarded ; this type of behavior will be called soft limiting. Only for
N = 1 does this test reduce to finding a hyperplane and determining on
which side of the hyperplane the observation lies in order to choose
H 1 0T H 0.
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Thecases 0 < a <1, -1 <g<land (1 2a=2 —-1<8<1),
can now be examined ; it is a straightforward exercise to substitute into
the log likelihood the series expansions for stable probability density

CHARACTERISTIC INDEX a = 1.1 A
SKEWNESS PARAMETER 8 Iy
pg=-05 ,"\! \
4  ——== §=00 | { \
———— =05 AN

LOG LIKELIHOOD
o
[

—4}—
—6 | 1 | | |
8
CHARACTERISTIC INDEX a = 1.5
SKEWNESS PARAMETER @
kel
- f=-05 \
¢ \ L
———— =00 W\
————— =405 \
at—

LOG LIKELIHOOD
o
I

—4

-8 | 1 l I |
-30 -20 -10 0 10 20 30

Fig. 3—Representative log likelihood functions (s? =410, s = 0) (a fixed, g8
varying) ; scale factor ¢ = 1.0; location parameter §=0.
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CHARACTERISTIC INDEX a=1.9

SKEWNESS PARAMETER ~

8- §=-05 AN
——— §-00
6 ——- p-+05

LOG LIKELIHOOD
o
I

-10 1 | | | 1
-30 —20 —10 0 10 20 30

Fig. 3—(continued)

functions. Figures 3 and 4 show various representative log likelihood
ratios [I(r;)] for (1 <a <2, —1 <8 < 1) with a fixed « and 8
varying; Fig. 5 shows the same log likelihood ratios as in Fig. 4 with
B fixed and « varying. Similar results hold in the remaining cases
D<a<l —-1<g<1).

Three points are emphasized here. First, the structure of the optimum
(log likelihood) detector is very sensitive to whether the underlying
distribution is gaussian or nongaussian stable; this is not surprising,
because small perturbations away from « = 2 result in a singular
perturbation in the probability density function.® Second, when the
observation is in a neighborhood of £ (s® + s!), an identical Taylor series
argument, as used in the Cauchy example, is applicable, and small
perturbations about this midway point result in linear perturbations
about the corresponding log likelihood point. Third, when large
excursions occur,
ri — §°

R 1
L= 81,

> 1,

the (log) likelihood for this term behaves as O(r;"'), which follows from
asymptotic expansions.

* However, stable distributions in the neighborhood of « = 2 are all close with
respect to the topology induced by any reasonable metric, e.g., Prokhorov’s metric.
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The first two points in the preceding discussion hold for (1 = « < 2,
|| = 1). The third point must be slightly modified (assume now
B = —1, since a similar argument follows immediately for 8 = 1):
I(r)) ~O(r7Y) for r; > 0, but for r; <0, I(r) ~ O(—[rs[Vo) (cf.
gaussian case) (1 < a < 2), while forr; < 0, @ = 1,

I(r;) ~ O[—exp(r|r:|/2)].

It remains to consider {n:}Y, a sequence of i.i.d. stable random
variables with (0 < @ < 1, |8| = 1). Assume from here on g = —1,
st > 5% The likelihood ratio is thus zero or strictly positive and finite,
and the log likelihood is either minus infinity or finite. First, consider
the Pearson V distribution as an example:

Pearson V (a = %, 8 = —1):

1 (x)_!
C/—\ exp[ —¢/2z z=0
pn(x)={m ;) exel—c/2]
0 z<0;
3 ri— 8 ¢ 1 1
9 - 5 — > gl 0
I(ry) = 21n(r.—s°) 2[1‘,_31 T‘—s] riZ s> 8
-® SI>T¢28",
E 3 r; — st ¢ 1 1 H
f= v i c _ > ,
N RO Ee—C
riz s> 8
for all , 1=¢{=N,
A" = — o (choose Hy) if s' > r; = °
for somed, 1=<i=N.

If all the received signal samples are greater than s!, the optimum
test is to compute the log likelihood and compare it with a threshold to
choose H; or H,. Note that for (r; — st)/c > 1, I(r;) decays asymptot-
ically as O(ri!), and thus large deviations are weighted lightly. For
re > 8 (r; — &) K¢, I(r;) ~ (r; — ')~ If one or more observations
fall in the interval [sY, s!), the optimum rule is to choose H,.

The remaining cases (0 < « < 1 and 8 = —1) can be treated in an
identical manner, using the series expansion for the densities. The im-
portant points are (z) the optimum detector is fundamentally non-
linear; for (r; — s)/c¢ > 1, I(r;) decays as O(ri’!), (¢4) if any observa-
tion falls in the interval [s°, s!), the optimum strategy is to choose H,,
(432) for r; > 8!, |r; — st| K¢, U(r;) ~ O[(r; — s))~Wi-a],

4.2 Performance limitations

To complete the solution of the problem, the probabilities of error
of the first and second kind must be calculated. This appears to be
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quite difficult in the general case of an arbitrary stable distribution
and bounds are developed in Section 4.3. In this section the per-
formance of the optimum (log likelihood) detector is found explicitly
for the three analytically tractable stable distributions to illustrate the

8
CHARACTERISTIC INDEX a = 1.1

SKEWNESS PARAMETER A
6 g= —05 [al ! -\
L / YA
———— §= 00 N \

LOG LIKELIHOOD
o
I

—4—

_8 | l I | |
10
CHARACTERISTIC INDEXa=1.5
SKEWNESS PARAMETER
8 ~,
f=-05 o\
———= 3= 00 |
sl B
—+—:= B=+05
41—
o
2
g I
I
m 0
-
¥
3
]
S 21
4 Hqy: r=sl+n
Hg: r=s0+n
_6 s1=+10
s0=—10
| .
—10 | | | ] |
—30 -20 -10 0 10 20 30

Fig. 4—Representative log likelihood functions (s! =410, 8 = —10) (e fixed, 8
varying) ; scale factor ¢ = 1.0; location parameter § = 0.0.
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CHARACTERISTIC INDEX a = 1.9
SKEWNESS PARAMETER §

g- 05
V- = = 00 ﬁ?\'

LOG LIKELIHOOD

5

1
0 10

-30 —-20 -10 20 30

Fig. 4—(continued)

problems that must be addressed in the general case. The approach
adopted is to calculate the characteristic function of the log likelihood
probability measure induced under either H; or H,.

Gaussian (a =2, —1 £ 8 £ 1)
Section 4.1 showed that the log likelihood ratio is

A!_ 1 & 132 0}2
= — S L= o = (= 0,

and since the log likelihood is a sum of i.i.d. random variables, its
characteristic function can be found by using elementary Fourier tech-
niques. The results are:

o N(st — %% .

lnE(e 4 |H1) = T‘[’W—‘Uz]
ioar N(st— 92 .

In E(e™d | Hy) = — [—dv — v2].

Using the Fourier inversion lemma, the density of the log likelihood
under either hypothesis can be found in closed form to be

p(A'|Hj) = ﬁ exp[ — (A" — 8;)?/4c™"] —0 <A<
7=01,
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CHARACTERISTIC INDEX a
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Fig. 5—Representative log likelihood functions (8' = 410, 8* = —10) (e varying,
8 fixed).
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where
st — &'[VN

' ., N
6y = —8 = i (st — s%?%, ¢ = 2%

The probabilities of an error of the first and second kind are

Py, = Pr [choose Hy|H, true] = jm p(A'|Ho)dA'
L
L (K=s\ 1|, (F-
_2erfc( 50 )—2{1 (c'\f;

*eXp [_ (L 2:/ 60)2] 1F

Po1 = Pr [choose Ho|H, true] = 1 — %erfc( 55 )
’ L' — 5\
s+ (5 = [ (5]
3 (L -8\
a g (F )]

where erfc () is the complementary error function (Ref. 20, eq. 7.1.2)
and F, is a hypergeometric function (Ref. 20, eq. 7.1.21; see also
Slater, Ref. 21).

Cauchy (e = 1, 8 = 0)*
It was noted previously that the log likelihood ratio can be written as

(ri — 8" 4 %
(re — V)2 + c

The characteristic function for the log likelihood can be found just as
for the gaussian case:

E (e | Hy)
Y = (r; — 8% + ¢ edri/m
B /—q o f—m S8 (?-U ng In (TJ s)? + 02) JHI (TJ' — &) + ¢
1 [t = o+ @200 — o+ o1 (£) d,
) ) c N
{ [+ A7+ @1 [(z — 4 + ¢ (;) dx} ,

,..
o
[ SRS
AN e
&
[\
o | |
(=2
[N
‘%
[——
R——

Zl

where
A=} -, o= i+

* The following analysis was suggested to the author by S. O. Rice; any errors in
the development here are the responsibility of the author alone.
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It now helps to realize

(x:l:A)2+cz=(:cz+A”+c2)(1 i%)

so that the characteristic function can be written as
. o0 2A$ 0] 2AI —iv—1
TvA’ = - — —
B(e™|H) I:f_m(1+x’+A’+cz) (1 x=+A=+c=)
fey__d= |
m)at+ A+ ¢t
© e Efw - —1 2Azx e
_[j’—mmgﬂngﬂ(m)( n )(;Cz"i—Az‘f—Cz)
c " dzx N
(}) S gy g c’] '
Only even powers of (m + n) contribute to the integral. This observa-

tion can be combined with the definition of the beta function (Ref. 20,
eq. 6.2.1.) to show that

E(e™' [Hy) = [ A2-|— c mzﬂnéo(:z) ( _iun_ 1)

e m=+n-4+1\ |¥
4A2 (mtn)/2 (—1)n 2 .
'(A2+c=) r I'(m+n+1)

Substituting (m + n) = 21, and using the identity (Ref. 20, eq. 6.1.18)

ri+4) _ 2Vr
r(2) 4T’

results in the final form of the log likelihood characteristic function
assuming H; is true,

E (e |Hy) = [ (a/2) )

"'+A22 (A2+02

( ‘W)MF( A v+ 1:4 —2l+1'—1) N.
. (l‘)z oll'y "M) ,u) y

The term

T'(—w + 21)

(=) = T'(—1)

is standard notation for Pochhammer’s symbol (Ref. 20, eq. 6.1.22).
A similar expression results for the characteristic function of the log

1150 THE BELL SYSTEM TECHNICAL JOURNAL, OCTOBER 1976



likelihood, assuming the other hypothesis is true:

Y _ _ c? hd (1 + ‘I:’U)z
E(e™'|Ho) = [ Ve + A? zgo ()2 I

.(%) JFi(—=2L, iv; —iv — 21; ~1)]

Since these series converge for all v (— o < v < =), as well as for all
(finite) values of A and ¢, the Fourier inversion lemma guarantees that
a unique inverse to these transforms exists, and thus in principle the
density of the log likelihood under either hypothesis is known and the
probabilities of error of the first and second kind can be calculated.
Numerical results are presented in a later section that were arrived at
in exactly this manner.

Several additional observations can be made. For N = 1 the log
likelihood is a random variable whose distribution has compact support
on the interval

n\‘Az-I-cz—-ASA,_(sl-l-s“) ‘VA’-I-c’-i—A
1"A2+62+A_ 2 A 4 ¢ —

and thus the support of the log likelihood distribution for any finite
number of samples, say N, is on the closed interval

VA F o - A (252) R
Nln =A-—-N =ENh——-
‘\'IAE 4 A 2 = n1f42+cz — A

Since the log likelihood distribution has compact support, it is well
known (Ref. 22, p. 121) that its Fourier transform has support on the
entire real axis. The second observation concerns the asymptotic
(v >> 1) behavior of the characteristic function of the log likelihood.
Since the saddle points of the log likelihood characteristic function
are at £=VA? + ¢?, stationary phase arguments® show that asymptot-
ically (v > 1):

sty = [ [ oo (om GEEE) () =5l
~ [ Wf%_v (A% + )t {exp (z’vlnv__—m + zg)

A”-FCQ—A .T 1\ 1Y
+eom (wn TEE T~ ] )] +o(5)]

so that asymptotically the characteristic function decays as [v|~¥/% A
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similar result holds for the log likelihood characteristic function as-
suming H, is true.

An alternate approach is to calculate the Mellin transform of the
likelihood probability density (for N = 1), then raise it to the Nth
power and find the inverse transform; this was investigated without
success. A direct approach, convolving the probability density of the
log likelihood with itself N times, was also attempted; the resulting
integrals were intractable.

Pearson V (¢ = 3,8 = —1)
Assuming H, is true, the characteristic function of the log likelihood is

E(e™ |H,y)
L feme - 3u(23)

2
5l ()

X > _ 3. r; — 8 e 1 1
_:'I=];’j:‘ exp[ wm(?‘:‘—s") ?(?‘:‘—8' ?’j—sﬂ)]

b2

I

J
fmex ——gz’vln(x—A)—@—c( 1 — 1 )
e zFA 2\z—2 z+4A

where A = 1(s! — &%), z = r; — 4(s' + s%). All attempts to simplify
this expression were unsuccessful. Stationary phase arguments show
that asymptotically (v >> 1)

E(eN |Hy) ~ ”\/k:?vkz exp (ivka + ig)] +O(%)]N,

where (ki, ks, ks) are complicated functions of (¢, A).

An attempt was made to find E(e®*A" | Hy), assuming no observation
occurred in the interval (s% s!); this approach encountered the same
problems as finding E (¢4’ | H,), and was unsuccessful.

It is worth noting that the log likelihood has only one maximum on
the interval (s!, =), for E(e™'|H;)(j = 0, 1), and hence only one
stationary point enters into the stationary phase asymptotic expression
for E(e®*' |H;). It can be shown this behavior is typical of any asym-
metric (|8| = 1) stable distribution. In contrast, the log likelihood has
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two maxima for any stable distribution (—1 < 8 < 1), and hence two
stationary points (ef. Cauchy).

Neither the use of Mellin transforms (instead of Fourier transforms)
nor convolving the log likelihood density with itself N times made the
problem any more tractable.

In the case of an arbitrary stable distribution, it appears quite
difficult to find the density of the log likelihood by calculating the
characteristic function of the log likelihood probability measure in-
duced under either H; or Hy, because only series expansions are known
at present for stable probability density functions (except for the three
cases covered here). Even resorting to numerical approximation tech-
niques poses some quite difficult problems:for0 < e < 2, -1 =8 =1
(as for the Cauchy and Pearson V distributions) the log likelihood
characteristic function has its support on the entire axis, and oscillates
and decays asymptotically as O[(e®**?/+»)¥] from stationary phase
arguments.* To accurately approximate numerically the probabilities
of error of the first and second kind from the log likelihood characteristic
function, the characteristic function must be approximated and stored
at a great many frequencies, and the total cost (especially due to
storage) can be quite high. Furthermore, one would like to carry out
calculations for many different values of (e, 8, v, §). The storage cost
plus the large number of parameter variations often desired can make
this program quite expensive at present.

4.3 Analytic performance bounds

Because of analytical and numerical problems encountered in ex-
plicitly calculating the probabilities of errors of the first and second
kind, as well as the total probability of error, bounds on these quantities
were investigated.

Let P; and P, be probability measures defined on the same measure
space (2, A). For 0 < ¢ < 1, define

dPi\? [ dPy\' 1
it = (S5 (40
where u is any measure defined on (2, A) such that u >> Py, u > Po.

(An example of such a u is ¢ = Py + P,.) This definition of A, is seen
by inspection to be independent of u. Define

Hy(Py, Po) = [ dho(Py, Po)

* Different contours of integration (e.g., path of steepest descent) were investigated
without success.
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as the Kakutani inner product of P, with P, (Ref. 24); the classical
Hellinger integral is a special case of the Kakutani inner produect, and
is defined as H}(P,, Py). It is known that

0 < Hy(Py, Py <1,

with H, = 1 iff P, = P, a.e. The Kakutani inner product can be
thought of intuitively as the amount of ‘““colinearity’”’ or ‘“overlap’” of
two probability measures, with the larger the Kakutani inner product,
the larger the “overlap.” A number of useful properties of the Kakutani
inner product are summarized in the following easily proven lemma?2428;

Lemma: (1) Py and P, are mutually orthogonal (denoted P, L P,),
e Hy(Po, Py) = 0 ho(Py, Py) =0
(2) If 0 < q <1, Hy(Py, Py) s continuous tn q. Four cases
determine the behavior of H(Po, P1) at g = 0, 1:

(2a) If Py and P, are equivalent, then H (P, Pi1) is confinuous
atq=0and g = 1.

(2b) If Py is absolutely continuous with respect to P, but not vice
versa, then H,(P,, P1) is continuous at ¢ = 1 but not at
qg=0.

(2c) If P, is absolutely continuous with respect to Py but not vice
versa, then H,(Py, P1) is continuous at ¢ = 0 but not at
g = 1.

(8d) If P, and P, are neither mutually orthogonal nor equivalent,
then H ,(Py, P.) 18 discontinuous at ¢ = 0, ¢ = 1.

(3) Hy(Po, P1) and its logarithm are conver functions, 0 < ¢
< 1. The convexity is strict iff (dP1/dP.)(x) s not constant
for all z &€ supp(Py) M supp(Ps).

It is instructive to rewrite H,(P,, P;) in two different ways to ex-
plicitly show the relationship between the log likelihood functional and
the Kakutani inner product:
() Hy(Po, Py) = f exp{qIn (dP,/dPy)}dP,
= E{exp [¢In (dP1/dPo)]|Ho},
(2) H (Py, Py) = f exp{(qg — 1) In (dP,/dP,)}dP,
= E{exp [(¢ — 1) In (dP1/dP¢)]|H\}.

(7) and (47) are the Laplace transforms of the log likelihood probability
density (also called the moment generating function of A), evaluated
at g and (g — 1), and assuming H, and H, are true, respectively. It is
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196-197). Using Hélder’s inequality, it is straightforward to show that
the logarithm of H, and, hence, H, itself, are convex functions of g,
0<g<l

Chernoff?® was apparently first to use H,(Po, P;) (where Py <K u,
P; < u, p = Lebesgue measure) to upper bound the probabilities of
error of the first and second kind, and his work has found widespread
application in the engineering and statistical literature (see also, Ref.
14, pages 517-520 and the references therein).

In the notation used here, Chernoff showed

P("_ é inf Hq(Pu, P]_)e_q["

0<q

Py < inf Ho(Py, Py)e(aE,

g<1

where L’ is the threshold in the log likelihood ratio test.

Chernoff’s original ideas have been generalized in several directions.
Kraft? obtained upper and lower bounds on the total probability of
error. For some choice of L’ (see also Ref. 28):

%min (‘Jrn, Tl)Hi(PO, P) £ P = (WOWI)le(PGJ Py).

Hellman and Raviv® have also worked on this problem. Shannon,
Gallager, and Berlekamp?® obtained lower bounds on the probabilities
of error of the first and second kind in terms of the logarithm of
H ,(P,, P1), and the first and second derivatives of the logarithm.

Here the Kakutani inner product plays two key roles, providing a
check on whether or not singular or perfect detection is possible
[iff H,(Py, P1) = 0], as well as giving exponentially sharp bounds on
the performance of the log likelihood ratio test if detection is not singu-
lar. Since the Kakutani inner product need only be calculated at a
small number of values of g to accurately numerically approximate
upper and lower bounds on error probabilities, unlike calculating the
probabilities of error of the first and second kind from the log likelihood
characteristic function, this approach may be useful as a practical
design tool because it is relatively inexpensive.

The following observations are strightforward exercises:

() When a sequence of N iid. random variables is observed,
H, (P, P;) = e4¥, where A is independent of N, depending
solely on Py, P;, and q.

(47) When P, and P; are absolutely continuous with respect to
Lebesgue measure, and the corresponding densities are unimodal
translates of one another, then for fixed g, the larger the separa-
tion the smaller the inner product H (P, Py).
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The Kakutani inner product H,(P,, P;) can be explicitly calculated
for the three analytic cases discussed earlier:

Gaussian (a =2, =1 =g = 1):
pa(z) = 1/V4we exp(—22/4c?) —w <z < ®
Hy(Po, Py) = V%@ u(g) = In f " Pl — )P~z — )dz

w(g) = —g(l — g)(s* — s%/4c*;
f(2)=- (%)

Cauchy (¢ = 1,5 =0):

pae) =S@+ At —w<z<w
Ho(Po, Py) = [ [ itz = spie — sﬂ)dx]”
- ) 2 A2V i

1 - i . .
-%zf’“x(q, —2j;9 — 2j; —1),
where A = (s! — %) /2.
From tables (Ref. 30, 263.00) for elliptic integrals:

Hy(Py, Py) . * 1 N .
S HIG S R B C= RN |

where en™1(-, -) is an inverse Jacobian elliptic function.

Pearson V (a = 3, 8 = —1):

1 z\
—_ — e_‘ﬂ.r2.'t T g 0
Pa(2) = § eVor ( C)
0 z <0

o N
2Py P) = | [~ pi@ = oopie(e - )iz |
The integral could not be expressed in any other analytic form. Since
P, is absolutely continuous with respect to P,, but not vice versa,
H ((Py, P1) is continuous for ¢ € (0, 1], and is discontinuous at ¢ = 0.
Apparently only in the gaussian case does the Kakutani inner product
or the Hellinger integral reduce to a simple form, and for general stable
distributions the problem appears to be analytically intractable at
present. Thus, it seemed worthwhile to investigate numerical methods
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HELLINGER INTEGRALH

for approximating the desired integrals. Again it seems important to
emphasize that an accurate approximation of the log likelihood prob-
ability density Laplace transform under H, or H, is needed at only a
small number of choices of ¢, so the calculations can be quite inexpen-
sive. In the previous section, the log likelihood characteristic function
had to be approximated at a great many frequencies, and the resulting
computation effort and storage made that program relatively more
expensive.

4.4 Numerical approximation of performance bounds

At present, three approaches have been investigated for calculating
stable probability density functions. The first involves summing power
series and asymptotic series,”! the second involves quadrature of an
integral representation of the density,® and the third uses a discrete
fast Fourier transform of the characteristic function (Ref. 33, pages
35-42; and Ref. 34).

The approach used here was a combination of the first and third
methods. The stable probability density function was approximated
over its central region via a discrete fast Fourier transform, while
asymptotic expansions were used outside this region. This approach
avoids the difficulty of knowing how to merge the power series and
asymptotic series (see Ref. 31).

The Kakutani inner product was broken into two integrals. The first
integral was approximated by a fixed step size Romberg integration

100 o—

o
H=f A/ pix-sT)plx - s0) dx
.

a=07

0.1
p(x) =pix;a, f=0) a=09
a=1.1
a=13
0.01 a=15
a=1.7
a=19
0.001 | | | |
0.01 0.1 1.0 10.0 100.0 1000.0

Fig. 6—Hellinger integral vs (s' — s%)/c [@ = 0.5(0.2)1.9, 8 = 0].
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©
-

H=f /pix -s') pix - s0) dx

pix) = plx; a, f=0)

0.01—

~a=180
_-a=191
--a=1092
—~a=193
~a=194
~a=195
~

“a=196
Na=197
S~a=108

HELLINGER INTEGRAL H
cf

O gd ddfdo

0.001

O« ~a=199

0.0001 | |
10 30 100 300

(22)

Fig. 7—Hellinger integral vs (s! — s%) /¢ [« = 1.90(0.01)2.00, 8 = 0].

routine?® using the discrete fast Fourier transform approximation to the
density (typically, 4096 points were used). The second integral was
approximated by a variable step size Romberg integration algorithm
using the asymptotic expansion for the density.

While this approach is adequate for finite mean stable distributions
(1 < a = 2), and with care works for 0.5 = a = 1, it is inadequate for
0 < a < 0.5, because the expense is too great at present. The reason
is that for 0 < @ < 1, a great many evenly spaced points must be used
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to adequately approximate the characteristic function in the neighbor-
hood of the origin (where its derivative is unbounded), as well as at
other frequencies, and the expense of storing these values (to carry out
the discrete fast Fourier transform) is prohibitive. One possible ap-
proach around this problem is to simply use only the series expansion
(see Ref. 33).

All results presented here were calculated on a Honeywell 6070
computer using double-precision arithmetic (14 significant figures) ; the
estimated relative error in all cases was less than a tenth of one percent.

Figure 6 shows the Hellinger integral for various parameters
[a = 0.5(0.2)1.9, 8 = 0] as a function of [(s' — & /c], for N = 1.
This figure suggests an interesting conjecture, that the Hellinger
integral is smaller the closer the characteristic index « is to two, all
other factors being the same. No proof of this is known, at present.

Figure 7 depicts results of numerically calculating the Hellinger inte-
gral for various characteristic indices close to two [« = 1.90(0.01)1.99,
B = 0], for N = 1. The singular nature of the gaussian distribution
(e = 2) is quite evident when compared with that of a« = 1.99 or
a = 1,98,

Figure 8 shows u(g) vs g for fixed [(s* — §°)/c]. Again, the closer the
index is to two, the smaller the inner product.

Figure 9 presents u(g) vs ¢ for various choices of [(s' — s%/c], and
fixed characteristic index o and skewness parameter §; the larger
(st — 8% /e, the smaller H,(P,, P,).

4.5 Comparison of the performance of the log likelihood decision rule
(« = 1.95) with a linear decision rule

It is interesting to compare the performance of the log likelihood
decision rule with a linear decision rule, when the observations are
drawn from a nongaussian stable distribution with characteristic index
near two. To be explicit, it is assumed the observations are i.i.d. stable
random variables (e = 1.95, 3 = 0), with my = 71 = 7 and & = —¢&°
= 8 chosen for simplicity. The linear decision rule is simply

N H
Z rs 2 0.
i=1 Ho

This sum is a stable random variable, with parameters (a = 1.95
B8 = 0, Ny, Nsi), assuming H;(j = 0, 1) is true. The total probability
of error is equal to the probability of either an error of the first or
second kind,

PE=P10=P01,

and can be computed from the series described earlier, or from pub-
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0.2+
~0.4f-
-06f-
-08f
-0 a=1.1
_1.2—
—1.4-
g a=15

—2.0—

g1 _g0

=10.0
—26

—281

-3.0 ] | | 1 | I ] | ]
0.0 0.1 0.2 03 0.4 0.5 0.6 0.7 0.8 0.8 1.0

q

Fig. 8—Logarithm of Kakutani inner product H, vs ¢ [« = 1.1(0.4)1.9, 8 = 0]
C(st — 8" /c = 10].

lished tables.® This is plotted in Fig. 10 as a function of [(s! — s%)/c]
for various N. The same figure includes plots of the Hellinger integral
upper bound on the total probability of error using the log likelihood
decision rule. The figure makes it quite clear that the log likelihood
decision rule, for many cases of interest, has a much much smaller
probability of error than the linear decision rule.
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Asymptotically, the total probability of error for the linear detection
strategy behaves as

o[ @] ). e
Pg~O[(S/c)*N*==],

-10.0

uia)

CHARACTERISTIC INDEX a=1.90
SKEWNESS PARAMETER = 0.0

-0.01 ] ] | | | 1 | | |
0.0 o1 02 03 04 05 06 07 08 08 10
q

Fig. 9—Logarithm of Kakutani inner product Hg vs ¢ [(s* — &%)/c = 1, 2, 10, 100]
(e = 1.90, g = 0).
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5x 108~
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2x 10 =00 5=0
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0.1 0.3 1.0 3.0

(=)

Fig. 10—Linear processing probability of error and Hellinger integral upper bound
on nonlinear processing probability of error vs (s! — 5% /¢ (a = 1.95, 8 = 0).

while the probability of error for the log likelihood detection strategy

asymptotically behaves at
Pg = O(e V),
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where A = A(e, 8, v, S) > 0, independent of N. This simple asymp-
totic analysis suggests that the log likelihood decision rule has a much
smaller probability of error than the linear decision rule, for large N,
which is borne out in Fig. 10.

4.6 Comparison of the upper and lower bounds and Pg

It remains to compare the bounds on total probability of error, and
probabilities of errors of the first and second kind, with the actual
quantities. None of the bounds employed here are tight, because the
upper and lower bounds have different exponents. This program is quite
difficult, and has only been carried out analytically for the gaussian
case, and numerically for the Cauchy case. The remaining cases can
be handled numerically following Shannon et al.?® For simplicity, from
this point on it is assumed that 7o = m1 = 3, 8' = —§" = s.

Gaussian (a = 2, —1 S B8 = 1)
Earlier it was shown that

PE = P10= Pm_ =%erfc(—\/§:§)-

This can be upper and lower bounded tightly by (see Ref. 20, eq.
7.1.13)
KLB—N:H'!C’ < PE < Kue—NﬁHci,

1 (VNs | [No L\
KL‘i'(T”\/c—f”) !

Ko L (g LY

where

2 c? T

Since both Kz and K, behave as O(N—1), Py ~ e~ Na¥/4-0ILNM] where
K. and K, introduce factors of log (N) in the exponent. The Hellinger
integral bounds are ¥

1 s 1 Ng?
ZexP(_N@) <Pg<§exp (— E)
By inspection, the exponent in the upper bound agrees with the tight

lower and upper bound exponent [to within a factor of LN (N)]. The
Chernoff upper bounds?® on Py, Po are

Py = exp[—Ng(s/c)?]
or Pio < exp[—N(1 — @)*(s/c)*],

for some ¢ € [0, 1]

and for ¢ = % these exponents agree with the tight upper and lower
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bound exponents to within a factor on LN (N). The lower bounds? are

Py > L exp[—Ng¥(s/c)? — q(s/c)m]
for some ¢ € [0, 1]
or Py > }exp[—N(1 — g)*(s/c)? — (1 — g)(s/c)V2N],

and for N sufficiently large, the upper and lower bound exponents
are identical within a factor of O(N—1).

Cauchy (¢ = 1,8 =0)

The real and imaginary parts of the characteristic function of the
Cauchy log likelihood were calculated numerically at 513 evenly
spaced frequencies starting at v = 0 from a direct numerical quadrature
of the (complex) integral

_f= . (x+s8)+c\fc dx
o@) = [~ exp (”’h‘ (x— o) T &)(-«) @— o+ &’
v = kAv, k=20,---, 512

using an adaptive, step-size, Romberg, numerical integration algorithm,
with an estimated error of 10~ (all arithmetic was performed in
double precision). One representative characteristic function is plotted
in Fig. 11, The stationary-phase asymptotic expression was used for
frequencies outside of this range. The resulting approximation to the
characteristic function was multiplied by itself N times, and a numeri-
cal approximation of the inverse transform of this resulting characteris-
tic function was calculated, using a fixed, step-size, Romberg algorithm
for the first 513 frequencies; an adaptive, step-size, Romberg algorithm
was used for the tail of the inverse transform. The final results are felt
to be accurate to three significant figures. The results are plotted in
Fig. 12, along with the Hellinger integral upper bound. Clearly, the
Hellinger integral upper bound is quite conservative; it is straight-
forward to check that the Hellinger integral (squared) lower bound is
too optimistic, from the curves in Fig, 12,

4.7 Generalizations

The extensions of the results in this section (as well as the following
section) to a much wider class of infinitely divisible distributions is
immediate. Here these extensions are sketched. Elementary arguments
(Ref. 15, page 540) show that if the Lévy measure of an infinitely
divisible distribution behaves asymptotically as a power, i.e., »(X, «)
~0(X7?), v(—w, —X)~O0(X"9, then Pr[z > X]~ 0(X™7),
Pr[z < —X]~ 0(X—9), where p, ¢ > 0. Given a sequence of i.i.d.
random variables drawn from such a distribution with one of two
location parameters, it is straightforward to check that results analo-
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REAL PART OF CHARACTERISTIC FUNCTION
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Fig. 11—Cauchy log likelihood characteristic function.
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Fig. 12—Log likelihood probability of error and Hellinger integral upper bound
for Cauchy (« = 1, 8 = 0) samples vs (s/c).

1166 THE BELL SYSTEM TECHNICAL JOURNAL, OCTOBER 1976



gous to those in this section hold: (z) I(r;) ~ 0(r;?), (72) the probability
of an error of the first and second kind, using a log likelihood ratio test,
is upper bounded by exp(—AN), (77%) using a simple linear test to
discriminate between hypotheses, i.e., adding up the observations and
comparing the sum with a threshold, results in the probability of an
error of the first or second kind behaving as O(NL'-#), 0(NL'~9), and
choosing L’ directly proportional to N (as in the gaussian case) gives
Py, P~ O(N'-?), O(N'~9), which is much worse than the perform-
ance of the log likelihood test in this asymptotic sense.

V. DISCRETE TIME DETECTION OF STABLE MEASURES WITH

DIFFERENT SCALES

In this section, one approach is studied for hypothesis testing of
different scale parameters; since the ideas are quite similar to that just
developed, the treatment is much shorter.

One of two sequences of i.i.d. stable random variables is observed
(under one of two hypotheses, H, and H,) :

H, ry = sn:

<k <
Hy 7= 8n; lsk=N.

The observed or received sequence is denoted {n}¥, where the {n:}?
are i.i.d. stable random variables with known parameters (o, 8, v = 1,
5 = 0); both s! and s" are known. The a priori probability of H; is «;
(7 = 0, 1). The measures induced by {n:}Y under H, and H, are
equivalent for (0 < a <2, —1 <8 =< 1); it remains to find the
optimum decision rule, the log likelihood ratio, and characterize its
performance.

5.1 Likelihood ratio test

Before discussing the general case, the three special analytically
tractable cases are treated.

Gaussian (a = 2, —1 £ 8 £ 1):
1 —z2/4
a(r) = —e~* —o <r< o,
Pa(z) B
y oo g P/ /st s LY (1.
i) = ]n;p::o,,(r,-/.s‘“)/s0 =In st 4 st s !
A’ N l _ Nl g0 1 2 1 2 N 2 1 L'
- 200 = (5) - [(a0) - (20) &7 57
The test involves squaring the observations and comparing with a

threshold; this test is the well-known chi-squared test (see Ref. 5,
pages 163-173).

AV X
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Cauchy («a = 1,8 =0):

p"(x)=%($2+l)_l —o << o;
Y = Palre/sD/s (8 2+ (92
U(r) = I B2l 1“(81) 3,
N 72{_’_ (8“)2 H, ,
Nln( ) EnitEr ey

For |r;| « &, !, Taylor series arguments show I(r;) behaves as 7%, just
as in the gaussian case. However, unlike the gaussian case, where I(r;)
behaves asymptotically (|r:| >> s!, 5% as 0(r2), here I(r;) ~ In (s'/s)
+ 0(r7?%); again, large excursions are soft limited, or essentially
discarded.

Pearson V (a = §, 8= —1):

xigmz x>0

1
pa(x) = {{E

0 z < 0;
_ 1. Pa(ri/st)/st
I(r;) =1In Pa(ri/) /5
={—%ln(%)—2ih[sl—8ﬂ (r: > 0);
0 (r: <0)

, N & 1 .
A = —iln(‘;)—-é(sl—s")z( ‘)EnL.

Again, large deviations in 7; are soft limited or weighted lightly, since
asymptotically (r; > s, $°)I(r;) behaves as 0(r;").

The remaining cases can be treated in identical manner using the
power series and asymptotic series expansions for the stable probability
density function. For (0 < @ < 2, —1 < 8 < 1;a # 1), the important
points are: (z) for |r;| < &, §', the 7th term (8 5 0) in the log likeli-
hood behaves as r;, unlike in the gaussian case, while for 8 =
I(r;) ~ 13, (&2) for [r:| 2> §" s!, soft limiting of large deviations is used,
and the log likelihood’s ¢th term behaves as @ In (s'/s%) + O(|r:|~9).
Figures 13 and 14 show representative log likelihood ratios for fixed a
and varying 8, and fixed 8 with « varying, respectively, computed from
power series and asymptotic series.3!

The final case (0 < a <2, =1, or 8 = —1) must be handled
with a little more care. Only the case 8 = —1 is discussed, since the
other follows immediately. For (1 < a < 2), the first point made above
is still valid, while the second point is valid only for r; > 0, r; 3> s s
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For r; <0, |r;| > &, &', l(r;) behaves as a In (st/s°) + 0(— [ri|V/1=9),
i.e., decreasing with |r;|. For (0 < & < 1), for r; > 0, r; K &, &!, the
¢th term in the log likelihood behaves as 0(r;,~/'=«)_ Finally, for e = 1,
L(ri) = 0{— exp[(x/2)[r:| ]} as i > — .

5.2 Performance limitations

The general problem of finding Pg, Po, and Py, for arbitrary stable
distributions is still open, both analytically and numerically (because
of expense). The three special analytic cases are treated here, to point
out the problems that must be overcome in the general case, if one
attempts to find the log likelihood probability density by transform
methods.

Gaussian (a = 2, —1 < B = 1): assuming hypothesis H;(j = 0, 1)
true, the Fourier transform of the log likelihood probability density is

E(e |Hy) = (Z_‘:)e‘uzv {1 o [(%1})2 3 1]}—1\:;2
seesins = (3) v (3 - ]

These Fourler transforms can be inverted:

_ (80)2 N2 N1
ity = (G o) ="

.exp(— @ja%x)/r(f\fﬂ) A —Nn (:_(1')>0

p(x|Ho) = (%)mzwm—'

-exp(— MT(S_I)%@x)/P(N/Z)J

0
p(x|Hy) = p(x|Hy) =0 $=A’—Nln(%)<0.

Finally, the probabilities of errors of the first and second kind are:

Pp=1-— % (w)mg
b (it 5 ) i
R (g1 5 ) fran

Puw=1 Pu=0 L'<NIn (/). I'> Nln (8/8)
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Fig. 13—Representative log likelihood functions (« fixed, 8 varying).
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Fig. 13— (continued)

Cauchy (e = 1,8 = 0): the log likelihood characteristic function under
H1 is
Sl

E(e™' |H)) = {.[w st (E)iu [2? + (s)2]*[x2 + (Sl)zj_i”_ldx}N

. T
{ (s'/80) v+, [z‘v + 1, %5 -1+ (:_:)j}AT,

where s* > s was assumed. Stationary phase arguments show that the
characteristic function decays asymptotically as 0(|v|~¥/?). Again, the
Fourier inversion lemma guarantees that the problem of finding Py,
is solved. A similar analysis holds assuming H, is true.

An alternate approach is to compute the Mellin transform of the
likelihood probability density function; the results are

sy = (2 o -+ ()]
E(AH) = [(:—:,)'—I-QFI [s -1, %; 1; -1+ (g)i]]v

Unfortunately, it is not clear how to invert this transform to find Py,
and Pio.
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Fig. 14—Representative log likelihood functions (« varying, 8 fixed).
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A third approach is to convolve the probability density of the log
likelihood with itself N times; for N = 2, the convolution involves
elliptic integrals ; successive convolutions are quite formidable. This was
not investigated further.

Pearson V (a = %, 8 = —1): the log likelihood characteristic function
is (assuming now §° > s')

(e |Hy) = [(sl)*v(s")—-'v J[r-i(%- 1)],””
E(e™N' |Hy) = {(sl)iu(so)_;u/[l i (1 B g)]}win.

The log likelihood probability density is

’ _ st N NID—1—(st—atfa) 2 N
p(AlHl)—(m) T e /P(2

z=A —

80 N2 N
! - (N/2)—1p—(80—21] 80) —
pWIHY = (5l ) sommemo [o(3)

pWIH) = pWIH) =0 &' <5 In (/)

In (s'/s% >0

The probabilities of errors of the first and second kind are

2 (L'(s*— s") \N? N N L'(s* — &) N
rum -3 (LERR) (e LR 2) fo(3)

U>§mwm)

2 ’ — el N2 Tfal _ o0
o= 2 (K= OY™ (VN D68 [ (V)

Po=1 Pu=0 ‘U<§m@ww

=l

Again, the general problem is still open analytically, because closed-
form expressions for stable probability density function are unknown
at present (except for the three cases covered here). The general
problem is expensive to tackle numerically at present, because of the
expense of both calculating and storing the characteristic function of
the log likelihood probability density, and because of the expense of
repeating these calculations for many different parameter choices.
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5.3 Analytic performance bounds

Apparently only in the three special cases does the Kakutani inner
product reduce to simple expressions. These results are recorded here,
while Section 5.4 discusses numerical approximations of these integrals
for various cases of interest.

Gaussian (a = 2, —1 = g < 1):
Ppa(z) = LI —w < g < ®
Var

mewry = { [~ o (3)] [ (2)] ]

Hy(Po, Py) = (8)79¥ (s~ 0¥ (ﬁ + %)Hmz;

1 sﬂ sl —N/2
meo Py = [3(5+3)]
Cauchy (« = 1,8 =0):

pn(x)=%(x’+1)" —w <z < ®

° 11 z\]e[ 1 =g |¥
aurop) = | [ [Go (5)] 59 (3)] )"
o0 1 q 1 l—g
wee L[ () ()]
(&Y R COLAY
- (8)" s (3oni-1+G5)
The Hellinger integral can be evaluated from the tables in Ref. 30

263.00:

Pearson V (a = 3,8 = 1):
1
pnl(z) = {W[T_'Jr

g~ le—d= z=20

0 z <0;

1\ gf o0)1—gq N2

Hbo P) = (G5 = g9)
Afglgd \N/2
Hl(PmPl)=(%) )
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5.4 Numerical approximation of performance bounds

The methods and checks employed were identical with those used
in the detection of location for accurately calculating the inner product
of the two stable probability measures.

Figure 15 shows u(g) vs ¢ for fixed (s'/s°) and [a = 1.1 (0.4) 1.9,
B = 0]. This raises the conjecture that the closer the characteristic
index is to 2, the smaller the Kakutani inner product.

Figure 16 shows u(g) vs ¢ for fixed (e, 8) and various values of
(s!/°) : the smaller the (s'/s°), the smaller the H (P, P1).

Figure 17 shows Hy(P,, P,) for various (e, B8) as a function of
(s'/s°% ; note that the case @ = 2 does not appear to be singular here.

5.5 Comparison of performance of log likelihood decision rule
with a chi-squared test

How does the performance of the log likelihood test compare with
that of a chi-squared test, in particular for characteristic index a near 2?7
The chi-squared test involves

Y o4,
>riz L.
i=1 H

The distribution of any one of the 7% can be found from the series
described earlier:
1
wnx=ﬂ;,,s’“,6=0 re >0
PO H,) = { 2oy, 7L = Vo 0 B (9070 =0
0 ri < 0.

The discussion now follows from that in Section 4.6, but is not as
detailed. Using elementary arguments (Ref. 15, pages 268-272), it can
be shown that if 0 < @ < 2, —1 < 8 < 1, then

N
Pr (z: 2> L’IH,-) ~ O(N L/,
i=1

If L’ is set at a threshold which is a fraction of N, then
Pg ~ Q(N—(a)

i.e., the probability of error grows with N, the number of observations.
For comparison, the upper bounds on Py, P1o, and Pg for log likelihood
detection all behave as 0(e=4"), where A depends on (e, g, §', and &°).
Thus, the log likelihood test is asymptotically far superior to the chi-
squared by the above argument.
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0.0

ula)

Hy: r=s'n

Hg: r=s0n
0.9 s1=1/16,s0=1
=0
-1.0 ] | | | | | | | |
00 01 02 03 04 05 06 07

( P/‘ig. 15—Logarithm of Kakutani inner product H, vs ¢ [a = 1.1(0.4)1.9, 8 = 0]
§/s) = 16.

Vi. DISTINGUISHING STABLE PROBABILITY MEASURES WITH DIFFERENT
CHARACTERISTIC INDICES AND SKEWNESS PARAMETERS
For completeness, this section touches on the form the log likelihood

test takes for discriminating between stable distributions with different
1176
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characteristic indices and with different skewness parameters. Per-
formance of this test will not be covered here; much of the earlier
discussion on performance is applicable here. A table in the Ap-
pendix summarizes the behavior of I(r;) both asymptotically and for

ulq)

s1=1/16
Hy: r=s'n
Hg: r=s%n
-091 s0=1

a=190,4=00

-1.0 I 1 I | ] | | | |
0.0 0.1 0.2 0.3 0.4 05 0.6 0.7 0.8 09 1.0

Fig. 16—Logarithm of Kakutani inner product H, vs ¢ [(a = 1.90, 8 = 0),
(s/8h) =1, 4, 8, 16].
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1.0,
£ S
0.9} g :
Q
q
Q
0.8~ Q
Q
o'
T Q
- o
£ ..k 3 . 0
w a=070
z Q .
o
w a=0.90
g - :
3 0.6
b a=1.10
I - Q Q
[ 5B\
= —pl—=)=pr(=)dx -
o5k - ol A1/ 00 \0 X . a=130
pix}) = plx;a, §=0) a=150
b
s0=1
ol §1=1/2,1/4,1/8, 1116 0 a=170
NONa - 1.90
o a=195
0.3 __ | | L a=2.00
1.0 2.0 5.0 10.0 20.0

{s0 /1)

Fig. 17—Hellinger integral vs (s!/s°) [« = 0.7(0.2)1.90, 8 = 0].

|7:] < 1, and includes both the results in the Sections 5.4 and 5.5 as
well as the results of this section.

One of two sequences of i.i.d. stable random variables with known
parameters is observed. In Section 6.1, the parameters are (o, 8,y = 1,
6 = 0), where 0 < a® < a! = 2; in Section 6.2, the parameters are
(e, B/, vy = 1,8 = 0), where —1 < 8° < B! =1 (recall 7 = 0, 1). The
special case (« = 1, |@| = 1) is covered in the table in the Appendix
but not in the discussion here.

6.1 Distinguishing different characteristic indices

For —1 < 8 < 1, the measures P, and P, are equivalent, so the log
likelihood ratio is always finite. The log likelihood test is

N H
N =5 U 2 L,
i=1 Hy

where

Il

I(r) = I Pn(rii e, By =1,8=0

).
pa(ri;a®, B,vy=1,8 =0)
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Two cases arise: symmetric (8 = 0) and asymmetric (8 # 0, —1 < 8
< 1) stable distributions. For the symmetric case, the distributions
are symmetric about their unique mode, and thus I(r;) ~ |r%| for
|ri| < 1. For the asymmetric case, the modes no longer coincide, and
I(r;) ~r; for |r;| < 1. Recall that for 1 < a < 2, for fixed skewness
B8 (8 < 0) the mode decreases as « decreases; for 0 < a < 1, the op-
posite is true. Thus, [(r;) is the difference of two unimodal functions
and, in general, should have two points of zero slope. For |r;| >> 1,
I(r;) = 0(—In |r;|), so large deviations are weighted quite strongly.
Note the log likelihood distribution has its support on whole line, un-
like the two previous sections, except for (0 < ap <1 = ay £ 2,
(8] =1).

For 8= —1, and 1 < a® < o' < 2, the measures Py and P, are
equivalent, and the above discussion follows immediately with one
exception: for r; > 1, I(r;) = 0(—=Inr;), while for |r;| > 1, r; <0,
U(rs) = O(]r;|ooleo=).

Forg = —1,0 < o < o' < 1, the measures P, and P; are equiva-
lent. For r; >0, |r| K1, I(r;)~r@i== while for »> 1L
I(r;) = 0(—Inr,).

Finally, for 8 = —1, 0 < &® < 1 < o' < 2, the measures P, and
P; are neither equivalent nor mutually orthogonal. For r;>>1,
I(r;) = 0(—Inr;), while for r; <0, I(r;) = . For r; >0, r, <1,
I(r;) = 0(re/m—1),

6.2 Distinguishing different skewness parameters

For —1 < 8% < 8! < 1, the measures Py and P, are equivalent, so
the log likelihood ratio is finite. The discussion follows that of Section
6.1 exactly, with the difference that if »;>> 1, l(r:) = In (R.1/R.)
+ 0(ri), while if [r;| 3> 1, r; <0, i(r;) = In (L1/Lo) + 0(|r:[~).*

For —1=8"<p <1, 1= a<2 the measures Py, and P, are
equivalent. For |r;| > 1, r; <0, I(r;) = 0(|r:|=/=), while for r; > 1,
l(rd) = In (R1/Ro) + 0(r7 7).

For —1 =p8"< g <1, 0 <a <1, the measures P, and P, are
neither equivalent nor mutually orthogonal. For »;>> 1, I(r)
= In (Ri/Ro) + 0(r;®), while for 0 < r; < 1, I(r;) = 0(r#/=~"). For
0>r,lr) = .
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* See the Appendix for definition of constants R;, L;(j = 0, 1).

PROBABILITY MEASURES—I 1179



APPENDIX

Asymptotic Behavior of Log Likelihood Ratio

A.1 Location (3)

— p(x! &, nB: Y, 51)
He) = I a, B, v, 00

a=2

0<a<?2 —-1<8<1
l1<a<2,8=-1
a=18= -1

0<a<],g=-1

A.2 Scale (c)

r— +
0(z)
0(z™)
0(z™)
0(z™)
r— +
0(z™)

bg < 8y

r— — ®
0(z)

0(271)

0(— [=[¥=)
0(—e(x/D)1z=841)

z] &

0(—(z — 8y)2/=1),

I(I) — lnp(x;a: AB: Y1 = C‘LB = 0)

p(;a,B,70=c585=0 <

r— + r— —®
a=2 0(2?) 0(=*)
0<a<2 —1<B8<1* aln(ei/eo) +0(x~%) aln (e1/co) + 0(|z|~%)
l1<a<28=-1 aln (c1/co) +0(z=) 0(—|z|e/=1)
a=18= -1 aln (c1/co) + 0(z—=) 0(—elr/Nlzlal)

z— + o z)0
0<a<lg=-1 aln (e1/co) + 0(x=) O(—zola),

A.3 Characteristic index (o)
l(.’l‘,) = lnp(m; ay, .B; Y=

p(x; o, |6.| Y=

0<au<a1=2,—1<,8<1
O0<epp<a <2 —-1<B8<1

l1<ay<au=28=—1
l<agp<ayy<2pg=-1

=qp<a=248=-1
1=ao<a1<2,ﬁ=—1

0<do<1<a1<2,,3=—'1

0<a<a=18=—1
0<ao<a1<1,,8=—-1

b =

5___3;, 0<an<a1§2
r— + o T— —
0(—22) 0(—22)

0(—Inz) 0(=In |z|)

0=z O(|z|wier)
0(—Inz) 0( |z | =o/a0-1)
0(—22) 0(et=/1=l)

0(=Inz)  O(et=mi=l)
z— + z|0

0(—In 2) 0 (pao/ =0—1)

0(—Inz) 0 (gao/a0—1)
0(—In z) 0 (xao/a01),

* This excludes the Cauchy (e = 1, 8 = 0), which was examined in the text as a

special case.
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0

1
a
1

[+

0

A4 Skewness (p)

P8,y =138=0) _
l(x)_lup(x;atﬁﬂs'}'=1:a=0) 1=h<h =l

r— + @ — —
<a<2 —1<Bo<Bfi <1l In(Ri/Ro)+ 0z In (Li/Lo)
+ 0(|z|7)
<a<2 -1=8<p <1 InRi/Ry)+ 0= 0(|z|=7?)
=1, -1=8<p<1 In (Bi/Ro) + 0(z==) 0(e=D1=l)
<a<2 —-1=8,1=58 0(—zo/at) 0(|z|a/=1)
=1,-1=8,1=8 0(—etmlzl) 0(etx/nlal)

z— + z]0
<a<l,—-1=8<p<1 In(Ri/Ry)+0(x"*) O0(z=)

B; tan (wre/2)

R; = sin"'—zr (6; — a), tan (w6;/2)
=01

sin T (6; — «), tan (w8,/2)

L; 5

—B; tan (ra/2).

]
Il
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