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The optical fiber drawing process is considered in ils totalily—from
source to forming zone to draw-down region and take-up end—as a prob-
lem in fluid dynamics. Fiber drawing of most glasses is dominated by
viscous stresses, surface tension effects, and quenching rates. This con-
trasts with the drawing of textile fibers, where other fluid properties and
non-Newtonian effects can play important roles. Preliminary lime-in-
vartant ‘“‘base flow” models are developed for glass drawing, using the one-
dimensional, small-slope approzimation of extensional flow. First-order
sensitivities of these base flows to changes in operating conditions are
examined via a stabilily analysis. Two important tnstability mechanisms, -
denoted as the tensile and capillary modes of dynamic fiber response, are
discussed. Several follow-on objectives arising from this study are described.

I. INTRODUCTION

Stringent tolerances set on optical fibers used in communication
systems have generated a need for understanding the fluid dynamics
of the fiber drawing process. The responses of this process to various
disturbances, especially those resulting in perturbations of the fiber
diameter, are of interest.

For steady-state drawing, one seeks analytic models that interrelate
the draw-down ratio, draw force, flow rate, and some characteristic
temperature, Such models serve two purposes: they predict the effects
of changes in the operating parameters and can therefore be used in
the control of industrial drawing processes; they also provide a “base
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state” for the theoretical study of dynamic responses. Such responses
could be due to a variety of physical disturbances; for example,
mechanical vibrations, thermal transients, ambient gas flow, and even
acoustic noise. All of these disturbances may produce variations in the
diameter of the finished fiber.

In studying the perturbations of liquid fibers, our philosophy departs
somewhat from the more traditional one of stability analysis in textile
engineering. Textile fiber studies, in general, strive to avoid fiber
rupture and gross distortions of the thread line. (See, for example,
Refs. 1 through 9.) In cases where continuous drawing of textile fibers
is impossible, much emphasis is placed on the prediction and control
of thread length, i.e., the filament lengths attainable between spon-
taneous ruptures.

The drawing of optical fibers takes filament continuity for granted.
However, the ultimate optical application is sensitive to small diame-
tral perturbations, far from rupture. Moreover, optical fibers are
usually drawn at higher viscosities and draw forces than textile fibers.
Starting from a much higher melt temperature, the subsequent viscos-
ity increase due to quenching of the glass is much more severe than in
polymers. Also, in its molten state glass is more nearly Newtonian than
most polymers.

Our purpose, then, is to model the mechanisms by which perturba-
tions arise in the glass-drawing process and are frozen into the finished
fibers. Based on this understanding, we hope to control fiber dimensions
within the tolerances imposed by optical considerations (e.g. Ref. 10).

The fluid dynamics of fiber forming involve a source flow, also re-
ferred to as the forming zone, and a draw-down region. The forming
zone is usually characterized by a rapidly contracting flow issuing
from the bottom of a preform, or pulled from an orifice at the bottom
of a crucible (Fig. 1a). In drawing from preforms, we may distinguish
between a very sharply contracting configuration (Fig. 1b), commonly
encountered with laser heating, and a more gradual contraction that
results from furnace heating (Fig. 1c). We include in Fig. 1d the case
of an overheated preform, where the forming zone consists essentially
of a liquid drop from which the filament is drawn. The different
forming-zone configurations shown in Fig. 1 can imply fundamenta]
differences in the flow field, as far as the steady-state and potential
instabilities are concerned. For example, there is some evidence!! to
suggest that the overheated preform, Fig. 1d, is capable of self-sus-
tained oscillations at critical draw speeds, whereas, at noncritical
speeds, the liquid reservoir in the pendant drop tends to absorb per-
turbations coming from the take-up end.

The forming zone makes a continuous transition to the draw-down
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Fig. 1—Fiber-drawing methods.

region, where an essential part of the fiber contraction occurs. Typical
draw-down ratios, defined as terminal velocity/source velocity, in this
region run between 10 and 100. Most fiber stability studies place major
emphasis on the draw-down region, because of its physical importance
and mathematical tractability. However, the role of incipient perturba-
tions in the forming zone cannot be ignored. The essential need for
modeling this part of the flow field, if only by numerical simulations,
is obvious. For completeness, we also recognize that a very small
amount of fiber deformation occurs beyond the draw-down region ; but
this falls within the visco-elastic rather than the fluid-dynamic regime.

Much of the empirical evidence in textile and glass-fiber drawing!
suggests that fluid dynamics in the draw-down region is governed by
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the so-called Trouton viscosity, a measure of the ability of fluid
filaments to sustain tensile stress as a function of elongational strain
rate. Indeed, if fiber breakage occurs in the draw-down region, it
exhibits the neck-down and cohesive separation reminiscent of tensile
test specimens. Much of the early modeling by Ziabicki'?:! and sub-
sequent efforts by Pearson,®!4 Kasé,®7 and others are based on this
notion, and for this reason we refer to these analyses as ‘“tensile”
models.

In parallel, and possibly quite independent of the tensile mechanism,
local flow conditions may exist where surface-tension-driven phe-
nomena play a significant role. Such ‘““capillary’’ responses could occur
at the hot tip of the forming zone, where the viscosity is still quite low
and the filament begins to take shape. Capillary models of filament
response go back to Rayleigh’s classical work,!5:1¢ with subsequent
extensions and experimental corroboration by, for example, Taylor,®
Tomotika,'”!'® and Weber.!?

The present paper serves several purposes: (i) it generates pre-
liminary base-flow models for the draw-down region, using the one-
dimensional, small-slope approximation of elongational flow; (i) it
makes a preliminary assessment of sensitivities, through differences in
base flow, to changes in operating conditions, such as take-up speed
and quenching profile; (777) it presents the tensile and capillary models
of dynamic fiber response as fundamentally distinet mechanisms; it
explores their applicability to different parts of the draw process by
suitable modifications and extensions of existing theories; (i) it pro-
jects several follow-on efforts aimed at unified models of the steady
and perturbed drawing process, viz. more realistic base-flow models,
including heat transfer and two-dimensionality at the start of the
draw-down region, and transient-response models, which account for
these refinements in the base flow together with possible interactions
between capillary and tensile mechanisms.

Il. REVIEW OF EARLIER WORK

In this section, we discuss some of the literature on tensile and
capillary stability analyses of liquid filaments. Table I relates several
key publications and identifies their underlying assumptions and
physical models.

The first comprehensive study of tensile fiber models was undertaken
by Ziabicki et al.!=%12.13.20 Motivated by the textile engineers’ interest
in potential instabilities and fracture mechanisms, the authors reviewed
existing phenomenological evidence on filament ‘‘spinning.”* They

* This traditional terminology, which suggests twisting a fibrous material into
strands, will be avoided henceforth as inappropriate to the drawing of liquid filaments.
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Table 1 — Overview of tensile and capillary fiber models

Tensile models,
physical features
discussed.

Viscosity = 3 u, inertia,
surface tension,
uenching, finite
raw-down.

Viscosity = 3 g,
stability analyses.

Viscosity = 3 g,
stability experiments.

Pertinent literature

Refs. 1-4, 12, 13, 20:

Refs. 5, 14: dynamic

Refs. 6, 7, 21, 22, 25:

experiments_corrob-
orating cyelic and
transient responses of
tensile fiber models.

analysis of attenuat-
ing fibers, including
the effects of viscos-
ity perturbations and
different base states.

analysis and experi-
mental corroboration
of relevant physical
factors in base state
and some dynamic
perturbations,

Newtonian viscosity,
inertia, and surface
tension.

Refs. 16, 17, 18, 19:
uumflete theories of
capillary jets, Modifi-
cation for quenching
effects given here.

Inertia and surface

Capillary models,
tension.

physical features
investigated.

Newtonian viscosity
and surface tension.

Refs. 16, 19: theory of
inviseid capillary
fluid eylinders.

Pertinent literature | Ref. 16: cylindrical
filaments neglecting

inertia.

Refs. 17, 18: adaptation
to contracting flows
and quenching effects.

Note: Numerous authors have conducted experiments over the years to dem-
onstrate instabilities of capillary jets and filaments under isothermal, i.e.,
constant viscosity, conditions.

also cite experimental evidence that when a filament is formed, say
in the wake of a free-falling viscous drop, either a tensile (‘‘cohesive’)
fracture or capillary separation may sever the flow.

In Ref. 12, a suitable tensile theory is developed for the prediction of
finite filament lengths, assuming the cross-sectional distribution of
longitudinal velocities to be uniform and the steady-state flow to con-
tract with small slope. Reference 20 accomplishes the same for capillary
effects by an adaptation of Rayleigh's classical theory (as we have
done independently for our own purposes). Ziabicki’s subsequent
publications include a thorough evaluation of experimental results,
corroborating his predictions of filament lengths.*

Ziabicki’s comprehensive effort was followed by a series of papers
by Pearson and others, aimed predominantly at tensile stability models.
Starting from the simplest possible representation!*—an isothermal
filament under constant viscous tension—progressively more elaborate
results were achieved by adding fiber quenching, inertia, surface
tension, and gravity. A physical interpretation of this work, however,
is difficult since the explicit features of diametral perturbation profiles
along the fiber, their time dependence, and their sensitivity to proper-
ties of the base state seem poorly understood. We will return to this in
Section VII. Ziabicki’s tensile flow models and the draw-resonances

* Like other Western readers, the author has been somewhat late in fully recogniz-
ing the significance of Ziabicki's work, much of which was initially recorded in Polish
journals. Note, however, Ref. 4 for a more recent, comprehensive account.
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predicted by Pearson et al. were corroborated by several experimen-
ters. We cite the work of Kasé*+?? and Donnelly and Weinberger? as
examples in this area.

As mentioned earlier, the study of surface-tension-driven perturba-
tions contributes another, as yet separate, view of fiber stability which
goes back to Rayleigh's classical work as presented in Refs. 15 and 16.
Rayleigh himself studied several simplified cases: (z) constant viscosity
plus surface tension (no inertia), (sz) inertia plus surface tension (no
viscosity), and (777) constant viscosity plus inertia plus surface tension.
Each analysis yields an exact solution of the hydrodynamic perturba-
tion equations for an incompressible liquid contained by a cylindrical
boundary with surface tension. Simplifying assumptions are made only
in solving the characteristic equations.

Weber" showed that exact solutions of the characteristic equation
differ little from Rayleigh's approximation. He also considered the
effect of aerodynamic drag on the perturbed filament. Tomotika!?.18
extended Rayleigh’s model to allow for an ambient viscous fluid that
surrounds the filament and is subjected to a steady elongational flow.

For our own purposes, we need to modify Rayleigh’s and Tomotika’s
work to reflect not only contraction in the base flow but also the viscos-
ity buildup due to quenching. These are essential features of such
‘“capillary’” models of fiber drawing and are therefore listed explicitly
in Table I. A display of diametral response profiles along the fiber and
their dependence on wavelength and base-flow properties is given for
comparison with tensile stability models.

lll. FUNDAMENTAL EQUATIONS AND THE ASSUMPTION OF
ONE-DIMENSIONAL FLOW

Let z = axial coordinate

radial coordinate

axial velocity component
radial velocity component

= fluid density, assumed constant

r

1

= surface tension,
= Newtonian viscosity, a function of temperature.

T Q9 v 8
|

In the cylindrical coordinate system (r, z), the Eulerian equations of
mass and momentum conservation read:

bt u+Z=0 1)
ar, | 1 e 1
pluc+ uu, +vu] = TE+ or + S =y (2)
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2 a Tz 1 «
plve + uv, + v, ] = (;—; + aTT + T (3)

where ,, 7;, 7 denote stress components. In all other instances, the
subscripts 7, z, ¢ denote partial derivatives.
The constitutive relations for an incompressible Newtonian fluid are

av
7= —p+ 2;45;
ou

Tr = —D + 2.“ -
ar
4)

T

9, %
—P+2#r

dv |, du
Trz = H (—a; + FZ) ]
where p is the pressure. It is one of the dependent variables, along
with u, v, and the free surface configuration r = a(z, t). Equations (1)
to (3) have the following boundary conditions:
Atz =0:
v(r, OJ 'l') = ”0("; t)
u(Tt 0, t) = uo(l‘, t) ()
G(O, t) = Gu(f-).

At z = L, the take-up position:
o(r, L, t) = v(r, t). (6)

At r = a(z, t): the kinematic condition
da , da
v=u_ + - )

together with tangential and normal surface-stress conditions, which
we do not reproduce in detail at this point. (See Appendix A.) Once a
solution of this boundary value problem has been found, the draw
force at any cross-section follows from

Pz, t) = 2ama/[1 + (3a/02)' ]} + 2r L * rrdr. ®)

In particular, AP(f) = P(L, t) — P(0, t) and, to the extent that the
solution for r, contains u, p, o, the expression for AP depends on these
fluid properties.

The complete set of governing equations for the fiber drawing
process includes an energy equation from which the temperature dis-
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tribution T'(r, 2, f) in the draw-down region is determined. This, in
turn, yields x as function of position and time. Strictly speaking,
therefore, the heat-transfer equation is coupled to the fluid-dynamic
equations. However, since we give it a separate, detailed treatment
elsewhere, we uncouple it from this preliminary discussion and in-
troduce (r, z), for nonisothermal draw-down, as a function presumed
obtainable from some heat transfer model.

The general axisymmetric, free-surface flow problem posed by (1) to
(7) is a formidable one. However, for the purposes of an engineering
analysis and to gain some basic insight, much headway can be made
by taking advantage of the fact that |a.| = 0(e) <1 and |u/v|
= 0(e) < 1 throughout the draw-down region. This “small slope’
assumption expresses the obvious fact that fluid flow in fiber drawing
is essentially one-dimensional. The consequences of this kinematic
feature are developed in Appendix A, taking advantage of the fact that
we are dealing with low-Reynolds-number flow away from regions of
strong relaxation in velocity profile. Specifically, we find :

(%) ». =0, i.e., “plug” flow throughout the draw-down region.
(12) Tve = €(7s 7y, To)7/0
(77) w = er/a
(v) 7. = 74, uniform over the cross-section
(v) 7. = —a/a + 3uv,, over the cross-section,
where 3 u is the so-called “Trouton’ viscosity for extensional
flow in a liquid filament.

These features of one-dimensional flow in the draw-down region sug-
gest that mass and momentum conservation may be expressed con-
veniently in terms of cross-sectional fluxes and stress integrals. Equa-
tions of this kind may be obtained formally by integrating over the
fiber cross-section: eq. (1) for volume conservation and eq. (3) for the
axial momentum balance, Alternatively, we may derive these equations
directly by taking a segment, of length dz, from the tapered axisym-
metric filament as control volume. We obtain for volume conservation

(a): + (a*). =0 (9
and for axial momentum conservation
p(a@?), + p(a%), — 3(a?uv,), — oa, = 0. (10)

For an eventual comparison with the early work of Pearson et al.,
we also record (10) after the terms in p and ¢ have been dropped. We
have the simplified momentum equation

atuv; = M(t), (11)
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where M is an arbitrary time function. This equation merely states
that the draw force is uniform along the fiber and varies only with &.
For later reference, the time-independent (i.e., steady-state) versions
of (9) and (10) yield
a¥ = const. = @ (12)
and
C = 3auv. — pQv + ag, (13)

where C is a constant of integration, viz. the cross-sectional draw force
reduced by the momentum flux.

IV. STEADY-STATE SOLUTIONS FOR THE DRAWING PROCESS

In this section, we consider solutions of the time-independent
equations (12) and (13). These constitute steady-state representa-
tions of the drawing process which are of interest for two reasons. First,
they model the steady drawing operation and yield some insight into
its controlling parameters, i.e., the dependence of draw force and
draw-down profile on the draw-down ratio, the viscosity profile, fluid
inertia, and surface tension. Second, they provide reference states on
which to build dynamic response models for fiber-stability studies. In
this context, such solutions are often referred to as base flow models.

It is well-known in fluid-dynamic stability theory that detailed
features of the underlying base flow can be quite important to the
predicted dynamic response. Hence, it is necessary that we examine
several base-flow solutions of the drawing process for the physical
features they represent.

Starting from (13), one observes that the first term on the right-hand
side represents the viscous stress effect, the second fluid inertia, and
the third a contribution from surface tension. We assume the following
fiber dimensions and fluid properties at the start of draw-down:

v = 10 cm/s

102 cm

v, = 100/s (e.g., Av = 100 cm/s, over Az = 1 cm)
2.5 gm/cm?

200 dyn/ecm

100 poise for soda lime glass

= 1000 poise for fused silica.

)
Il

a ®
Il

Note that the temperature at the interface between forming and draw-
down zone is very dependent on as yet unknown fluid-dynamic and
heat-transfer conditions in the forming zone. Therefore, the assumed
values for u are rather tenuous. 100 poise probably represents a mini-
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mum for soda lime glass, as might be expected in fiber drawing from

crucibles.
Given these data, the order-of-magnitude relations between terms

in (13) are:

Viscosity  Viscous stress Inertia Surface Tension
» (poise)  3ua®’ (dyn) pQv (dyn) oa (dyn)
Soda lime glass 100 3 2.5 X 1072 2
Fused silica 1000 30 2.5 X107 2

Thus, inertia effects amount to barely 1 percent of the viscous term
under the most favorable circumstances, while surface tension can be
important when g is near its minimum. However, physical evidence
suggests rapid quenching of glass fibers in the draw-down region.
Hence, inertia and surface tension effects soon become negligible as the
temperature drops by several hundred degrees over the first few milli-
meters of the draw-down region, causing u to grow by several orders
of magnitude (see, for example, Ref. 23).

Disregarding, for a moment, the quenching effect that actually
occurs in the draw-down region, we briefly consider an isothermal base
state for two reasons. First, it permits an understanding of secondary
physical effects such as inertia and surface tension, without being
obscured by viscosity changes. Second, in later dynamic response
studies, the isothermal base state serves as a basis of comparison for
the stabilizing effect of the quenching that does occur.

Letting the fluid properties in (13) be independent of 2, we consider
flow conditions such that inertia and surface-tension effects can be
viewed as perturbations in relation to the viscous stress. Eliminating
the radius a from (12) and (13) and nondimensionalizing according to

a( )

‘I'=U/UOJ §=Z/LJ ( )’_ ag- ]

¥ — DV = —We¥t + Rel?, (14)
where vy = vatz = 0, L = length of draw-down region, and D = LC/
3advguo, the nondimensionalized equivalent of € in (13). The inertia
and the surface-tension terms are characterized by a Reynolds number
Re = voLp/3peand a Weber number, We = oL/3agouo. The elementary
solution for (14) with We = Re = 0 is

‘I’(n) = B“"E, (15)
where we have used the boundary conditions
¥ =1 at =0
v=FK at F=1
and £ = v./vyis the so-called “draw-down ratio.” Note that D = InE.

we find
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NORMALIZED FIBER RADIUS

Corrections to this simple base-state solution for small We and Re
can be found by perturbation methods. A first-order approximation
for We <« D and Re << D is found by substituting (15) into the r.h.s.
of (14):

V() = exp [Inbg‘ + — (e (nET — 1) + (e“"E - 1)] (16)

Resubstituting this into the right side of (14) for a second iteration,
terms such as exp[ef"#], were approximated by power series prior to
quadrature with respect to {. Then,

A 1
wm=em{1_wes.c[£ We _ink _ (et il ]

oInE’'InE’ 2 ' InkE
2Re 4We _ (4We + }Re)
T Rek [ Ik’ Wk ' " mE f] (D

where the expression for 3¢[a, b, ¢, d, {] is recorded in Appendix B.
Numerical results from (17) are best presented in terms of the non-
dimensional radius a/a, = X. According to (12)

X =¥ (18)
This has been plotted in Figs. 2 and 3 for a range of values in We and

0.900
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0.300 | | | J | | | |
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Fig. 2—Perturbation solutions for base-flow profiles with increasing surface tension ;
E =10, Re = 0.
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NORMALIZED FIBER RADIUS
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E Fig. 3—Perturbation solutions for base-flow profiles with increasing fluid inertia;
= 10, We = 0.

Re. These results show a tendency for filament contraction to be de-
layed with increasing surface tension and fluid inertia, a familiar phe-
nomenon from more accurate base-flow models obtained by numerical

methods.?*
Now let us return to the more realistic case of variable viscosity. We

denote it uon (), where the second factor represents only the dimension-
less dependence on {, with (0) = 1. Then (14) becomes

70’ — D¥ = —We¥t 4+ Rel?, (19)
Using an inverse approach, we can, for example, assume Re 5 0,
We = D = 0 (where D = InFE is no longer true) and ¥ = e!'", as in
(15). This yields

n = g_g efinE (20)

and constitutes an inertia-dominated base flow. Experimental data
suggest that something like an exponential viscosity buildup along the
draw-down region is a fair representation of quenching effects. Note
that for this base-flow model,

X = ¢-(nED)E (21)

which has the disadvantage that X — 0 for { >> 1. To provide a finite
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asymptotic value for X, we may assume a draw-down profile of the
form X = fe-«f + ¢ with f+¢ =1, 0 < f, ¢ <1, and solve for ¥
from (18) and » from (19).

We summarize the three elementary base-flow models obtained so
far with the notation InE/2 = a:

Unquenched base flow; Be = We = 0:

X =e¢o ¥=ed g=1 (22)
Quenched base flow; Re # 0; We = 0;
X—0 for {— =: (23)

X = ¢of, ¥ = gof, 7 = eof,
Quenched base flow; Re # 0; We = 0;
X finite for { — o :
X= (fes+g), ¥=1/(fe+¢g? n=es/(feF+g). (29)

In addition to the inertia-dominated base flows (23) and (24), we can
show that

1 f 1
X = feolf + \Ir=——(1—2—e—°f) ) =—e (25
f P 7 g n 7 ( )
is a solution of the approximate fluid-dynamic and heat-transfer equa-
tions, for small «, if we let Re = We = 0 and assume

g o= poefO—TITO),

where T, is the initial temperature and g >> 1. This represents a
quenched base flow that is not inertia-dominated, in keeping with some
of the perturbation equations discussed later on. Note that for each of
these base-flow models da/dz = 0(aao/L). Sincea = 0(1) but ao/L K 1,
this means that |da/dz| <« 1 and confirms the basic assumption pro-
viding for one-dimensional flow, as discussed in Section III. Note also
that the viscosity profiles in models (23), (24), and (25), which reflect
a cooling process along the fiber, are connected with the draw-down
profile through the parameter a. This parameter is indicative of the
quenching rate in 5, and also controls x’, the slope of the draw-down
profile.

The draw-force follows from any of these solutions by the obvious
relation, in dimensional form,

P = rna’r. + 2awrec = 3wa’pv. + wao. (26)

If we neglect ¢ and substitute one of the base flows, we find that P
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depends on aq, v, o as well as the draw-down ratio and the quench-
ing rate ; all of which could be expected on physical grounds.
Clearly, we could refine upon the viscosity profiles to be used in
simple base-flow models. Since some experimental temperature profiles
tend to show an exponential decay and the viscosity temperature
relation for many glasses is of the form n ~ €7, we might consider
functions of the form :
n = r + s exp(e®).
However, such elaborations result in a loss of mathematical simplicity
and usually lead to equations for ¥ that require numerical integration.
At that point, it seems more appropriate to solve the coupled heat-
transfer/flow problem by numerical means. This has been done and is
documented elsewhere.?*

V. PERTURBATION; EQUATIONS FOR TENSILE STABILITY MODELS

In this section, we develop the first-order perturbation equations
necessary for a linear stability analysis of tensile fiber models. Let the
first-order solution of (9), (10), and (11) be denoted

= a(z)[1 + d(z1)]
v(2)[1 + 9z, 1)] (27)
= v(2)[1 + 2(z, 8)],
where a(2), v(z), and »(2) represent radius, velocity, and kinematic

viscosity for a suitable base state, in dimensional form for the time
being, and d, 9, # are dimensionless first-order perturbations of these

quantities.
Substituting (27) into (9), the first-order variation of the continuity

equation reads

= &

<

1 1.
dz+5d[+§ﬂg"" 0. (28)

Similarly, (10) without the surface-tension term becomes

. fve v 20 1. W (202 20
Uu+vz(p_+;_37)_37wl+az(7_3;)

2 v 2v 7)) 2v
— = a a2y = — == gl — — =2
3vm+a(dyv 3)'/v-l-1'1(1‘l 3)‘/9
o Vo [ 7
= =9 v( ’ ),/V (29)

and from (11), the momentum equation without inertia terms,

m+a+ﬂ+§m=%¥, (30)
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where we have used a?w, = P, = const. from (11) and d(¢) is a per-
turbation of M (f). Since the examples in later sections use the base
states of Section IV, it is convenient to nondimensionalize the space
and time variables as

al =3 tﬁf—t =7 (31)
and use the notation
d( ) _ ' a( ) _ )
d3 - ( ) B.Ild. d’n" - ( )' (32)

The specific versions of (28), (29), and (30) now develop as follows.
With the base states (22) or (23), eq. (28) becomes

d' + 39’ + de? = 0. (33)
Neglecting inertia in the momentum equation, (22) and (30), for the
unquenched inertialess base state, yields

2 + 9+ 5+ 3’ = o(r), (34)

where ¢ is an arbitrary function of 7. On the other hand, the momen-
tum equation (29), using the quenched inertia-dominated base state
(23) leads to

3" — 49 — 4de?? — 2je P = —29' — 49. (35)

Turning now to the inertialess, quenched base state (25), we revert to
(28) and (30) as basic equations, but reserve the substitution of v and
v, from (25) for a later time.

For some of the examples treated in later sections, it is convenient
to eliminate 9 from (34) and (35) by means of (33) and similarly from
(28) and (30) for base state (25). The resulting equations for 4 are
recorded in Appendix C for later reference.

Conversely, the boundary conditions for some problems demand an
equation in 4. This is the case with steady-state responses to changes
in the takeup velocity, which we treat in the next section. If (27) is
used in (12) and we let @ = Q(1 + ¢), the first-order variation of that
equation yields )
2 + 7 = . (36)
Next, consider (13), where we neglect surface tension and perturba-
tions in ». As noted before, the constant C may be interpreted as a
force parameter, carried from the forming zone to the draw-down
region. Taking the first variation of (13), letting ¢ = C(1 + ¢é), and
eliminating d by means of (36),

C

AP PR (LANLL A N
~ L= 3Qpc+q(. ) (37)

Uz
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Nondimensionalizing the base-flow variables in this equation according
to Section IV, we have

. Re¥ =k Re¥ ¥,
- So =ty (BX -, (38)
where
_ Lece
"~ 3avepo

Equation (38) is designed to yield changes in the steady-state velocity
profile, 9, as a function of ¢ and %, which are perturbations of the volume
flux and force parameter of the base flow.

In summary, this section has developed first-order perturbation
equations based on the continuity and momentum equations of
Section III. The perturbation equations were given in terms of d or 9
as needed for the steady-state and dynamic-response studies to be
pursued in Sections VI and VII.

VI. PERTURBATIONS OF THE BASE FLOW

In this section, we use the time-independent versions of perturbation
equations derived in Section V to display changes in several base-flow
solutions due to shifts in such steady-state parameters as the boundary
values and the viscosity profile along the fiber. Since these parameters
are often accessible to control in real fiber-drawing processes, their
effects on the steady flow are of operational interest. Obviously such
effects could be determined by differencing neighboring base-flow solu-
tions in the control-parameters space; however, exhibiting the changes
(analytically) as first-order perturbations can yield useful insight for
the design of feedback controls.

We start by examining the response of steady state (24) to a change
91 in take-up speed. Substituting the appropriate base-flow expressions
for ¥ and » into (38), one has

e—? e?
' — Re— 0 = ke"X + (Re — 2f) - 4, (39)

where

s=ar (=20 s-jerty

and a factor of 1/« has been absorbed in Re and k. The boundary con-
dition for (39) is

=9, at ¥ = 3L =a. (40)
We find
i = |/ x—Re __kxz _ ﬂ—
0= Vxhar — g+ (1) 1)
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with

V= [ﬁL + (1 + %)q] X+ g @+ Rel )

where X1, = X(zz). Given (41), the corresponding changes in fiber
radius d follow from (36).

Additional features of interest with (41) are 9 at z = 0 and perturba-
tions of the draw force at either end. Thus,

P _ k 2f
g = 9(0) = V—2(1—+ﬁ+(§é 1)@ (42)

For the draw force,

which yields )
sV e?sd’
From this, -
. Re k
and
L VRe __ e/ kX2
Po=dt X Y aa 1 gy *4

the changes in draw force, as function of 9y, ¢, and k.

The solution (41) is of little more than conceptual value as long as §
and k are unknown. Recall from (38) that these parameters represent
perturbations in the integration constants of the base-flow solution for
the draw-down region: ¢, a change in the volume flux, and k, a change
in the force parameter of the momentum equation. Such changes must,
in general, be expected to enter from the forming zone when the steady
state is altered due to 9.

Fortunately, § = 0 for drawing from a preform that is fed at a
constant rate. However, the exit flow from a crucible (Fig. 1a) does
not provide such a simple condition. If operating at a low head in the
reservoir, we would expect the entrance flow into the orifice to be
affected by changes in the take-up speed. In neither case does there
exist an obvious condition for the force parameter k [i.e., ¢ and C, see
eq. (38)].

A theory of the forming zone should be able to relate 9, and 7, on
the one hand with ¢ and %k on the other. Given such relations, these
would combine with (42) and (43) to determine ¢ and k in terms of
9z, and hence 9, d, p as functions of 9,. Depending on the different
situations depicted in Fig. 1, the relations of 4q, po vs ¢, k in the forming
zone could vary considerably. In some cases, an understanding of the
complex fluid-dynamic and heat-transfer processes of the forming
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zone (see Fig. 1d) would seem essential for a satisfactory representation
of speed-diameter-force relations at the take-up end.

In the remainder of this section, we examine the sensitivity of steady-
state flow in the draw-down region to changes in the viscosity profile.
Such changes can be viewed as consequences of perturbations in the
heat-transfer mechanism. Our primary purpose is to determine re-
sponse amplitudes for d, the perturbation in draw-down profile, as
functions of #, an amplitude parameter of the viscosity perturbation.
Once again we encounter the problem of assuming reasonable boundary
conditions at z = 0 without a dynamic model of the forming zone.

We consider two different cases: the draw-down response without
inertia effects imposed on the unquenched, inertialess base state (22),
and the response with inertia effects imposed on the quenched, inertia-
dominated base state (23). In particular, we shall be working with
egs. (76) and (77) after deletion of the time derivatives.

In both cases, we consider a viscosity perturbation of the form

P = Pode"?, (45a)

which represents a distribution of arbitrary amplitude and spread,
determined by #y and v, respectively. A family of such functions is
displayed in Fig. 4 for 1 < v < 6. Note that for a given value of v

v 1
00max B '-Y_e ! (45b)

the peak viscosity perturbation, normalized w.r.t. fo.

Let us consider various boundary conditions that may be applicable
to solutions of this problem. If we assume that the fiber is drawn from
a preform with constant feed and take-up conditions, an obvious
boundary condition is

d(3z) = 0. (46a)

In view of § = 0, it seems reasonable to assume that the forming zone
will respond with $#(0) = 0. 9'(0) can be eliminated from these two

conditions to yield
a'(0)

U —— =S5
a’(0) a(0) a) = 0. (46b)
If three boundary conditions are needed, we take
4(0) = 0, (46¢)

and then, according to (46b), also é¢’(0) = 0. Finally, for a fourth con-
dition, let
d'(3z) = 0, (46d)

which implies that p(3.) = 0, i.e., no perturbation of the draw force
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Fig. 4—Profiles of the viscosity perturbation, v/ve = de~ 3,

occurs at the take-up end. Conditions (46) will be invoked as necessary
with increasing order of the perturbation equations.

We start by considering the inertialess perturbation eq. (77). We
have

d=—-ﬂ—°e"7"(1—|-3)+Bla+Bz. (47)
Y Y

Results from (47) have been plotted in Fig. 5 to represent the effect
of viscosity perturbations on the unquenched base state. Note the non-
monotonic evolution of these curves with increasing .

Next, we examine the corresponding results, including effects of fluid
inertia. Integrating (76) after deletion of the time derivatives, the
quenched inertia-dominated base state (23) leads to

a'" 4+ 24" — 4d" — 8d = "' + 48" + 49 + C. (48)

C is a constant of integration.
Substituting (45) into (48), we obtain

_ __—bo 1 3
a() = (v +2) (a+7+2)e
+ Bq** + (B + Bid)e 2 + By, (49)
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Fig. 5—Draw-down response to the viscosity perturbations of Fig. 4, without
fluid inertia, for unquenched base flow.

Figure 6 shows (49), the effect of viscosity perturbations on the
quenched, inertia-dominated base state, over the range 1 < v < 6.
Note that the presence of quenching significantly alters the evolution
of response curves in Fig. 6, which becomes monotonic with y. Typical
amplitudes in this case are about one-half to one-third as large as for
the unquenched base flow (Fig. 5).

The main inference to be drawn from a comparison of Figs. 5 and 6
is that typical peak amplitudes for 4/7, are reduced significantly due
to fluid inertia and quenching.

By way of specific example, we consider results for ¥y = 3.5:

Maximum for viscosity perturbation (Fig. 4) #/6y = 0.110
Maximum for response without inertia on

unquenched base state (Fig. 5) d/ve = 0.018
Maximum for response with inertia on

quenched base state (Fig. 6) d/9, = 0.005

The latter case, which represents the more realistic model, also predicts
the lower response amplitudes. Thus, for example, a 10-percent de-
parture from the nominal viscosity profile would cause only a 0.5-
percent departure from the draw-down profile.
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Fig. 6—Draw-down response to viscosity perturbations, with fluid inertia, for
quenched base flow.

In summary, the first-order results given in this section yield a
qualitative indication of base flow responses to time-invariant changes
of the boundary conditions and of the viscosity profile. As stated in
Section IV, a more satisfactory treatment of viscosity effects may be
achieved by numerical integration of the base-flow equations, which
introduce heat-transfer perturbations through the energy equation.
However, the question of realistic interface conditions between the
drawn-down region and forming zone remains open until the latter is
included in our model.

VIl. THE DYNAMIC RESPONSE OF TENSILE FIBER MODELS

We turn now to the dynamic response of tensile fiber models for the
unquenched and quenched base flows; i.e., we address solutions of the
equations in Appendix C, including the time-dependent terms. Un-
fortunately, the formulation allowing for fluid inertia, eq. (76), does
not lend itself to a simple solution. We therefore seek what preliminary
insight can be gained from solutions obtainable with (77) and (78),
i.e., by neglecting inertia in the perturbation equations.

Starting with (77), which represents perturbations of the un-
quenched base flow, the operator on the left-hand-side suggests a gen-
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eral solution of traveling waveform

& = f(r + o) (50)

and

4, = f f(r + de)ds + @(x), (51)

where ®(7) is an arbitrary time function. This solution may be used
to represent radial excitations at the source or take-up end or to satisfy
boundary conditions in the presence of a particular solution. In the
former case, where (0, 7) = sin wr, we reconstruct a solution by
Pearson and Matovitch'® of the form

4(3, 7) = A.(3) sin wr + A2(3) cos wr (52)
with the terminal response amplitude
Aw, 32) = [Af(w, 31) + A3(w, 32) (53)

This is normalized with respect to do, the amplitude of radial perturba-
tions at 3 = 0, and plotted, for later comparison, in Fig. 7 as a function
of w, for 3, = 2.1t shows a series of response peaks presumably due to
the absence of quenching from the base state (22), used in (77).
These response peaks are commonly referred to in the literature as
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“draw resonances.” The author takes exception to this term since it
implies the existence of natural frequencies contingent on the inter-
action of system inertia and some restoring force, neither of which is
obvious in the present model. Nevertheless, experimental evidence con-
firms the oceurrence of highly amplified responses near some of the
“critical” frequencies predicted by Pearson’s model. Typical radial
perturbation profiles for @(3, r) are shown in Fig. 8 for v = 100, at
T = 0, the start of a period, and T = 0.25, its quarter-point. They
illustrate the spatial amplification of surface perturbations oceurring
along the draw path.
Since the direct physical realization of radial perturbations at
3 = 0 may be difficult, we now examine the effect of viscosity perturba-
tions that are convected along the fiber as a consequence of fluctuations
in the heat source; i.e.,
p = g(r+ 3¢7). (54

Substitution into (77) yields the inhomogeneous equation
9 + 23 9 6 = —g(r + 3¢72%) (55)
ar 9% = on

where the dot is also used to designate differentiation with respect to
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Fig. 8a—Surface perturbation for base state [eq. (22)] with w = 100, 31 = 2,
at T' = 0.

OPTICAL FIBER DRAWING 1033



50

30—

A

RADIAL PERTURBATION a

20—

10—
AN

NN

-30 ] I I | | | | | ]
0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0

DIMENSIONLESS DISTANCE J
Fig. 8b—d at T = 0.25.

o

the compound space-time argument. If we substitute
& = h(r + 2e2%)e 23,
this leads to & = —3¢; hence, the particular solution
i = —3g(r + &) = —}». (56)

This suggests that any space-time history of viscosity changes given
in the form (54) translates into changes of fiber radius by the factor
—3. It is a traveling-wave type of response only in the sense that it is
convected with the moving fluid.”

To take a specific example, consider a periodic viscosity perturba-
tion, as would be caused by misalignment of the rotating laser beam
used in heating the preform,

P = sin w(r + 1), (67)

* The negative sign may appear surprising at first. One notes, however, from the
continuity equation (33) written as

(e2a/ar +3/98)d = — 1,

that @ of the form g(r 4+ 4e~2%) leads to #' = 0. This means that such a form of radial
perturbation can travel with the flowing fiber without perturbing the local velocity.
Further, if a constant draw force is to be maintained, the expression

P/p = watw’

shows that, with »' unperturbed, an increase in » requires a decrease in a of half this
magnitude,
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where 7 = }e2?, yielding the particular solution
4, = —3% sin wr €os wn — § COS wr Sin wy. (58)
The boundary conditions to be satisfied with the help of (51) are then

9(0, 7) =0, (3, 1) = 0,

4.(0, 7) = % sin w(r + 3). (59)

In this case, the perturbations are driven only by the variations in
viscosity.
An appropriate form for fis

f(3,7) = ficosw(r + 1) — fasinw(r + n) (60)
so that

4.(3, 7) = 3(ficos wr — frsin wr)[C1]2
— 3(f1sin wr + facos wr)[Si]4? + @(7), (61)
where

dw

w/2
[C‘-’:]:;ﬂ - j' cos w

@i2 gin w

[sig = [ B dw

and fy, f» are integration constants. After determining ®(7), fi, and
fa to satisfy (59), once again a solution of the form (52) is obtained,
where A, and A, are recorded in Appendix D. It is interesting to note
that A (w, 3z) for this case, if normalized in terms of 7, and plotted as
in Fig. 7 shows exactly the same response spectrum, but with half the
amplitudes. Moreover, the profiles of radial perturbations along the
fiber for this case strongly resemble the ones obtained for radial excita-
tion at 3 = 0 (Fig. 8).

The sharp response peaks given by the above solutions at certain
frequencies reflect the absence of quenching in the base flow (22). In
search of some allowance for quenching effects, we consider two ad hoe
modifications of the tensile fiber model: the base flow (25), which
includes moderate quenching together with moderate draw-down, and
base flow (23), which represents quenched, inertia-dominated, exponen-
tial draw-down.

Using eq. (78), which is based on (25), a solution of this perturbation
equation is developed in Appendix D for the case of eyclic perturba-
tions in the starting radius 4(0, ) = sin wr. The resulting expression
for d(f, ) is recorded in (88). It turns out that the term e=¥ sin wr
exceeds all other contributions to the dynamic response by several
orders of magnitude for all values of w and vy of interest. Thus, the
perturbation in the fiber radius is merely a shift in the exponential
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draw-down profile of the base state, whose spatial variation is inde-
pendent of w and characterized by v, the quenching parameter of the
base-flow viscosity profile » = wee?f. This perturbation oscillates in
time with constant phase along the entire draw path. Typical profiles
of 4 are shown in Fig. 9, again for T' = 0, the start of a period, and
T = 0.25, its quarter-point. A contribution from the nonexponential
components in d({, 7) is only seen at T = 0, the zero-crossing of its
sin wr term. These profiles show none of the spatial amplification evi-
dent in Fig. 8, which confirms, at least qualitatively, the attenuating
effect of the quenching process. Unfortunately, a limiting comparison
between the two models is not possible as the quenching effect is made
to vanish, since that also requires a vanishing of the draw-down in base
state (25).

If the quenched, inertia-dominated base flow (23) is employed in
the inertialess perturbation equation (30), the resulting model is indeed
subject to criticism as logically inconsistent. However, as a plausibility
argument, we might suggest that inclusion of inertia in the base flow
would at least give a qualitative indication of changes to be expected
from a more complete allowance for inertia effects. The formal exercise,
starting from (23) and (30), closely resembles the derivation of (79).
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Fig. 9a—Surface perturbation for base state [eq. (25)] with g = 0.75, w = 20,
y=28tT = 0.
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The resulting frequency response functions evolve quite clearly from
curves such as Fig. 7 with considerable smoothing of peaks and valleys.
This suppression of the response peaks, due to quenching, certainly
agrees with experimental evidence.

The main point to be made in this preliminary assessment of tensile
fiber models is that their frequency response curves and surface per-
turbation profiles bear little resemblance to the perturbations caused by
surface tension, which we discuss in the next section. To generate
more realistic response predictions for tensile fiber models, including
inertia effects and heat transfer, we will have to resort to numerical
means.

Vill. THE DYNAMIC RESPONSE OF CAPILLARY FIBER MODELS

We next inquire under what circumstances the well-known phe-
nomena of surface-tension-driven perturbations on liquid filaments
apply in the fiber-drawing problem. Indeed, there may be limited
portions of the draw path, presumably near the hot tip of the forming
zone, where the viscosity drops low enough for surface tension to be-
come significant. At least for low-melting glasses, such as soda lime,
this is a possibility, as born out by the comparison of essential terms in
the base-flow equations of Section IV. We shall characterize this type
of fluid-dynamic behavior as capillary fiber models. As we shall see,
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their spatial response profiles under harmonic radial excitation are
totally different from those of tensile fiber models. By all indications,
these two kinds of filament response are fundamentally distinct phe-
nomena. The ultimate question is to what extent they coexist and
interact in a real fiber-drawing process.

Rayleigh’s classical theory of capillary jets is our point of depar-
ture.!s:16 It shows that the growth rate of ‘“varicose’” perturbations
(axisymmetric harmonic surface modulations) is given by

- (B — 1)
"7 ua[B + 1 - FRELE®]’ =

where

= real, the rate of growth

fiber radius

wavelength of the perturbation
= 2xa/\

Iy and I; = modified Bessel functions.

m
a
A
k

The denominator of (62) turns out to be negative for all £.*

If this capillary response model is locally applied to a base-flow model
such as (24), assuming that base-state parameters change negligibly
over the wavelength A\, we may use it to construct the dynamic re-
sponse along a contracting fiber. Then the evolution of a small surface
disturbance may be synthesized using the stepwise relation between
displacement amplitudes at successive instants of time

Unps = Un (“"“ + n-ma), (63)

Qn
where

U and U,y = peak amplitudes of sinusoidal surface perturbations
at tn, and t.y;, respectively

a%ﬂ = stepwise scale factor due to fiber draw-down
m = m at center of wavelength
Al = tnyy — bn.

Our response simulation convects the end points of a given perturba-
tive wavelength at their respective speeds, while computing local fiber

* Note that (62) results from a simplification of the characteristic equation,
neglecting inertia effects, which in turn precludes initial conditions on perturbative
velocities. However, it can be shown that the quantitative effect of this approximation
on m is trivial (Ref. 19).
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where s, ¢, are end points of the perturbative wavelength. The non-
dimensionalized surface tension is assumed to vary as

7 = 506,
allowing for possible changes along the fiber (small values of 5 approxi-
mate a linear dependence).

Figure 10 shows a set of response histories in terms of log [ U/x] for
g =01, N =100, & =025 =0, n =300, and 0.0008 = &
< 0.0016, illustrating the build-up to different asymptotic levels as a
function of a.

Figure 11 shows typical profiles of surface perturbations along the
fiber for A = 15.7, which corresponds to a frequency of 200 Hz. As
expected, the varicose response consists of sinusoids whose wavelength
is progressively stretched due to fiber draw-down and whose amplitudes
are modulated according to a response history such as given in Fig. 10.
Note that this behavior differs drastically from the tensile fiber re-
sponse of Figs. 8 and 9, which are also driven by radial harmonic
excitation at the origin.

Figure 12 displays asymptotic response amplitudes for a range of
initial wave numbers 27 /Ao and several values of g, the terminal radius
in units of a, for the base flow. For fixed ¢ and &, the response has a
maximum in the neighborhood of A = 50. The low responses at short
wavelengths are due to vanishing of the Rayleigh instability as Ao — 27

160
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-120 v’
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Fig. 11—Plot of deflected surface shapes for Ao = 15.7.
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Fig. 12—Amplification factor vs dimensionless wave number for & = 0.001.

while for large }o, hence large %o, the perturbations encounter a rapid
viscosity build-up along the fiber. Contrast these response curves with
the ones for tensile models, and a fundamental difference is again
apparent.

The influence of the terminal radius g, is illustrated in Fig. 13. As
expected with a in the denominator of (62), increased draw-down
(decreasing ¢) will enhance terminal perturbations. The second curve
on that figure indicates the effect of 8, the growth rate of surface
tension. Finally Fig. 14 shows the decrease in response with initial
viscosity, no and the increase with rising values of &, the initial surface
tension.

Since the above simulation averages fiber properties over a perturba-
tive wavelength and does not ensure continuity of perturbative surface
velocities between time steps, it seemed appropriate to corroborate it
by a slightly different model, due to Tomotika,!7"'® which is also germane
to our situation. In Tomotika’s study, filament contraction is effected
by a surrounding medium subjected to extensional shear flow, as in
some of Taylor’s experiments.” This apparent difference in base flow
and the need to let ambient viscosity approach zero for our purposes
seems to limit the applicability of Tomotika’s model to the fiber-
drawing problem. However, as we shall see, it agrees quite well with
our adaptation of Rayleigh’s theory.
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Tomotika finds the following asymptotic expression for interface
perturbations as a function of several model parameters:

log [U/X]. = aER} f v (®ydE, (64)
0
where

£ = ratio of filament to ambient viscosity

k = 2wa/\ = local wave number of the perturbation
& = nondimensionalized surface tension
¢ (k) = a kernel that is detailed in the references.
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The behavior of this expression is illustrated in Fig. 15 by plotting
it against %, for various values of ¢ These plots show that, in the
absence of quenching, the stabilizing effect of ambient shear flow
diminishes steadily with ambient viscosity while the maximum response
shifts to higher frequencies. This behavior is altered significantly if
exponential changes of filament viscosity and surface tension are in-
troduced to represent quenching effects, similar to our modification of
Rayleigh’s analysis. Equation (64) then changes to

LOG [U/X] o

e _ Go ko 7o — =
log [U/XJ = 35 [ 2 (1 = B e(B)d,

Mo
200 250 300 350 400
I

(65)
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UNLESS VARIED AS SHOWN

LOG [U/X] e VS Tg

/
!
\

]
7

~o - -
~LOG [U/X]e VS 0g

1 | 1 |

0.1 0.2 0.3 0.4 0.5

9p

Fig. 14—Amplification factor vs no and &a.
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LOG [U / Xl

ko =2 /g

Fig. 15—Amplification factor vs ko for £ — = (Tomotika’s model with constant
viscosity and surface tension).

and (%) is another kernel detailed in the references. Plots of this
expression in Fig. 16 show good agreement with Fig. 12 for large £
(and g = 0.1). Plots of (65) for £ = 10® and various values of the
terminal base flow radius are given in Fig. 17. They show the same
response of [ U/X], for g — 0 as Fig. 13.

In summary, these results indicate that the two capillary models of
quenched fiber responses, obtained by modifying Rayleigh’s and
Tomotika’s analyses, are essentially equivalent. Note again that none
of the response curves, such as Fig. 17, bear any resemblance to those
of tensile fiber models.

An additional piece of insight into capillary response mechanisms
comes from Weber’s work.® He reproduces Rayleigh’s analysis by a
somewhat different approach and obtains an exact equation for m, as
well as a simplified expression that agrees with (62). Weber shows that
the small errors in (62) are essentially due to the neglect of radial
components of the flow field. He demonstrates this conclusively by
rederiving (62) from a one-dimensional representation (recorded in
Appendix E) which captures all salient features of the capillary re-

where
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Fig. 16—Amplification factor vs ko for « = 0.001, g = 0.1, and 1 < § < 10°
(modification of Tomotika’s analysis for quenched base state).

LOG [ U /Xl

-8 | | I ] | ] | | 1
0 0.2 0.4 0.6 08 1.0 1.2 1.4 16 18 20

kg=27/1g

Fig. 17—Amplification factor vs ks for & = 0.001, £ = 10% and 0.005 < g < 0.20
(modification of Tomotika’s analysis for quenched base state).
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(b) TENSILE “NECK—DOWN"
Fig. 18—Comparison of capillary and tensile instabilities.

sponse mechanism. Thus, multidimensionality is not the criterion that
distinguishes capillary from tensile response models. The fundamental
difference seems rather to lie in the energy source from which the
perturbations are fed : surface tension in one case and axial stress in
the other.

Figure 18 attempts to emphasize this distinction in a pictorial
fashion: (5) In the capillary model, surface tension, by overcoming
viscous stresses, tends to accumulate fluid from both directions into
periodic “beads,” ultimately pinching off individual droplets as the
minimum energy configuration. A multiplicity of such separations can
occur independently of each other, and the essential physical mecha-
nism is equally as valid for stationary, uniform filaments as it is for
contracting base flows. (47) In the tensile model, on the other hand,
the ““worst’” among random localized constrictions, due to surface
perturbations, causes a tensile stress concentration which further
reduces the cross-sectional area and results in a single, “run-away”’
tensile separation. This is the familiar necking of any tensile test
specimen. The tensile stress associated with draw-down in the base
flow is an essential prerequisite for this mechanism. Surface tension
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will indeed contribute to tensile resistance in the necked down section,
but it does not fundamentally alter the separation process.

Thus, the capillary mechanism is a contest between surface tension
and viscosity, independent of filament draw-down, whereas in the
tensile mechanism the viscous stresses, jointly with surface tension,
attempt to resist the draw force.

IX. SUMMARY AND CONCLUSIONS

Several important observations result from the discussions in the
preceding sections.

@

(17)

(727)

Optical fiber drawing differs from textile fiber “spinning” in
several essential ways. The flow of glass in the forming zone
and draw-down region is dominated by viscous stresses.
Inertia and surface tension play secondary roles. (They be-
come noticeable only for the lower-melting glasses and then
only in limited portions of the flow field.) This contrasts with
polymer fiber forming, where, in some instances, viscosities can
be quite low and other effects may be of comparable importance.
Moreover, glass fibers are quenched over a wider range of tem-
peratures than polymer fibers. This, together with the extreme
temperature-dependence of glass viscosities, causes viscosity
profiles along the draw path to rise much more abruptly than in
textile fibers. Finally, and perhaps most importantly, molten
glass can be considered very nearly Newtonian, which is not
true for most polymers. Given the above physical features and
the small-slope assumption of gradual draw-down, we can
justify one-dimensional base states as useful representations of
steady flow in the draw-down region.

Given a base-flow model, its sensitivity to changes in operating
conditions, such as the take-up speed and temperature profile,
can be estimated by first-order perturbations. It turns out that
the draw-down profile is relatively insensitive to significant
viscosity changes, assuming that interface conditions between
the draw-down region and forming zone have been modeled
correctly. For nontrivial forming zones, e.g., Fig. 1a, b, or d, it
is difficult to make reasonable assumptions for these conditions.
Since we lack a complete understanding of the forming zone,
but expect its flow field to change with perturbations in the
draw-down region, our results must be considered tentative.
Fundamental differences exist between the tensile and capillary
models of dynamie fiber response. The tensile mechanism seems
to prevail in most of the draw-down region. For low-melting

OPTICAL FIBER DRAWING 1047



glasses, we conjecture that the capillary model may apply in
the short and very hot transition between forming zone and
draw-down region, where surface tension can sustain perturba-
tions that subsequently propagate by the tensile mechanism.
The interactions of these two phenomena and their relation to
dynamic responses in the forming zone itself are presently not
understood. In the following we amplify each of these points to
some extent.

The base-flow models we supplied in Section IV are admittedly
qualitative. A heat-transfer analysis was circumvented in this pre-
liminary study by assuming exponential viscosity profiles, suggested
by qualitative experimental evidence. Exact solutions of the coupled
one-dimensional momentum and heat-transfer equations are now being
carried out to allow for different kinds of heating in the forming zone
and various cooling mechanisms in the draw-down region. The resulting
simulation will be able to provide more detailed operational trade-offs
between steady drawing parameters. It will also assess the limited in-
fluence of fluid inertia, surface tension, and gravity. Finally, this
modeling effort presents a natural opportunity for experimental cor-
roboration by suitably instrumented steady-state runs, using laser
and/or furnace-heated preforms or crucibles.

As an extension of one-dimensional base-flow models, radial-heat-
transfer mechanisms should be simulated, leading to nonuniform eross-
sectional viscosity distributions at the start of the draw-down region.
These viscosity distributions must be input to a perturbation model of
axisymmetrie free surface flow which generates the nonplanar velocity
profiles expected in the transition between forming zone and draw-
down region. Ultimately, the detailed flow fields of forming zones such
as Fig. 1b and d may have to be simulated by discretization techniques.
If properly combined, these efforts may, hopefully, result in a unified
base-flow model that properly allows for interactions between the
draw-down region and forming zone in representing steady-state re-
sponses to changes in the control parameters of the draw process.

Finally, as mentioned before, it appears that vastly different fre-
quency response curves and longitudinal profiles of surface perturba-
tions characterize tensile and capillary dynamic responses as fundamen-
tally distinet physical mechanisms. (Note the intuitive distinctions
given at the end of Section VIII.) They do not seem derivable, in proper
relation, from some universal fiber stability analysis. The question is
then, what must be done to develop them into parts of a realistic and
unified dynamic response model.

Since analytic solutions for tensile responses of nontrivial base flows
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in the draw-down region are not possible, numerical solutions by modal
analysis or space-time integration are being attempted. This is ex-
pected to shed further light on the anti-intuitive response profiles ob-
tained from the “inertialess” perturbation equations. Similarly, the
capillary model applied so far to an elementary base flow may be im-
plemented, by numerical means, for conditions representative of the
transition between forming zone and draw-down region. Combining
these extensions of the tensile and capillary response models, it may
be possible to relate dynamic records of thermal or mechanical surface
perturbations coming out of the forming zone to diameter variations in
the finished fiber.
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APPENDIX A
Implications of the Smail-Slope Approximation

We briefly sketch the consequences of the small-slope approximation,
la;| < 1 and |u/»| < 1, as they evolve from (1), (2), (3), and (4) by
scaling arguments. Let

v = ¥, U = oy, M= pom, P= 1;1‘-» (66)
a = aX, r = dok, z=L{, and t= T
0
Then the small-slope assumption amounts to
Uo | _ 59 -
wl = 0 ( L) ek 1.
Substitution of (66) into (4) yields
_ povo[ _ poL - Moo
Te L | .uuvol + 211\]?;] I
1Y Iy T 7 S LY
L | Koo L (67)
_ Bo[ _ poL o BV
T L |~ wwn ¢+ 277‘.0/5] 7, T

v 1
Trz = EJUL_DU [—G‘I’E + f‘PI] = #—E@frn
where poL/uowo = 0(1) and will be omitted henceforth. Substituting
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(66) and (67) into (3),

pvoL pol ) ]
s [\r + (“uoao (¢T; + TT;)
11
(—t + 29%y); + PF: [en(¥e + €op) e

Considering the case pvoL/uy = Re < 1,
1
0= &(—¢+ 29¥;); + F: [en(Ze + ép) 1o

Hence,
(EnPe)e = 0.
If no constraint is to be imposed on n, we have
¥, =0 (68)
and
r = 29 engy = OLe(ry 7y 7)1
Now, from (1),
ol
¥ + ﬂ-—) (o + ¢/8) =0
oo
and because of (68)
e = o/E= —§¥;. (69)
Then,
Tr = T§g = —L — V'
freTem e (708)
€
Fre = — ¥y
(70b)

and
Fs = —1+ 271‘1’;-.
¢ is determined from the normal stress condition at the fiber surface

(71)

¢ = X. In dimensional form,
o(ag.. — aj — 1)
a(l + o)}

T+ ai'ra — 20,7

Substituting (66) and (70) into (71) and dropping terms of 0(¢?) and
higher, as well as a.,, one finds
(72)

for all values of £, where & = oL/uovoao. With this result, #, from (70a)
(73)

becomes
- a
Tg = — i + 37]‘1’;,

where 3n constitutes the “Trouton” viscosity. (The additional 5%,
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term, augmenting 29¥; in (70), originated in #, of (71). This, in turn,
is due to ¢; of (67), the cross-sectional contraction that necessarily ac-
companies the extensional flow of fiber drawing.) We also note from
(72) and (70) that

(o +n¥)e = 7y = 10, = 0, (74)

which agrees with the radial equilibrium equation if (66), (68), and
(70) are used in (2) and we let Re < 1.
The tangential surface stress condition at £ = X reads

a;(Tr _— Ts) + (]- + ai)'rrl =0 (75)

and, if rendered dimensionless, has leading terms of 0(e) ; hence, it will
be ignored. For completeness, we also note that the kinematic boundary
condition (7), rendered dimensionless and time-invariant, yields

Yo _ 2%
v X’

which is the time-invariant continuity equation (9).

APPENDIX B
Second-Order Perturbation Term for the Base-Flow Solution [Eq. (17)]

sc[a,b,c,d,r]=r(1+ +d-|— +< )+f°(1+d+2)

Cla+a)+ 52 f""
+ 7 IE [(1 + d + ) (aerlnE —_ 2be—“ﬂE-'2)r)
4+ (1 + d) ( HInE L QghgUnEIE — ge nnz-:)

a® atb b3
—_ eﬂrlnE - e(ﬂlnE,’ﬂ]r —_— e—(a!n.ﬂ'.@)r
18 T3 9

llg[(aa 2b) (1+d+£)

+( +2ab—#)(1+d)+ + 20 +gs]
c{(l+d)[aF(lnE,§')+bF(—@,§)]

+ 2 F(2nE, ?) + abF (“;E , ;) + 2 p(—mE, ©)

+9 [aG(lnE. {) + bG (— Ik ;)]}

OPTICAL FIBER DRAWING 1051



where
1 1
F(y,t) = = — ¢
(v, §) 7[(!’ 7)8*+TJ

Gl §) = %[(:ﬂ+2f+%)evr—%]-

and
9 ¥
APPENDIX C

Differential Equations for First-Order Dynamic Perturbations in the Radius, &

Using (33) to eliminate # from the first-order variations of the
momentum equations, we obtain from (35), which reflects the
quenched, inertia-dominated base state (23) with inertia effects in the
perturbation equation,
dnu + a.fne_za + 2&!” — 4&'"8_28 — 2@"’8_‘3 + 8&"8_‘3

— 48" — 84’ = 49" + 49" + ¥, (76)

From (34), the inertialess momentum equation, and the unquenched,
inertialess base state (22), we obtain

8"+ 4'e =9, (77

Note in (76) and (77) that ( ) =4d( )/93 and ( ) = a( )/o7,
where & = az/L and r = avef/L. Finally, from (28) and (30), the
inertialess momentum equation with the quenched inertialess base
state (25), we can find

a , 1aY\,., _e
(F+32)@+a0) =57, 18)
where ¢ = v/vg as in (25), { = 2/L and r = tvo/L. In this case,
() =2a( )/a.
APPENDIX D
Detailed Results for Forced Dynamic Responses of the Tensile Fiber Model
The detailed expressions for 4, and A; resulting from (58) and (61)
are
(1— go
4¢(Bf + Bj)
X [Ci1*3. — (B:cos w/2 + Basin w/2) X [Si]:ﬂg,]}

4, = {%[cos :424— X [(—B1Si11w/2+BHCOSW/2)

4¢(Bi + Bj)

Ay = {; [sinJ2 + (=9 X [(B; cos w/2 + B;sin w/2)
X [CiJ%3. + (=B sin w/2 + Bj cos w/2) X [Si]:ﬁ.]} )
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where e = e*2L and
. W . w/2
B, = [Cz + 2 8+ cos]
w/2e
e (79)

By = [Si - 2cit sin]
Recall that 3 = az/L.

w/2e

We now parallel the development of Section VII for the quenched
base flow (25). Equation (78) with # = 0 suggests a solution of the form

45, 7) = Re {f« [ expl’ — 607 explios — 3"

+ @ exp(lwr — af)

where
e= [T B fo=fti G- ®ibita (80)
—fu Mk 0= J1T 0 = @1 T 1%P2.
Explicitly,
4a(t, 7) = A;sin wr + A, cos wr,
where

A(f) = fr eat'=8) (fysin wE — f2 08 wE)df’ — D™,
1]
(81)
A:(0) = fre““"—“(fl cos wf + fa8in wE)dt’ + Pie,
0

describing the {-dependent phase and amplitude of the response. Note
that ¢ = z/L and 7 = tvo/L, whereas in (79) 3 = of and 7 = avet/L.

We use the same boundary conditions as in developing (52). For
cyelie radial perturbations at { = 0,

4(0, 7) = sin wr, (82)
together with the velocity conditions
9(0,7) =0 (1, 7) = 0.

An expression for 9 is obtained by eliminating 7' from (28) and (30)

i = fa + f,ﬂa' — 2% + 2G(r), (83)

where G (7) is an arbitrary time function and the differentiation symbols
mean ( ) = a( )/dr, ( ) = a( )/ot. Substituting (81) into (83)
we find

9(t, r) = Visin wr + Vicos wr
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with

Vi) = =2 [T 0 (fucos wk + fosin wpd’

0

-2 fre"‘f"“(fl sin w§ — f2 cos wf)d’

0
+ 2eet [(%—a + 1) &y — %@1]
+ i—"’ (fy8in wf — f2 o8 w) + 261
Vat) = 22 / ¥ a0 (f, sin wf — fa cos wE)dt’
v Jo

—9 fn ¥ 1) (f, cos wE + f2 sin wE)ds”

— 2e—ar[%¢,+ (%a-l— 1) 4:1]

=+ %E (f], CcOos wE + fz sin wE) + 2G2
Ultimately, (82) leads to

'131 = 0, ‘I’z = —1
Ji= (B:C:1 + B:C3)/(Bi + Bj) Je = (f1iB2 — C3)/B:

Gi=1 +'}(a+f2005w50— f18in wko)

G2 - — Kbl’ (w + f1 CcOos CIJE[! + fﬂs.ln EO)’

where
By = 2 H(1) — K1) -I——:E,cosa:h ~1
By= - 2 K1) - HQ) + %sin ks
Cy = (%ia-l—l)e“—%— 1.

(84)

(85)

(86)

The subscripts 0, 1 denote evaluation at { = 0, 1 respectively, and the

quantities H, K are defined as
Y
HG) = f e ("=0) sin wds”
0

K@) = [ R ——
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With this notation, we ultimately get

a(g, 7)) = [HHE) — K@) + e o] sin wr
+ [/1K(@) + f2H ()] cos wr.  (88)

APPENDIX E
Weber's Derivation of the Capillary Stability Equation

This appendix gives a simplified derivation of the stability equation
for the capillary fiber model based on assumptions that are quite
equivalent to those made for the one-dimensional tensile model. In
fact, the rationale used here closely parallels that of Section III.

The analysis proceeds in terms of equilibrium and continuity equa-
tions, which we write in dimensional form for the entire filament cross-
section. The perturbed surface radius becomes a + 6 and a given cross-
sectional element is displaced by vd{ along the fiber over the time
increment df. The radius of this element now becomes

a+8+ dt+ d (89)

Since the last term is of higher order, it Wl]l be neglected.

The constitutive relations are as in (4) and the derivation of an ex-
pression for 7, is quite similar to Appendix A. The main difference arises
in the radial stress boundary condition, where, in distinction from the
treatment of (72), the longitudinal curvature term cannot be neglected
for varicose perturbations. Then the r.h.s. of (72) becomes

p (a% + .s”) (90)
and, instead of (74),
S (Ef‘a + .s") + 3w, 01)
The continuity equation yields
2i+v =0 (92)

Now, combining (9) and (10),
T, = pv + p00', (93)

where the last term was apparently overlooked by Weber but seems to
have little effect on the resulting stability equation.

Substituting (91) and (92) into (93) and assuming surface perturba-
tions of the form & = §%*e™ cos kz/a, leads to the stability equation

(3#) BP=_"_ (]_ — P)E”. (94)

m?
Tm 2pﬂ.
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The unstable root, of interest here, is

- (3F)E2 o 7o\ T2 (3")25‘ 4
= 2002 + 00t (1 E)E? 4 450t . (95)
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