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We present formulas for the microbending losses of fibers that are
caused by random deflections of the fiber axis. We consider single-mode
(or almost single-mode), step-index fibers and multimode, parabolic-index
fibers and compare their losses. Loss formulas for the single-mode fiber
are derived from coupled-mode theory using radiation modes. Simple
empirical approximations of the general formulas are also presented. The
losses of the parabolic-index, multimode fiber have been derived earlier.
The losses of both fiber types are compared by assuming either that each
fiber samples the spatial Fourier spectrum of the distortion function at the
same spatial frequency, or by comparing typical fibers of each type with
each other regardless of any similarity between them. It is found that the
multimode, parabolic-index fiber has lower losses if it supports a sufficient
number of guided modes.

. INTRODUCTION

Two types of optical fibers appear to be promising for wideband
communications, the monomode step-index fiber and a multimode
fiber with parabolic (or nearly parabolic) refractive index distribution.!
A third fiber type, the W-fiber,? is so similar to the step-index fiber that
its properties are easily included in the discussion of single-mode fibers.
However, single and multimode fibers suffer radiation losses caused by
unintentional random bends of the fiber axis.®* Thus, it is of interest
to compare the two types of fibers and investigate which of them is
better from the point of view of microbending losses. This loss com-
parison is the objective of this paper.

Radiation losses of optical fibers are caused by coupling between
the guided modes and radiation modes.5 Two modes with propagation
constants 8, and g are coupled via a spatial frequency 8 of the coupling
function when*

[B1 — Ba2| = 0. (1)
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A guided mode with propagation constant 8, couples directly to the
radiation modes using the entire spatial frequency spectrum in the
range

By — mak < 0 < B, + nak (2)

(nek is the plane-wave propagation constant of the cladding). How-
ever, most practical, randomly bent fibers have spatial Fourier spectra
that drop off very rapidly with increasing spatial frequency so that
only a narrow region of the spatial frequency spectrum near

0 =8,— Nk =Q (3)

is actually responsible for radiation losses in single-mode fibers.

In parabolic-index, multimode fibers, the random curvature of the
fiber axis causes coupling among the guided modes. Adjacent guided
modes in parabolic-index fibers have almost equal spacings in 8 space,
so that only a very narrow band of spatial frequencies is instrumental
in coupling the guided modes among each other.? Since most practical
Fourier spectra drop off rapidly with increasing spatial frequency, we
may assume that only the guided modes immediately adjacent (in 8
space) to radiation modes couple directly to radiation. Radiation losses
in multimode fibers are thus less direct than in monomode fibers. The
energy is exchanged among guided modes and is lost only when it
reaches the guided modes of highest order. We treat this problem
mathematically by assuming that the highest-order modes always
carry zero power, because they lose their power directly to radiation.®
In addition, we assume throughout this discussion that the modes are
coupled so tightly that the steady-state power distribution has been
established.® This assumption allows us to use a definite radiation loss
of the multimode fiber. If steady state is not reached, the fiber loss
cannot be characterized by a single number independently of the input
conditions.

Our discussion has made it clear that essentially one single spatial
frequency is responsible for radiation losses in fibers. In multimode,
parabolic-index fibers, it is the spatial frequency that couples the
guided modes among each other; in single-mode fibers, it is the spatial
frequency 2 of (3). However, even though we can specify a definite
spatial frequency for the single- as well as the multimode fiber, we still
face the possibility that these frequencies may be different in either
case. This raises the problem: what criteria are to be used by which a
single-mode and a multimode fiber may be compared? In this paper,
we shall use two different criteria. First, we asume that the spatial
frequencies of interest are identical for both types of fibers. This re-
quires us to assume that the core radius as well as the maximum
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refractive index difference between core center and cladding is different
for each fiber type. When compared on this basis, the parabolic-index,
multimode fiber is superior in its loss performance to the single-mode
fiber, provided that a sufficiently large number of guided modes can
exist. This result is intuitively apparent, since we have seen that the
power has to “dribble’” down through all the guided modes before it
reaches the region of radiation modes and becomes lost.

A second way of comparing single-mode and multimode fibers con-
sists in considering configurations that are typical for each type of
fiber regardless of the spatial coupling frequencies and determining
quantitatively what their radiation losses are. It is clear that we must
assume that the form of the spatial frequency spectrum is identical for
each fiber type, otherwise no comparison would be possible. Compared
on this basis the typical multimode, parabolic-index fiber has lower loss
than the typical single-mode fiber.

A step-index fiber operates in a single guided mode if its charac-
teristic V-number has values V < 2.405. However, some fibers are
made with a relatively thin inner cladding that is surrounded by an
outer cladding whose refractive index is similar to that of the fiber
core. An example of such a structure is the W-fiber.? Such fibers do not
support guided modes in the strict mathematical sense; each mode
loses power by leakage through the thin inner cladding and may be
regarded as a leaky mode. The loss of the lowest-order leaky mode may
be kept so small that it is negligible for practical purposes. The loss of
the mode of next higher order may be considerably larger, causing its
power to be lost in a relatively short distance. Such a fiber behaves as
a single-mode fiber for V values exceeding ¥V = 2.405. The radiation
losses caused by random bends can be calculated by computing the
power-coupling coefficient of the lowest-order mode to the next higher
mode and by assuming that the higher-order mode is so lossy that
it does not carry any power. We include such quasi-single-mode fibers
in our discussion. Since it is impossible to anticipate the actual shape
of the power spectra of the coupling function, we use simple power
laws as models. Because only limited spatial frequency ranges need to
be compared in any case, it should always be possible to approximate
an actual power spectrum by a suitable power law.

Il. LOSS FORMULA FOR THE SINGLE-MODE FIBER

Random bends of an optical fiber can be described by assuming that
the core-cladding boundary is changing as a function of the length
coordinate z. Thus, we describe the core boundary of a fiber with
random bends by the equation®

(¢, 2) = a + f(2) cos ¢. 4)
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In this equation, a is the core radius and f(z) describes the shape of
the randomly deformed fiber axis; ¢ is the angular coordinate of a
cylindrical coordinate system.

Using the standard coupled-mode formalism,5 we derive the follow-
ing formula for the radiation loss coefficient of any Lp mode (for
definition of Lp, see Ref. 7) of the step-index fiber with randomly
deformed axis,

(ni — n3)y*J3 (ka)

20 = S a) [ Tos (k@)1 ()|
.[’lsi |ﬂ|(F’(ﬁ _ B)) { Jf_l(cra)
—ngh y [, (ea)H®,(0a) — pJ,—1(ca) HD (pa)|?
J %+1(ﬂ'a)

t el GO HY: (6a) — plm@ea)HEOGa) 2] 3 ©

The Fourier spectrum of the distortion function f(z) appearing in (4)
is defined as

F(@ = lim "ULE / ¥ t@)eude. (6)

The ensemble average of the square of F () can be expressed as the

Fourier transform of the correlation function B (u) of f(2),8

#(0) = [ R@e*du. @

—a0

The other symbols appearing in (5) are defined as follows:

2a = power attenuation coeflicient
a = core radius

n, = refractive index of fiber core
ny = refractive index of cladding

v = azimuthal mode number of Lp mode (v =0 for HEy

mode)
B8, = propagation constant of guided Lp mode
k = w(emo)? = 2w/ free-space propagation constant
V= (n— ndika
x = (nik? — gi)}
va = [V? — (xa)*]}
o = (nik* — g}
p = (ndk* — g}
J,(z) = Bessel function
H® (x) = Hankel function of the first kind.

Il
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Equation (5) was derived by using the approximate radiation modes of
the fiber. This formula is, thus, accurate only if the radiation escapes
at small angles relative to the fiber axis.® This condition is satisfied
for power spectra that drop off rapidly with increasing spatial fre-
quency, an assumption that is made throughout this paper.

It was mentioned in the introduction that certain step-index fibers
have claddings that are sufficiently narrow to provide high-leakage
losses to all but the lowest-order mode. We obtain the microbending
radiation loss for such fibers by assuming that two modes can exist
in the fiber, but that only the lowest-order mode carries power. This
mode is coupled to the next-higher-order leaky mode as well as to the
radiation modes. However, since we assume that the amplitude of the
spatial power spectrum of the coupling function decreases rapidly with
increasing spatial frequencies, it is sufficient to consider only coupling
to the leaky guided mode and ignore the radiation mode spectrum.
The power-coupling coefficient between guided modes 0 and 1 is
designated as ho;. The power loss coefficient for the HE;;-mode in
the presence of a second but leaky mode may thus be expressed as*

v3v3T3 (x0a) 3 (kaa) (K2 (F2(0) ) ] ®)
2a2n3k5J% (koa) | Jo(x1a)J 2 (x10) |

The subseript 0 refers to the HE;; mode while the subscript 1 indicates
the next higher Lp mode.” The spatial frequency { is defined as

20’. = hm =

g — g
n = 60 Iﬁl ~ 2n2k (9)
Equation (8) is applicable in the range
2405 < V < 3.832. (10)

A discussion of the validity of using radiation modes to calculate
the microbending losses is given in the Appendix.

1ll. APPROXIMATE LOSS FORMULAS

It is possible to approximate formulas (5) and (8) by expressions
that show the relative influence of the fiber parameters and are simple
enough to allow evaluation by pocket calculators.

In the remainder of this paper, we restrict ourselves to power spectra
of the form

_g i T
ma© sin
m

e

* See egs. (3.6-10) and (5.2-20) in Ref. 5.

(11)
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This simple power law may serve as a model for every practical power
spectrum, because we are usually interested only in a narrow spatial
frequency region of the spectrum, which can always be approximated
by a function of the form (11). The variance & is defined by (28); m
is the exponent of the power law, and Af is the width parameter of the
distribution (11).

For large values of the spatial frequency, we can express (11) in the
simpler form,

) = 32, (12)

with
= m—132 gin *-.
A = m(A8)™ 132 sin p (13)
If we use (12) and the transformation
6 = Qz, (14)
we can express (5) for » = 0 (HE;;-mode) in the form

_ (n} — nd)ky*QJG(xa)

200 = i TTa) (D)
=1 Ji(oa)
[1 z™ [oJo(ea) HP (pa) — pJ1(ca) H" (pa)|? dz. (15)

This expression is not much simpler than (5), but it shows clearly
that the radiation loss depends indeed only on the spatial frequency
# = Q defined by (3). The upper limit « on the integral in (15) is an
approximation that is valid for sufficiently large values of m. Equation
(15) is useful only in the narrow interval

1 <V < 2405. (16)

For smaller V values, the HE;; mode is so loosely guided that its field
reaches very far into the cladding and suffers excessive bending losses.
For 3.832 > V > 2.405, the step-index fiber is no longer supporting
only one mode and (8) must be used. We have plotted (15) for a number
of m values in the range (16) and used this plot to obtain the following
empirical approximation of (15):
nakA(F2(Q)) [ QY sV )

m—1)(m =2 ( k) (V + 7.58 X 10 ST (17)
This formula holds only for m = 4. The accuracy of (17) will be dis-
cussed in connection with a discussion of Fig. 3.

A good approximation [less than 0.5 percent error in the range (16)]
of the solution of the eigenvalue equation of the HE;; mode can be

20!0 =
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expressed empirically as follows:

koa = 2.405 exp ( (18)

3 0.8985)
V )

and (3) can be approximated by

—s—;= (ny — ng) [1 —(%)2]- (19)

Equations (18) and (19) enable us to calculate loss values from (17)
without having to solve the eigenvalue equation for the HE;; mode.
A similar empirical procedure allows us to approximate (8) as

follows:
_ @) _ _ 0616 ]
2a9 = ek 9(V — 1.87) 7 — 2.405)} (20)
The spatial frequency & is defined by (9) with «,a approximated by
i = 3.832 exp (— VO_S;%) (21)

In the range (10), this formula deviates from the exact solution of the
eigenvalue equation by less than 0.5 percent (only very close to the
endpoint at V = 2.41 is the error 0.8 percent).

IV. MULTIMODE LOSSES

The radiation loss formula for multimode parabolic-index fibers,
whose mode distribution has reached steady state, has been derived
earlier,®

%, = 5.8 %ﬂ’f’)) Al (22)

The refractive-index distribution inside the fiber core is given by the

expression
n(r) = n [1 - (g)aA]- (23)

The spatial frequency instrumental for mode coupling is®

_ @y

= (24)

r

The total number of guided modes of both polarizations and orienta-
tions supported by the fiber is®

N = (uka) 5 (25)
Since the core radius @ appearing in (22) is different for single-mode,
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step-index fibers and multimode, parabolic-index fibers, we must ex-
press it in terms of some other quantity. We have mentioned in the
introduction that the spatial frequency @ of eq. (3) characterizes
coupling of the step-index fiber mode to radiation. One way of com-
paring single- and multimode fibers is to insist that the critical coupling
(spatial) frequency is the same for both fiber types. By eliminating a
and A, we obtain from (22), (24), and (25),

— M (0N
2a, = 1.45 TN ( % ) k4(F2(0,)). (26)
The number of modes carried by the fiber can be varied by varying
the core radius a, the relative refractive index A, or the free-space
propagation constant k. Keeping 6, and k constant requires us to vary
a and A as N is varied.

V. COMPARISON OF SINGLE-MODE AND MULTIMODE FIBER LOSSES

We represent the radiation loss coefficients in normalized form by
dividing 2a by the product k4(F?). According to its definition (6) or
(7), the power spectrum has the dimension cm?® Since k has the same
dimension as 2a, the ratio is dimensionless. The spatial frequency 6 and
the shape of (F2(6)) are always chosen to be the same for the single-
mode or multimode fibers that are to be compared. In Figs. 1 and 2,
we have plotted the normalized loss coefficient of the single-mode
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Fig. 1—Normalized loss coefficient of the single-mode, step-index fiber with power
spectrum defined by (11) as a function of the width parameter A8/k of the power
spectrum. The curve parameter m indicates the exponent of the power law. n, = 1.515,
ny =15V =24.
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Fig. 2—S8imilar to Fig. 1 with V = 2.

fiber as a function of the normalized width parameter A8/k of the power
spectrum (11) for n, = 1.5 and n; = 1.01 n,. The loss curves were
computed from (5) and the frequency @ appearing in the argument of
the power spectrum is defined by (3). Figures 1 and 2 show that the
loss coefficient is independent of the width parameter for small values
of A8/k. The dependence of the normalized loss on the normalized
frequency V isillustrated in Fig. 3 for the case that the power spectrum
(11) can be approximated in the form (12). The solid curves are com-
puted from (5) while the dotted curves are calculated from the approxi-
mate formulas (17) through (19). It is apparent that the approximation
is quite good, particularly for large values of the exponent m. The dash-
dotted curves in Fig. 3 illustrate how the approximation deteriorates
if the term in (17) containing V™ is omitted. It is apparent that this
term provides an important correction for large values of V. The range
of V values on the abscissa of Fig. 3 coincides with the single-mode
range of (16). Formulas (5) or (17) do not hold for larger V values. For
2,405 < V < 3.83, eq. (8) or its approximation (20) apply. The agree-
ment of the approximation (20) with (8) is at least as good as that of
the solid and dotted curves with m = 10 in Fig. 3; therefore, only a
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Fig. 3—Normalized loss coefficient of the single-mode, step-index fiber as a func-
tion of the normalized frequency parameter V for several values of the power law
exponent m. The loss values in this curve correspond to the flat portions on the left-
hand side of Figs. 1 and 2. The solid curves correspond to eq. (5) while the dotted
curves were computed from the approximate equation (17). The dash-dotted curves
represent (17) without the term V™. n, = 1.515, na = 1.5.

single solid curve was drawn in Tig. 4 to represent these formulas.
In the vicinity of V = 2.4, the simple equation (8) and consequently
its approximation (20) are not exact. As long as the value of the propa-
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Fig. 4—Plot of eq. (20). This curve represents the normalized radiation loss of a
quasi-single, HE:; mode in the presence of a leaky (next-higher-order) mode. The
curve in this figure continues the curves in Fig. 3 to higher values of V, n, = 1.515,
ng = 1.5.

gation constant 8, is very close to nsk, coupling to the radiation modes
is not entirely negligible. It is apparent from Fig. 3 that the loss curves
for different values of m have a tendency to converge to one curve.
In Fig. 4 this convergence has taken place, but the transition from
the many curves to one single curve is lost.

A comparison between the loss coefficients of the single-mode, step-
index fiber and the multimode, parabolic-index fiber is possible only
if certain assumptions are made. Figure 5 presents plots obtained from
the loss formula (26) of the multimode fiber. We have drawn these
curves by requiring 6, = @ with Q given by (3) and 6, defined by (24).
Multimode and single-mode fibers now sample the power spectrum
at the same spatial frequency. The independent variable N in Fig. 5
represents the total number of modes that can propagate in the multi-
mode fiber. As the number of modes changes, the fiber dimensions must
change accordingly, keeping the value of 6, constant.

The curves in Fig. 5 are labeled by the values of the normalized
spatial frequency ©@/k; the corresponding values of the V number of
the single-mode fiber are written in parenthesis. These V values are
needed for a comparison of the loss values in Figs. 3 and 5. The normal-
ized loss values are directly comparable since the same power spectrum
at the same spatial frequency has been used in both cases. However,
each curve of Fig. 5 must be compared with the curves in Fig. 3 at the
proper V value. It is apparent that the loss of the multimode fiber
can always be reduced below the loss of the single-mode fiber if the
number of modes, N, is made large enough. For example, a single-
mode fiber will normally be operated near V = 2.4. The corresponding
curve (with ¥V = 2.4) in Fig. 5 lies below the single-mode loss value
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Fig. 5—Normalized loss coefficients of the multimode, parabolic-index fiber which
is designed so that its spatial frequency 6, [eq. (24)] coincides with the spatial fre-
quency 2 [eq. (3)] of the single-mode fiber. The values of @/k label the curves; the
values shown in parenthesis are the corresponding V values of the single-mode fiber.

for N > 30. For a fiber with n, = 1.5 and A = 0.01, N = 30 cor-
responds to ka = 52, for A = 1 um we have a core radius of ¢ = 8 pm.
Next we compare the microbending losses of single- and multimode
fibers by assuming typical fiber parameters. Single-mode fibers must
be designed to have a V value near ¥V = 2.4. If the fiber has a narrow
inner cladding surrounded by an outer cladding, whose refractive index
is similar to that of the core, the leaky mode losses of modes of order
higher than HE;; may be so large that the fiber behaves effectively as
though it supported only one guided mode and its V value may be
chosen to be above V = 2.405. After the V value has been chosen, it
is desirable to make the core radius a as large as possible to ease the
splicing problem. We assume that fiber core radius values in the range
@ =5 um to 10 um are of interest. Thus, with A = 1 ym, we are
interested in ka values in the range 40 < ke < 60. With V = 2.4, the
corresponding index difference would be in the range 0.0005 < n, — 72
<0.002; for V = 3.5, we have instead 0.001 < n; — ny < 0.0045.
For a typical multimode, parabolic-index fiber, we use A = 0.01 and
let the core radius fall in the range 16 < a < 35 um so that with
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A = 1 um, we have 100 < ka < 220. The cladding index is assumed to
be that of fused silica, ns = 1.457, for both types of fibers. Since there
is now no fixed spatial frequency that we may use for normalization
purposes, we use the power spectrum at the spatial frequency 8 = nskA
to normalize the loss coefficient. This normalization uses the A value
of the multimode fiber (A = 0.01) and is certainly quite arbitrary,
particularly for the single-mode fiber. However, a common normali-
zation for both fiber types is necessary if we want to compare the loss
values.

Figures 6 through 9 present normalized loss values for the single-
and multimode fibers for m = 4, 6, 8, and 10. The single-mode losses
are plotted as solid lines for different values of V; the dotted lines
indicate the multimode loss values. The upper scale in the abscissa
ranging from ka = 30 to ka = 60 applies to the single-mode curves,
while the lower abscissa from ka = 100 to ka = 220 applies to the
multimode curves. We have included two curves with ¥V = 3.1 and

kag
30 40 50 60

4 SINGLE MODE

6 MULTIMODE
4
.
108 | | | | |
100 120 140 160 180 200 220
kaP

Fig. 6—Normalized radiation losses of single-mode (solid curves) and multimode
(dotted curve) fibers. The upper scale on the abscissa applies to the single-mode case
while the lower scale belongs to the multimode fiber. The power spectrum used for
normalization of the loss factor is taken at the spatial frequency 6 = m.kA with
.(E\ =) 0.01, ny = 1.457. This figure uses the exponent m = 4 of the power spectrum

12).
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Fig. 7—Same as Fig. 6 with m = 6.

V = 3.8 in Figs. 6 through 9 to illustrate the case of a fiber that is not
strictly speaking ‘‘single mode,” but supports an additional leaky
mode. The curves for V in the range 1.5 < V < 2.4 were computed
from (17) through (19) while the curves with ¥V = 3.1 and V = 3.8
were computed from (20). The dotted curve for the parabolic-index
fiber was obtained from (22).
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Fig. 8—Same as Fig. 6 with m = 8.

It is apparent that typical multimode fibers have lower losses than
typical single-mode fibers.

VI. CONCLUSIONS

We have presented loss formulas for the single-mode, step-index
fiber and for the multimode, parabolic-index fiber. The step-index fiber
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Fig. 9—Same as Fig. 6 with m = 10.

formulas were approximated by simple empirical approximations to
obtain analytical expressions that can be easily evaluated with the
help of a pocket calculator.

We compared the radiation losses of both fiber types that are caused
by random deflections of the fiber axis. It was our objective to deter-
mine which fiber type is more sensitive to these microbending losses.
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Qur conclusion is that the single-mode fiber is more susceptible to
microbending losses than the parabolie-index, multimode fiber. Since
both fiber types are useful for wideband communications purposes
using GaAs injection lasers or LEDs (in the case of the multimode fiber
only), a knowledge of their respective microbending losses is important
for system considerations.
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APPENDIX
Validity of the Loss Formula in Equation (5)

Equation (5) was derived under the assumption that the fiber core
is surrounded by an infinite cladding. Actually, cladding modes play
the role of our radiation modes and the question arises: how accurate
is a deseription of mode losses in terms of radiation modes? To answer
this question, we compare the results of numerical evaluations of (5)
with a theory published by Kuhn,* who uses cladding modes in a fiber
with lossy jacket to calculate mode losses caused by random bends.
Kuhn assumes that the curvature of the fiber can be described by either
an exponential or gaussian correlation function. Since our formulation
uses the function f(z) to describe the fiber axis, we must first transform
our equations into a form that allows us to compare it to a description
in terms of fiber curvature. If we denote the power spectrum of the
curvature function by (C2(6)), the following relation holds:

(o)) = (O, (@7)
The variance of f(z) is defined as
&t = % fu ® (F2(6) )do. (28)

The variance of the curvature spectrum is similarly defined as

<(%)’> - % L * (C2(8))db. (29)

If we define the power spectrum (F?) with variance % we can compute
the corresponding variance for the curvature spectrum only if the
integral (29) exists. For an exponential correlation function of the
curvature, the power spectrum (C?) has a Lorentzian shape® that re-
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mains finite at # = 0 so that the integral in (28) does not exist. Cor-
respondingly, (29) does not exist for a Lorentzian shaped (F?). Thus,
a comparison between Kuhn's theory and ours is possible only for
the gaussian correlation function.

Kuhn uses the following autocorrelation function for the fiber

curvature :*
R.(v) = (( H )> exp (—u2/DY). (30)

D is the correlation length. The power spectrum of the distortion func-
tion f(z) is, thus,

@) = Ve {(3) ) 7 exp L—6D/27) (31)

Numerical integration of (5) yields the solid curve for the normalized
radiation power loss shown in Fig. 10. This curve was computed for

11l 1 I ||I | L1
4 58100 2 4 6 101 2 4 55102

D/a

10! L
10-1 2

Fig. 10—Comparison between Kuhn's theory and our theory for n, = 1.51,
ny = 1.5, and ¥V = 2.18. The autocorrelation function of the fiber curvature is

gaussian.
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the following conditions:

ny = 1.51
Ny = 1.5
ka = 12.56531.

These values lead to V = 2.18. The eigenvalue equation for Lr modes’
allows us to calculate ka = 1.5851486.

The dashed curve in Fig. 10 was obtained from Kuhn’s publication.*
It is apparent that the two theories agree very well for large correla-
tion length corresponding to small spatial frequencies. The agreement
is not quite as good for short correlation length or high spatial fre-
quencies. Coupling spectra with large spatial frequencies lead to radia-
tion escaping from the fiber core at large angles. Our eq. (5) is limited
to small angle radiation. The solid curve in Fig. 10 was computed by
using (5) for large correlation length, but using a corresponding for-
mula derived with the help of free-space radiation modes for small
correlation length. However, the longitudinal components of the guided
and radiation modes were ignored, which led to an underestimation of
the loss for radiation escaping at large angles. In the main part of this
paper, we are interested only in coupling functions whose Fourier
spectra drop off rapidly with increasing spatial frequency, so that only
small spatial frequencies are important; eq. (5) is thus applicable. The
comparison of our theory with Kuhn’s shows that no large error results
from using radiation modes instead of cladding modes to compute
mierobending losses.
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