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We show formally how the application of boundary layer techniques to
a well-stirred, concentrated, multicomponent electrolyle yields essentially
the same results as those for a dilute, binary electrolyte. In particular,
the coupled integral equations for the reactant conceniration and the
electric potential, derived by J. L. Blue for a dilute, binary electrolyte,
remain valid in the general case with modified values of certain combina-
tions of physical constants appearing in the equations.

I. INTRODUCTION

In this paper, we use the method of matched asymptotic expansions
to derive boundary layer equations for a well-stirred, concentrated,
multicomponent electrolyte containing a single ion reacting at the
electrodes. We have two main objectives. First, we wish to show how
the boundary layer approximation, up to now applied mainly to dilute,
binary electrolytes or to the case of excess supporting electrolyte,!
may be systematically generalized. Second, and more important, we
show how the generalization leads to equations almost identical with
those valid for a dilute, binary electrolyte, for which J. L. Blue? has
derived an elegant and efficient method of solution.

In the general case, the singular perturbation in the boundary layer
leads to a set of coupled convective diffusion (cp) equations for the
concentrations or, in other words, a vector cp-equation in place of the
single, scalar cp-equation for a dilute, binary electrolyte. The vector
cp-equation is diagonalized by introducing the eigenvalues and eigen-
vectors of a reduced diffusivity matrix. The resulting uncoupled, scalar
cp-equations can then be solved by Blue’s method.

The perturbation yields linear cp-equations in the electrolyte, but
the strongly nonlinear dependence of the electrode current density on
the electrolyte potential and the reactant ion concentration is retained.
In fact, the first approximation is simply the so-called ‘‘secondary
current distribution,” the potential satisfying Laplace’s equation in



the electrolyte, but satisfying nonlinear boundary conditions at the
electrodes. Furthermore, if, as is often the case, the current-carrying
capacity of the electrode surface reaction is large compared with that
due to ohmic conduction, the potential is approximately constant on
the electrodes, giving the so-called “primary current distribution.”

We begin in Sections II and III with a semiqualitative discussion
of some of the approximations involved. Sections IV through IX
contain the detailed analysis. The reader not interested in the details
may skip to Sections X and XI, which contain very brief summaries
of the formal perturbation solution and the equivalent boundary
integral solution developed by J. L. Blue.

Il. THE FIRST APPROXIMATION

A first approximation to the cathode current density serves as a
convenient introduction to the general concentrated, n-component
electrolyte. In a well-stirred electroplating bath, the ion concentrations
are almost constant, except in thin diffusion boundary layers surround-
ing the electrodes. If the electrode current densities are bounded, so
are the concentration gradients in the boundary layers. Thus, the
changes in concentrations across the boundary layers are small when
the boundary layer thicknesses are small enough. To a first approxi-
mation then, the concentrations are constant throughout the elec-
trolyte, current being carried entirely by ohmic conduction. In the
electrolyte, the dimensionless potential ¢ (equal to F&/RT, for Fara-
day constant F, gas constant R, and absolute temperature T) satisfies
Laplace’s equation

vie = 0.
On the electrodes, the current densities are determined by surface
reactions producing cations (e.g., Cut*) at the anode and depositing
them at the cathode, the reaction rates being functions of the local
concentrations and potentials. The potential ¢ then satisfies the
boundary condition

= Jay on the anode,
E®3dep/dn = k®n-Vo = Joy on the cathode,
0, otherwise,

where n is the outward normal, k@ is the dimensionless bulk con-
ductivity, and, for e = a, ¢,

Jo = ji@[exp(a| ¢ — ¢o|) — exp(—B| ¢ — oc|)].

The dimensionless ion exchange current density j;®, here constant,
but in general a function of the concentrations, and the exponents a.,
B, characterize the surface reaction rates. The quantity ¢ — ¢. is the
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so-called “‘electrode surface overpotential” for electrolyte potential ¢
and electrode potential ¢,.

When j;© is large, | ¢ — ¢.| must be small or, to a first approxi-
mation, ¢ = ¢, on the electrodes, giving the so-called “‘primary current
distribution.”” Note, however, that the primary current distribution
leads to unbounded current density at electrode edges or reentrant
corners, while the secondary current distribution does not. The ex-
ponential form of the electrode current relation, however, suggests
that the primary and secondary current distributions differ only in a
very small neighborhood of such a boundary singularity.

Once ¢ has been determined, the electrode current densities can be
calculated. Furthermore, the approximation does not depend on the
specific electrolyte, but only on the existence of thin boundary layers
across which the concentration changes are small. It thus applies to
dilute, binary and concentrated, multicomponent electrolytes alike,
although, of course, the various constants, e.g., the conductivities, may
be vastly different in the two cases.

To obtain a better approximation, we must include the effect of
concentration variation across the boundary layers. Before doing so,
however, let us consider a method of practical solution for ¢, the
method of boundary integrals widely used for the numerical solution
of potential problems. Since ¢ is harmonie, it satisfies Green’s third
identity, which in the plane has the form

oro(P) = [ [ 22 @GP, Q) — @32 (P, Q) | ds(@),
r| an an

where T' is the curve bounding the electrolyte and G(P, Q)
~In (1/| PQ|), as the point P — @, and is harmonic otherwise. When
P lies on I, the identity becomes an integral equation for ¢, nonlinear
because d¢/dn is a nonlinear function of ¢. Very efficient numerical
methods for solving this equation have been developed.

Ill. THE BINARY ELECTROLYTE

For the dilute, binary electrolyte, J. L. Blue? has extended the above
boundary integral method to include the effect of concentration changes
across the boundary layers. He derived a relation giving the concen-
tration changes across the boundary layers in terms of integrals of
the product of electrode current density and a kernel function whose
form depends upon the local velocity distribution. These concentra-
tion changes affect the electrode current density in two ways. First,
as we have already noted, the ion exchange current density is a func-
tion of concentration. Second, the potentials at the electrodes differ
from those at the boundary layer edge, where the previous ¢ is actually
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evaluated, by the so-called “concentration overpotentials” Ag,,
e = a, c. These overpotentials are due to the net current carried by
ions diffusing at different rates through the boundary layers. To the
present degree of approximation, they are linear functions of the
concentration changes across the boundary layers.

In a binary electrolyte, in which the two ion concentrations must be
proportional, since the electrolyte is electrically neutral, A¢, is pro-
portional to the integral giving the concentration change. This con-
stant of proportionality, the constant giving the concentration to be
inserted into the ion exchange current density, and the bulk conduc-
tivity are the only constants containing material properties in the final
relations. They thus characterize the electrolyte completely in this
case and may thus be used in place of the individual diffusivities and
mobilities.

In the above, we did not qualify the term “binary electrolyte’” with
the term “dilute.” The discussion of the previous paragraph applies
as well to concentrated binary electrolytes, provided that the boundary
layer concentration changes are small. In this case, in the boundary
layers, the equations are linearized around a state of constant bulk
concentrations, so that the diffusivities, in general forming a 2 X 2
matrix, and the mobilities, both functions of the concentrations, are
constants, evaluated at the constant values of the bulk concentrations.
Using the charge neutrality condition, the potential and one concen-
tration are eliminated from the two boundary layer equations govern-
ing the ion fluxes. The resulting equation has exactly the same form
as that for a dilute, binary electrolyte, so that the solution has the
same form, except that the proportionality constants have different
values.

In the following, we extend this result to concentrated, multicom-
ponent electrolytes, the case of the ternary (n = 3) electrolyte being
of particular interest. As above, we linearize the equations around a
state of constant bulk concentrations, using the boundary layer
approximation (not the assumption of excess supporting electrolyte).
We eliminate the potential and one concentration to obtain a set of
(n — 1) boundary layer equations for the concentrations, coupled by
areduced (n — 1) X (n — 1) diffusivity matrix. This system is solved
by diagonalization, using the principal values and vectors of the re-
duced matrix. Finally, these solutions are combined to calculate the
electrode concentrations and concentration overpotentials. We find
that both of these quantities are proportional to a single integral as
before, so that the electrolyte can be characterized by specifying the
two constants of proportionality, instead of n? diffusivities and n
mobilities.

806 THE BELL SYSTEM TECHNICAL JOURNAL, JULY-AUGUST 1976



IV. THE COMPLETE BOUNDARY VALUE PROBLEM

The steady flow of ions in a nonreacting, concentrated, n-component
electrolyte is governed by the n conservation laws®

V-N: =0, (1)
for 2 =1, -+, n, where the ion flux N; is given in terms of the ion
concentrations C,, - - -, C'» and the potential ¢ by

Nn‘ = C|V - Z D;‘jVCj - FZ.'U.'C.'V@. (2)
i=1

In these n relations, V is the circulation velocity of the electrolyte due
to stirring, F is the Faraday constant, z; the charge number of the
ith ion, and the diffusivities D;; and mobilities U; are functions of
Cy, -+, C,.t We shall not impose any restrictions on the form of the
D;/’s, although it seems reasonable to require, for example, that for
i1 # j, D;j— 0, as C; — 0. This makes the 7th ion flux N; vanish,
when the 7th ion is absent, and gives the correct form for a dilute
electrolyte. With

V-V=0, (3)

as is appropriate for a liquid electrolyte, eqs. (1) and (2) yield the set
of n nonlinear, second-order, partial differential equations

V-( Zﬂ D;;vC; + FZ:'U{C:'V‘I’) = V-v(C (4)

j=1

The set of equations is completed by the charge neutrality condition
> 20 = 0, ®)
=1

which implies that the current density
J=3 FaN, = —KV& — 3. . F2.Di;9C;, (6)
=] i=1 j=1
with the conductivity
K =¥ F22UC,, (7)

=1
satisfies
v-J =0. (8)

* Capital letters denote dimensional quantities; lower case letters denote dimen-
sionless quantities.

T In Appendix C, we show how D;; and U; can be expressed in terms of the elec-
trochemical potential.
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We assume that there is no flux through the surface bounding the
electrolyte, except that flux due to the production of cation 1 (e.g.,
Cutt) at the anode and deposition of the same cation at the cathode.

Thus, for outward normal n,
Van=N;n=0 (9)

fori = 2, -+, n, while
N;-n= J-n/le (10)

on the boundary, where

J o on the cathode, (11)
0

Jn-=

—J on the anode,
otherwise.

b

We shall assume that the electrode current densities determined by
the surface reaction rates have the form

Jo = JHC/CY)r[exp(a.F|® — ®.|/RT)
- exp(—ﬁ,F}fb - q)c!/RT):]J (12)

for e = a, ¢, where the ion exchange current density J%(C1/C%) is
assumed to be a function only of the concentration of the cation
participating in the surface reactions, R is the gas constant, T' the
absolute temperature, ® the electrolyte potential, ®, the electrode
potential, and |® — ®,| the surface overpotential. These conditions
complete the boundary value problem.

Now let L, V, C, RT/F, D, D/RT, and FDC/L be some typical
length, velocity, concentration, potential, diffusivity, mobility, and
current density and set

(z,y,2) = (X, Y, 2)/L,

ci = C.‘/C,

o = F&/RT,
v=V/V,

j=LJ/FDC,
di; = Di;/D,
U = RTU,/D

The equations and boundary conditions then take the dimensionless
form

V-( 3 diVe; + z.-u.-c;an) = Pev-Vc, (13)

i=1

fori = 1, - - -, n, where the Peclet number Pe = VL/D,
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3 zici = 0, (14)

=1
V-(kV(P +3 X 3-’dn‘ivci) =0, (15)
i=1j=1
where
k= Zn: Z%‘M.’C.‘. (16)

i=1
With v-n = 0 on the boundary,

—j'n/z, for 1=1,

J_gl di;0c;/on + ziuicid /dn = { 0 for i=2 - m, (17)
where
—j-n = kde/on + i i 2:d;;0¢;/dn

i=] j=1

—Jo on the cathode, (18)

Fa on the anode,
0, otherwise,

and, for e = gq, c,
jo = Jeelfexp(acl ¢ — @o|) — exp(—Bcl ¢ — ¢o[)],  (19)
Jo = (LJW/FDC)(C/C)e. (20)

V. THE BOUNDARY LAYER APPROXIMATION

To obtain explicit results, we consider a plane, rectangular region
with a cathode at ¥ = y = 0 and an anode at ¥ =L, y = 1. We
assume that the electrolyte is well stirred, with Pe >> 1, so that the
concentrations are nearly constant, except in thin boundary layers,
of thickness of order eL, e = (Pe)~}, balancing diffusion and convection
near the electrodes. Far from the electrodes, we introduce the outer
expansions

Ci

@

f,‘(lﬂ, Y, E) = C‘i(m + 0(23)’
¢(IJ Y, E) = 9-9(0) (Ir y) + Ef’m(l', y) + Y

since eq. (13) implies that v-vé; = O(e®), where the ¢/’'s are the con-
stant bulk concentrations and , @ are harmonic functions; i.e.,

29 + 2 = #% + & = 0. (22)
In the boundary layers, we set

o= 7z, 0, = o + @) + o
Y = @(I"! 7, é) = @(0)(3;, g) + eq‘éf”(g‘;, g) + - ]

(21)
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where the stretched variable 7 = y/e in the cathode boundary layer
and § = (1 — y)/ein the anode boundary layer. The assumption that
the electrode current densities are bounded has already been intro-
duced by choosing the leading term in the expansion of ¢; to be con-
stant. In the boundary layer eqs. (13) and (15) become

(Enl diiEs + Z;'ﬂefa'@'i); — (i€iz — ¥ulit)
= —¢ (Zn:l diitjz + Ziuift"?’z) , (23)
1= z

(fes+ £ za,,c,,,) - —e(Fp+ £ L adin), @8

i=1j=1 =1=1
where we have introduced the reduced stream function
v(z, 7, & = e%(z, ),
with the z and y components of v given by
U = ¢y, v = —yq

vanishing on the electrodes. The tildes on di;, etc., mean d;;
= dij(¢y, -, €n), etc. Note that the d’s, @’s, k, and ¥ must all be
expanded around e = 0 to obtain the equations satlsﬁed by ", ¢,
@1, ..., The boundary conditions, for example at the cathode
y = § = 0, have the form

3 o e — éj—t!/a"-'l, for 7 = 1,
Pl I R S
where
= j4(@)r[exp(e.8) — exp(—B.%)], (26)

Z; and > 0 being evaluated at § = 0 and the cathode assumed to be
grounded, so that ¢, = 0. Obviously j. must also be expanded in
powers of e. Finally, multiplying eq. (25) by z; and summing yields

key + 21 El 2:diitis = €Je. (27)
=1 j=

The set of relations from which the boundary layer equations are ob-
tained is completed by matching Z:(z, 7, €) with é:(z, y, €) and &(z, 7, €)
with @(z, y, €) for small y and large §. Specifically, we use intermediate
matching, setting

y=ey*, g=ey
for fixed * and 0 < a < 1, and considering the limit ¢ — 0. Matching

Ci(z, ey, o = ¢ + &P (z, e'yY)
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with
63, ey*, &) = o + 0(¢)
trivially yields the boundary conditions
e (z, ») =0,
forz = 1, ---, n. Similarly, matching @ and ® gives
¢ (z, ) = p9(z, 0).

The differential equation (24) and the boundary condition (27)
imply that @5y = @5 = 0, so that

20, ) = 39 0).

To a first approximation, the outer potential , as yet undetermined,
simply penetrates the boundary layer.

VI. FIRST-ORDER MATCHING: THE SECONDARY CURRENT DISTRIBUTION
Boundary conditions on © are found by matching

= 3© + ep®
with

@ = ,;,(DJ + E@(l).
The zero-order inner potential ® has already been determined. The
first-order potential @ satisfies the differential equation

o)) L ey
k@@ + Y Y 2dfey | =0,
i=1j=1 v

and the boundary condition

) 23 =D *(0)
ke + Y 2 2dCh = 5,

1=] j=1

at § = 0, where df, k are evaluated at cf?, -, ¢ and j&” at cf”,
@ (z, 0) = @ (z,0), so that

i®(x) = jilef®]v{expla.®(z, 0)] — exp[—B.# (2, 0)]}.
Two integrations yield

20 (z, 7) = oV (z) + [yj§°’(x) - £ 3 29, y)] / kO, (28)
i=1j=

where @ (z) is an arbitrary function of z. The last term can be
identified as the concentration overpotential. Since, for large 7, ¢V — 0,

P~ 70, 0) + Lo0() + iy O () /b0,

BOUNDARY LAYER 811



for § = e='y* and ¢ — 0. On the other hand, expanding in Taylor
series gives
5~ 89 (z,0) + e*3,” (z,0) + W (z,0) + -,

for y = e2y*. First-order matching then yields the zero-order boundary

condition
2, (z,0) = j®@(z)/k©®

and
¢M(z) = W (z, 0),

another penetration condition. A similar analysis produces the

boundary condition
& (2,1) = i ()/k©

at the anode y = 1. Since j® and j{” depend only on &, we now
have a complete boundary value problem for . To a first approxi-
mation then, the potential ¢ satisfies Laplace’s equation

©zz T+ oy = 0, (29)

in the electrolyte, and the nonlinear boundary condition

Jay on the anode,
E®3p/on = 4 — j, on the cathode, (30)
0, otherwise,

where, for e = @, ¢,
= jeiLe®]7[exp(asl ¢ — ¢o]) — exp(—Bel ¢ — @), (31)

yielding the so-called “secondary current distribution.”

Although we have derived this secondary current distribution
specifically for small boundary layer thickness and moderate electrode
current density, it probably is valid over a much wider range. The
basic assumption is simply that the concentration variations are small.
Thus, it is probably still valid when the flow is turbulent and the
present simple description of the flow field does not suffice or at loci
of boundary singularities (sharp edges, etc.) where the gradients are
not necessarily normal to the boundary, as is assumed tacitly when
one introduces the stretched variable 7 in the boundary layer approxi-
mation. In any event, by calculating the first-order terms Z{", @,
we can obtain an error estimate or an improved approximation.

VIl. CONCENTRATION VARIATIONS

Although we have already derived boundary conditions on the Z"’s,
we have not yet displayed the equations which they satisfy. With
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constant leading terms ¢{” and ¢ expanded in the form
V=vo+ &1+ -+ = Pf(x) + eiPgx) + ---,

where f(z) = ¥uu(2, 0)/2, g(z) = Yuuu(z, 0)/6, - -, eq. (23) becomes,
to first order,

> a9z + (k0/2) 85 = B — 90T, (32)
=
for i = 1, - - -, n, where the 7th partial conductivity

— 2,,(0) . (0
KO = 2u®e,

while the boundary condition (25) at § = 0 yields

3 (0) y =
£ e + G /eas = | (33)

0, for 7=

I
N

We can use the charge neutrality condition

W= = % (el
J=1

and the relation

. _ . (1)
k®g; = jO — Z Zz T

p=1 j=1

found from eq. (28), to eliminate Z{" and @®. We obtain the reduced
boundary layer equations

Z digm = ¥ e — ¥V, (34)
fori =1, ---, n — 1, and the boundary conditions at § = 0
H )
2D _ (1 — ™)@ /2, for i=1,
-Z At = —t0jO [z, for 4=2,---,n—1, (35)

where t® = k®/k© is the 7th transference number and the reduced
diffusivity matrix [d;;] has elements

diy = A9 — (23/2)d9 — 1 2 (2,/2)[d9 — (2:/2:)dRT, (36)
p=l

fori=1,---,n—1,j=1,---,n — 1. The boundary value problem
is completed by the conditions at infinity
iz, =) =0, (37
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and the “initial condition”
e(0,9) = 0. (38)

As usual, the boundary layer approximation changes the equations
from elliptic to parabolic type, requiring a condition at z = 0 in the
time-like variable . Equation (38) is equivalent to the assumption
that the concentrations have their free-stream, bulk values near the
leading edge * = § = 0. We now have a complete set of coupled
equations and boundary conditions for the first-order boundary layer
concentration variations . We note in passing that the corresponding
set for the second-order variations &® would be much more com-
plicated, containing not only ¢®), as in the case of the dilute binary
electrolyte, but also first-order terms df}’, etc., due to the concentration
dependent diffusivities and mobilities.

VIIl. THE VECTOR CD-EQUATION AND ITS SOLUTION

Equation (34) and boundary condition (35) can be written in the
vector form

[de® gy = ¥ (601 — #PD T (39)
ing > 0, and
[z = [T (40)
on § = 0, where [d’]is the (n — 1) X (n — 1) matrix
d;l o d'l(n—l)
[d'] = SRR ,
d[n—l)l st d(n—l)(n—l)

and [¢®] and [T®7] the column vectors

o (1 = )/
Eol=|: |, [rel=| i |

ARM —bn1/2n1

By way of comparison, for the binary electrolyte (n = 2), one has

~(D O e
& = I — Jog; (41)

for § > 0, and
G = TOjo, (42)

forg = 0, wheredy, = 1,2® =g, T® = T{® (1 — #;)/21. The solution
of this problem is given in Appendix A, together with that of the
corresponding axially symmetric problem, important for jet plating
and for the rotating disk electrode.

814 THE BELL SYSTEM TECHNICAL JOURNAL, JULY-AUGUST 1976



We now introduce the eigenvalues d® and the eigenvectors [u(?]
of [d'], such that*
[d'u®] = d@[u®],

forp=1, .-, n— 1. If we set
—1

[f0] = T ¢@[u®],

p=1
[TO] = “)il ]
=1
eqs. (39) and (40) are satisfied if
dPciy = § e — 07, (43)
in g > 0, and
d®e? = 2O (44)
ong=0forp=1 -, n—1

Now, in Appendix A we show that, if ¢(z, y) satisfies

Cyy = Y€z — Yaly,
with ¢ = yf(z), and
¢(0, y) = ¢(z, ©») =0,

then
o(z, 0) = fo * (2, 0K (z, o), (45)
where the kernel
K@) - - ([ U1e) /re. @0
Thus,
¢?)(z, 0) = [d»] f: i@ (z") K (z, x")dz’, (47)

with a factor (d®)}, found by replacing f by f/d‘®’ in K, and a factor
(d®)~! from the boundary conditions. Finally, to first order in e,
the concentrations at the cathode are given by

2z, 0) = o + eus f T O (2K (x, 2')dx, (48)
0
fort=1, ---,n — 1, where
n—1
=1

* We assume that such u’s and d’s exist. This must be verified in each particular
case.
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and we now write K, for K to indicate that the kernel depends on the
velocity distribution near the cathode. A similar expression

Zi(z,0) = ¢® + e / " OGN K o (z, 2)da, (50)
0

with = measured from the anode leading edge and 7 = 1, -+, n — 1, is
valid for the concentrations at the anode. The concentration of the
nth ion at cathode and anode is found from the charge neutrality
relation

7(,0) = = T (a/2n)i(z, 0). (51)

With the Z’s determined, we are almost ready to calculate the first-
order corrections to the electrode current densities. For example, at
the cathode we have

Jo = j:(El)Tc[:exP(acﬁﬁ) - exp('-ﬁ@)]!

where

& = cf” + ef?,

P =M+ epW,
all quantities being evaluated at § = 0. With

Jo= JO 4 €O 4 ..o,
we find
3 = jeLef®]v[exp(a.p®) — exp(—B.2™)],

as before, and

7 = File@]7e{ [y + a.p®] exp(a.d®)
— [ve&f? — B.pW ] exp(—B.a ™)},

where

FU = aW(g, 0) — Z Z 2 AP0 (z, 0) /@, (52)

i=1 j=1

We still must determine the first-order outer potential ®. It is the
solution of the linear potential problem

72 + 2w = 0, (53)

in the electrolyte,
o, on the anode,
E®ag®/an = — 7, on the cathode, (54)
0, otherwise,

where the 7’s are linear functions of ®, with coefficients which
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depend on ¢, @, and . This boundary condition is found from
second-order matching of @ and &, just as the boundary condition
on #© was found from first-order matching. As is usual in boundary
layer problems, the complexity of matching increases rapidly with
order so this rather messy matching is relegated to Appendix B. Once
#® has been determined, the electrode current densities can be calcu-
lated to first order in e.

IX. THE CONCENTRATION OVERPOTENTIALS

The concentration variations z{¥ appear in the j{’s in two ways.
First of all, there is the power law dependence of the ion exchange
densities on the concentration Z; of the “active” cation (e.g., Cu*).
This concentration is given by

= c® + eur j " jOK di! (55)
0

in terms of the bulk concentration ¢{® and the constant u;.

The second concentration dependence is contained in the so-called
“concentration overpotential,” the difference between the potential
#(z, 0) at the electrode and the potential @(z, 0) at the edge of the
boundary layer. To first order in ¢, this concentration overpotential
is given by

om0 o = [ R,
(]
where

b= — 3% ald — (es/2a)d Jusi/kO. (57)

i=1 j=l1

X. FORMAL PERTURBATION SOLUTION

Although we shall eventually abandon this approach in favor of an
equivalent scheme more convenient for numerical analysis, let us
briefly summarize the successive steps by which the electrode current
densities are calculated to first order in e. There are three such steps:

(7) The nonlinear potential problem. First, we calculate the
harmonic function @, satisfying nonlinear, mixed-boundary
conditions. As is usual in boundary layer theory, we begin with
a nonlinear problem, the only nonlinear problem in the se-
quence. It yields first approximations to the electrode current
densities, which may be adequate for many purposes. It also
furnishes a boundary condition for the boundary layer con-
centration variations.
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(77) Concentration variations. The concentration variations ¢{V, or
rather " and A¢., which are the only quantities involved in
Fare calculated from eqs. (55) and (56), giving them in
terms of a single integral of the produet of electrode current
density and given kernels.

(7%7) The linear potential problem. With Z{", A¢, known, the har-
monic function @@, satisfying linear, mixed-boundary condi-
tions in &0, &, A¢, is calculated and, from it, a second ap-
proximation to the electrode current densities, good to order e.

XI. SOLUTION BY BOUNDARY INTEGRALS

Instead of following the above rather cumbersome procedure, we
can adopt the approach suggested by J. L. Blue,? forming a nonlinear,
coupled set of integral equations whose solution, e.g., by successive
approximation, yields the electrode current densities directly to order
e. From this point of view, the formal perturbation scheme simply
validates this method. For example, perturbation tells us that the
integral solution of the boundary layer equation is good to order e
and no more.

We begin with Green’s third identity for a plane region:

2we(P) = [ [ia(@/kIG(P, Qds(Q) — [ [4.(Q)/k]
6P, Qi@ — [ o@ 2 (P, (@),

where ¢ has the fundamental singularity at P = @, T, is the anode,
T, the cathode, and T the whole boundary, and we now denote
+ep™ by ¢ and the bulk conductivity £ by k. For each set of
values of ja, j., ¢, and points P on the boundary, the solution of this
integral equation gives ¢. Similarly, from the integrals

6 =c® + an L " jKdr,
Ap. = +eb f " K,
1]

with e = a, ¢, we can calculate ¢; and Ay, from the given values of
Je and j.. With ¢, ¢;, and A ¢, now known on the electrodes, we can
calculate new values of j, and j, from the relations

Je = j:(cl)“[exp(ael o+ Aps — ‘Pel) - eXp(_ﬁal ¢+ Ap, — ﬁpﬂl)]r

for e = a, ¢, the anode potential ¢, > 0, and the cathode potential
-¢. = 0 (for a grounded cathode). Using these new values of electrode
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current densities, compared with the old values, a successive approxi-
mation scheme can be developed which converges rapidly.

Note that this scheme is formally identical with that for the dilute,
binary electrolyte. Furthermore, within the framework of this caleu-
lation, the concentrated, n-component electrolyte can be characterized
completely by giving its bulk conductivity % and the constants u; and
6. The values of the individual diffusivities d;; and mobilities u;, from
which p, and & can be calculated, are of no importance. Only %, ui,
and § enter the final set of equations.

APPENDIX A
Integral Solution of the Boundary Layer Equation

Let ¢(z, y) satisfy the boundary layer equation

Cyy = Yytz — Yaly (58)
inx >0,y >0, with ¢ = y2f(z) and
c(0, y) = c¢(z, ©») = 0. (59)

For use in the method of boundary integrals, we wish to express the
boundary values of ¢ in terms of an integral over the boundary values
of ¢y, i.e., we seek the kernel function K in the relation

o(z, 0) = f " eul(@, 0)K (x, «')dx". (60)
0
Following Levich? and Lighthill,* we make the change of variable

£ = f [f@Tdz,  m= W) = y[f@T,

the form of # being motivated by the observation that the right-hand
side of eq. (58) vanishes when c is a function of ¥ alone. We find that
v(§ 1) = c(z, y) satisfies the equation

Ugy = 270, (61)

if £>0,n>0 and
v(0, 7) = v(§ =) = 0. (62)

Denote the boundary values of », by g, so that
va(§ 0) = g(8).

Then the Laplace transform 7, given by

o(n, 8) = f: et u(¢, n)dé,
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satisfies the ordinary differential equation
7" — 2893 = 0,
in0 < 9 < , and the boundary conditions
7(0,s) = §(s), #(»,s) =0,

where § is the transform of g. Now suppose u (%, 5) is any solution of
eq. (61), satisfying eq. (62). Then we have the identity between
transforms
(n, s) = g(s)u(n, s)/@ (0, 5),

giving

5(0, s) = #'(0, $)[a(0, 8)/%'(0, s) 1. (63)
A convenient choice for u is the similar solution of egs. (61) and (62),
satisfying the condition

u(g 0) =1,
so that #(0, s) = 1/s. In this case, u is a function of { = 5/£* alone,
given by
w0 1\t /1
= — 9,3 o ol
w=[ [T ew-2ema] /(5)(3).
so that

uy(§0) = — £/ (DITF)
and, with I'(k)/s* the transform of £-%
@'(0,s) = —I'(3)/@ITF)sE

Thus,
@(0, 9)/4'(0, 8) = — (F)T(3)/T(D)s'.

Inversion of eq. (63), using the convolution theorem, then yields
£
o(5,0) = [ uy(&, Ox(E = £)at,

where «, the inverse of %(0, s)/@'(0, ), is given by
k(8 = — (@YTD.

Using the relations

v(¢, 0)dt = cy(z/, 0)dz’,

[EOx

I

E—- ¢

we finally obtain eq. (60), with

Ko = - (3) ([Trera)’ /o(3) o
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K is of convolution type, i.e., a function of z — 2’ alone, only when
f is constant, e.g., for Poiseuille flow near the wall of a channel or
tube. For the laminar boundary layer flow on a semi-infinite flat plate,

f~a,

so that
K~ (z — 2'H) 4,

A slight modification of the above yields the integral relation
e(r, 0) = j " eu(r', O)L(r, ¥')r'dr, (65)
0

for the axially symmetric problem, where

Caz = T7H(YsCr — YiCa),
inr >0,z > 0, with ¢ = 22f(r) and

¢(0, 2) = ¢(r, ») =0,

where the kernel function

L(r, ") = — (%)i ([r [f(s)]ids)_i/r(g)- (66)

We merely replace the previously defined ¢ by
g= [ L7 Dsds.

Equations (65) and (66) apply, for example, to the rotating disk elec-
trode and to “‘jet plating,” where a jet of electrolyte is directed against
an electrode.

APPENDIX B
Second-Order Potential Matching

To obtain a boundary condition for the first-order outer potential

7", we must match

P = ‘5(0) + 65_9(1) + 62(5(2)
with

1,3 — "-D-(u) + e“'5(1) + 62(5(2),

where
@0 = p©(z, 0), (67)

g0 = pW(z,0) 4+ FiO/k® — TX z:diPTP /k©. (68)

The second-order inner potential @@ satisfies the equation

[k(%,‘;” FEOED + 3 ¥ 2(d9ew + d:yz&};’)]_ = —k©3Q, (69)
v

i=1;=1
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and the boundary condition at 7 =

k0P + E0ED + 3 Y 2(dPED + de) = 1, (70)

i=1 j=1
where k, d;;, j. have been expanded in the forms
E=k® 4 0 4 .
dij = dfP + 4P + -
jo= 39+ IO+ -

Note that 2@, dfP, 7% are linear functions of the Z/’s; for example,

k=kO + e (9k©/dc,)e.

=1

Two integrations give

¢(2) = @(2) _|_ (D/kwn —_ J2¢(0)/2 — Z Z zd}mcm

g=]1 F=1

+ [ £ £ aoago - ape - koo | ay i,
0 i=1j=1

where #® is an arbitrary function of x and eq. (68) has been used to
eliminate @), We wish to calculate 3@ in the limit § = *ly*, with
0 < a <1, y* fixed, e > 0. The first three terms all contribute to
the limit, while the fourth term vanishes, since £?® — 0, as § — .
Finally, we must evaluate the limit of the integral. Consider the last
term first. Since j® is a function of x only and

EO = z (0k® /ac,)ED,

=1

J, @@ ey
0

ea—ly* *
f Ve (2, )dg = et f " (e, et)dz — eI (e),
0 0

we have n integrals like

Changing variable gives

where I(e) — 0, as e — 0. Similar limits are obtained for the other
integrals with integrands of the form z®Zj;. Thus,

@~ 3 (z,0) + L3V (z,0) + = y*jO/k@] + [ P (z)
+emyt TR0 = (e-y)e®(z, 0)/2],

since ¢ = 39 (z, 0), to be matched with
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5~ a0 (x, 0) + ey*5,” (2, 0) + ()@, (x, 0)/2

+ea0(z, 0) + e*p, (2, 0)] + 2@ (z, 0).
Since © is harmonie, % (v, 0) = — (,T:l:.?,) (z, 0), and matching term by
term gives the previous boundary condition on

2 (x,0) = jO/k®,
the boundary condition on @
7, (x,0) = JO/kO,
and the ‘“penetration” condition
#®(z) = @(z, 0).
APPENDIX C
The Electrochemical Potential
In Section IV, we expressed the fluxes in terms of the gradients in
the form
N; = O,V — 3. DijVC; — FzCiUV®, (71)

=1

in effect defining the diffusivities D.; and mobilities U;, functions of
the concentrations, by this relation. In electrochemistry, it is more
usual to give the gradients of the electrochemical potentials, i.e., well-
defined thermodynamic functions, in terms of the fluxes. Thus, New-
man! gives the relations (for n + 1 species in our notation)

eV = 3 Kis(V; — V), (72)

=0

fori =0, 1, ---, n, where the u;’s are the electrochemical potentials,
the K;/’s are the interaction coefficients, functions of the concentra-
tions, and Vs are subject to certain constraints. Thus,

i CiVu; =0
i=0
and

Z piVi = PV,

=0

where V is the fluid velocity, p; = M.C; is the partial density for
molecular weight M;, and
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These restrictions imply that
2 (Kij — Ky) =0,

for j =0, 1, ---, n. In particular, Newman assumes the Stefan-
Maxwell relations K;; = Kj; i.e., pairwise interaction between species.
With these restrictions, eq. (72) has a unique solution for V; = V.
Thus we find, following Newman, that

Vi= Vo= = % LiCpVhs,
=

forz = 1, - - -, n, where — [ L;;] is the inverse of [ M,;], with
— Y Ka for  i=j
M;; = k=154
K;j, for IR

(Note that we may assume that K;; = 0, for ¢ = j.) Once V; — V,is
calculated, V; — ¥V may be determined from the identities

Vo—V=— g (o1/0) (Vi — Vo),

Vi—- V=V, — Vo +V,— V.
With

Vip = 3 (/00 VC; + (2u5/02)V8,

we finally find

Do = — g ; (p1/0) LisCoC' p(u/8C),
FzoUg = — é 21 (Pk/P)LkpCp(a#p/a‘I');
Dy=3% [L _ 3 (pk/pmk,,] C.C,(0uy/3C3),
p=1 k=1
Foli= 3 [L -3 (pk/p)Lk,,] C1(9up/3%).
p=1 k=1
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