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We present design criteria for the construction of a modified parabolic-
index fiber with intentional mode coupling. Mode coupling serves the
purpose of reducing multimode pulse dispersion and is accomplished by
introducing carefully designed index fluctuations into the fiber core or
by controlled “random” bends of the fiber axis. Radiation losses due to
mode coupling can be minimized by terminating the parabolic-index
fiber core in an abrupt index discontinuity. The additional modes intro-
duced by this step must be filtered out by periodic mode filters that consist
of parabolic-index fiber sections without the refractive-index step.

I. INTRODUCTION

In multimode optical fibers, light pulses are carried by many modes.
Such multimode operation limits the information-carrying capacity of
an optical fiber communications system because of pulse spreading.
At the fiber input, all modes receive part of the energy of the light
pulse simultaneously. However, at the fiber output, the light pulse is
stretched out in time because each mode (or mode group) travels at
a different group velocity. The length of the stretched pulse is pro-
portional to the fiber length. The amount of pulse spreading in a multi-
mode fiber depends on its construction. The dependence of the group
velocity of the modes on the mode labels is influenced by the distribu-
tion of the refractive-index profile of the fiber in radial direction.!
Step-index fibers* typically exhibit more pulse spreading than fibers
with graded refractive-index distributions. Fibers whose index profiles
show a parabolic (or square law) dependence on the radial coordinate
have the property that all modes have nearly the same group velocity
so that pulse spreading on parabolic-index fibers is nearly minimized.!

Our remarks so far apply to multimode transmission in perfect fibers
where each mode propagates independently of all the other modes.

* Step-index fibers have a core with constant refractive index and a lower index
cladding.
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Inhomogeneities of the axial distribution of the refractive index or
geometrical imperfections of the fiber geometry tend to couple the
modes among each other. Mode coupling has the undesirable con-
sequence that some of the power is coupled to unguided radiation
modes resulting in radiation losses.? On the other hand, coupling of
the guided modes results in a continuous interchange of power be-
tween fast and slow modes so that a light pulse that is distributed
over all the modes assumes a new shape. Instead of spreading according
to the different group velocities of the independent modes, the light
power carried by coupled modes is forced to travel at an average
velocity and exhibits a narrower width, which spreads only propor-
tionally to the square root of the fiber length.? Thus, mode coupling
can be intentionally introduced to improve the pulse performance of
multimode fibers.* However, this technique for improving the pulse
performance must be used with great care to avoid an unacceptable
increase in the power loss of the fiber.

To understand how mode coupling can be tailored to minimize losses,
it is necessary to consider the coupling process in more detail. Each
mode has a characteristic propagation constant 8. The label M is
used to identify the mode. A unique mode designation requires that
M consists actually of two symbols representing the radial and azi-
muthal mode numbers. For simplicity, we combine the double label
in the single symbol M. As mentioned before, mode coupling is pro-
vided by some deviation of the fiber from its perfect geometry and
composition.’ We use a function f(z) to describe the axial dependence
of the deviation of the refractive-index distribution or of the core-
radius deviation from their nominal, perfect values. In addition to
this function of the length coordinate z, we need its Fourier transform
which we define as

F©) = lim {VI_E fn ) f(z)e""dz}- (1)

Coupling between two modes labeled M and N is mediated by a
particular Fourier component of f(z) according to the law?

Ba — By = 6. (2)

It is thus clear that two modes remain uncoupled if F(6) = 0 for the
particular 6 value required by (2). Furthermore, if the differences be-
tween the propagation constants of neighboring guided modes depend
on the mode number, F(8) # 0 is required over a certain range of
8 values if all guided modes are to be coupled. Using these rules and
certain “selection rules,” it has been demonstrated* that most guided
modes of a step-index fiber can be coupled with very little radiation
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loss if the Fourier spectrum (1) is limited to a carefully selected range,
such that Fourier components exist for coupling the guided modes
according to (2), but that coupling between guided and radiation
modes [also obeying the law (2)] is prevented.

Mode coupling in parabolic-index fibers requires only a narrow spec-
trum of spatial frequencies # because the differences between propaga-
tion constants of neighboring modes are almost independent of the
mode label. This feature of the modes of the parabolic-index fiber
causes a problem since it makes it harder to discriminate between
coupling among guided modes and coupling from guided to radiation
modes. With an appropriate selection rule, coupling among guided
modes of the step-index fiber has the property that the differences (2)
increase with increasing mode number.* Cutting the Fourier spectrum
(1) off at a maximum spatial frequency 8 = 6m.. thus stops mode
coupling at a given mode number, so that coupling between guided
modes of lower order and modes with the highest mode numbers is
prevented. Since only the highest-order modes are near (in mode
number space) radiation modes, coupling between guided and radia-
tion modes is thus avoided. Because of the almost constant differences
between propagation constants of neighboring modes, this strategy
fails in the parabolic-index fiber.

We show in this paper that we may couple the guided modes of a
parabolic-index fiber and still avoid radiation losses by using a modified
parabolic-index profile. An ideal parabolic-refractive-index profile has

the form
n=no[1— (g)zA] |r| < . (3)

r is the radial coordinate and A/a®> determines the gradient of the
index profile. The true parabolic-index profile cannot be realized be-
cause the refractive index of ordinary solid materials cannot be less
than unity. Typical parabolic-index fibers have index profiles of the

form
r 2
Tl-gl:l—(—)A] 7] = a
¢ &)
ns = no(l — A) a=Z|r| =b

1 b= |r] < .

A TIA
IIA

The cladding region a £ |r| £ b is usually so thick that, mathe-
matically, we may assume b — «. The guided modes do not carry
significant amounts of power inside of the cladding region so that
they behave almost as if they were guided by the ideal index distribu-
tion (3). Modes with significant amount of power in the cladding region
are no longer guided but belong to the continuous spectrum of radia-
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tion modes. By providing a narrow Fourier spectrum of spatial fre-

quencies for the purpose of coupling the guided modes, we necessarily

couple the highest-order guided modes to radiation and lose power.
The situation is changed if we modify the index profile to the follow-

ing form:
r 2
oo o= ()2 Il s a (%)

s < no(l — A) a<|7‘|§co

(b = » was assumed for simplicity). The index profiles of (3), (4),
and (5) are shown in Figs. 1a, 1b, and le. We divide the guided modes
of the index profile (5), shown in Fig. lc, into two classes. There are
modes whose field distributions are essentially limited to the region
0 < |r| £ a. These modes have negligibly small field intensities in
the region |7| = a and behave as though they belonged to the idealized
medium defined by (3). Because modes of this kind are essentially
the modes of the parabolic-index medium, we call them P-modes.
There are, in addition, modes of order higher than the P-modes whose
field distributions reach strongly into the region near r = a. These
modes are guided by the index discontinuity at » = ¢ and behave
similar to the modes in a step-index fiber. For this reason we call them
S-modes. The differences (2) between neighboring P-modes are nearly
identical, while the differences between S-modes are much larger and,
if an additional selection rule is introduced, increase with increasing
mode number. If a narrow band of spatial Fourier components is pro-
vided to couple the P-modes among each other, 8-modes will remain
uncoupled from P-modes and also remain uncoupled among each other.
Thus, we have achieved coupling among the P-modes and have im-
proved their pulse performance. However, if S-modes were allowed to
reach the detector, the pulse performance of the fiber would be de-
graded very seriously because of the different group velocities of
P-modes and S-modes and the large group velocity spread among the
S-modes. It is thus necessary to suppress S-modes before they reach
the detector. This can be done easily by adding at the end of our fiber
with index distribution (5) (or Fig. 1c) another fiber section that does
not allow S-modes to propagate. A fiber with an index profile accord-
ing to (3), or Fig. 1b, has this property.

The strategy just outlined would work if there were truly no coupling
between P- and S-modes. Some residual coupling is, however, unavoid-
able because of imperfect fiber tolerances. A small amount of power
will always be coupled from P-modes to S-modes causing a “noise”
background to reach the detector. This unwanted noise can be reduced
by installing mode filters periodically along the fiber. As mentioned
above, mode filters for S-modes consist simply of fiber sections with an
index profile according to (4), or Fig. 1b. If we construct a fiber whose

IIA
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Fig. 1—(a) Ideal parabolic-index profile of eq. (3). (b) Truncated parabolic-index
profile of eq. (4). This profile is used for mode filters. (¢) Modified parabolic-index
profile of eq. (5). This profile is used for the fiber with intentional mode coupling.

index profile is given by (5), or Fig. le, for most of its length, but
which is changed to assume the form of (4) shown in Fig. 1b for rela-
tively short sections periodically interspersed with the rest of the fiber,
we obtain a fiber guide with mode filters for S-modes. Mode filters must
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not be spaced too closely in order to avoid excessive losses. The addi-
tional loss occurs because we cannot avoid coupling between P-modes
and a small group of S8-modes that lie immediately adjacent (in mode
number space) to P-modes. Along the boundary between P- and S-
modes, mode spacing cannot be controlled so that we must assume
that the intentionally introduced strong coupling mechanism will
couple P-modes to their immediate S-mode neighbors along their
common mode boundary. The mode filters strip away all S-modes,
thus causing a small amount of loss of power that has been coupled
to the S-mode group near the mode boundary. Design criteria for
optimum mode filter spacings will be given in this paper.

If intentional mode coupling is achieved by introducing index
fluctuations into the fiber core, the mode filters can be incorporated
into the fiber by the same manufacturing process that was used to
produce the intentional fiber “imperfections.” On the mode filter
sections, no strong coupling will be provided to avoid additional losses.
We shall show later that coupling can also be provided by small bends
of the fiber axis.

In the following chapters, we provide the necessary information to
explain the mechanism and give design criteria for a modified parabolic-
index fiber with mode coupling.

Il. MODE SPECTRUM OF THE MODIFIED PARABOLIC-INDEX FIBER

We have defined P-modes and S-modes in the introduction. P-modes
have field distributions that have (negligibly) small values at the core
boundary r = a. Their properties are nearly identical with the modes
of the ideal, infinitely extended square-law medium. We may associate
rays with these modes. The rays corresponding to P-modes spiral
around the fiber axis in helical paths. Axial rays cross the fiber axis
and move out to a turning point where the tangent to their path is
parallel to the fiber axis. Spiraling rays encounter two turning points,
one near the fiber axis and the other one at larger radii."»® An approxi-
mate field description utilizes the fact that modes in weakly guiding
fibers are nearly linearly polarized” (at least suitable superpositions
of exact fiber modes are nearly linearly polarized). Their dominant
transverse electric field component can be approximately expressed by
the wkB approximation in the form!*

cos (-p - E)e—"we—"ﬁ )

E = A UGGy — e = )

with
o= [ 1 AORT — gt — )i ™
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A is an amplitude coefficient, the integer » is the azimuthal mode
number, 8 the propagation constant, and

k= w(emo)?, (8)

the propagation constant of plane waves in free space. The inner
turning point r; is the smaller root of the equation

((n(Mk] — p*}r* — »* = 0. (9)

Since the denominator of the expression in (6) vanishes, the wWkB
approximation seems to fail at the turning points. A more careful
analysis (not used here) is capable of bridging the gap and extending
the validity of the wks solution across the turning points. The require-
ment of continuity of the field solutions across the turnlng points
leads to the condition®:8

[ An@kE — g — yiar = o+ D5 (0)

The upper turning point r, is the larger root of eq. (9), the integer p
is the radial-mode number. Equation (10) defines the propagation
constant 8 and is called the eigenvalue equation. For P-modes we
have r; < @ and obtain by substitution of (5) or (3) into (10) the
expression

g = {ngkz - 2».»;,[,%“ ©@a)@2p + v + 1 (11)

S-modes reach the core boundary. It is well known that an abrupt
index change at the core boundary forces the electric field intensity
to assume very low values at r = a. For all modes, with the exception
of modes very close to cutoff, it is permissable to approximate the
actual value of the electric field by £ = 0 at r = a. This condition in

conjunction with (6) and (7) leads to the following eigenvalue equation
for S-modes,

[Amery - g - war = o+ 95 ()

Substitution of (5) and integration leads to

[(xoa)? — 2(noka)?A — »*]}

— [”“ta“ ( o[ (koa)? %_(";“(1;,;)';; = »2]*) + 5]
+ __—(xoa)” [arcsin ([( (2noka)’A — (xoa)” ) -+ %]

2noka(24)} koa)t — (2nokar)?2A7]}
=(2p + = (13)
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with
kg = ngk? — B% (14)

The guided and radiation modes of the modified parabolic-index
fiber can be displayed in mode-number space. Each mode is charac-
terized by two integers, the azimuthal mode number » and the radial
mode number p. Mode-number space displays the values of » and p
in the plane shown in Fig. 2. For P-modes we can introduce a com-

pound mode number
M=2p+rv+1 (15)

and express the propagation constant (11) in the form,
{(no}c)” — g% (2A)iM (16)

Modes with constant values of M have the same propagation con-
stants and lie on diagonal dotted lines, two of which are shown in
Fig. 2. Cutoff for the S-modes is defined by the condition

B8 = nik a7
or
ko = (ng — n3). (18)

When we substitute (18) into (13), we obtain an implicit equation
for the mode boundary between S-modes and radiation modes shown
in Fig. 2 as the solid line. The boundary between P-modes and S-modes
is defined by the condition in (16) written in the form

(koa)? = 2noka(2A)IM (19)
and from
(ko@)? = 2(noka)?A + v (20)

Equation (20) expresses the requirement that the transition from
P-modes to S-modes occurs when the turning point falls on the core
boundary and is obtained by combining (5), (9), (14), and the con-
dition r = r, = a. By eliminating «oa from (19) and (20), we obtain
a functional relation between » and p which was used to calculate the
dash dotted mode boundary shown in Fig. 2. This figure was computed
with the help of the following parameters,

Ny = 1.53

Ng = 1.5

ka = 150 (21)
A = 0.0098

These values lead to the following value for the refractive index at the
core boundary : no(1 — A) = 1.515.
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Fig. 2—Mode number space. The solid line is the boundary between S-modes and
radiation modes. The dash-dotted line is the boundary between S-modes and P-modes.
The dotted lines labeled M = 9 and M = 18 are curves of constant compound mode
number M. M = 18 is used as approximate mode boundary.

For the purpose of designing a coupling mechanism for the P-modes,
we need to know the differences between the propagation constants
of the modes. If we let v change by év and p by ép, we compute from
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the eigenvalue equation for the P-modes in the form (19),

aﬂtn _ 5M
% 2M (22)
with
oM = 28p + ov. (23)
For the S-modes, we find from (13)
1 2 _ 2
m(8p) + 3(8») larctan (2_("&_”) + E]
ko _ vS 2 (24)
Ko 3 %(an])z — T
2p+ P+ v arctan(—T +5|-8

with the abbreviation
S = [(koa)? — 2(noka)?A — »*]L (25)

The difference of the propagation constants follows from (14):

8= — K5 OKo (26)
B ko

We have plotted values for | 88a| in Fig. 3. These values were computed
from (22) and (26) for P-modes and from (13), (24), and (26) for
S-modes using the numbers in (21). We also assumed that éM = =x1.
For P-modes, 8M = =1 clearly yields the least separation between
guided modes. (M = 0 would lead to 88 = 0 and is excluded.) Just
as in the case of the step-index fiber, we introduce a selection rule by
properly designing the coupling mechanism (see Section 111 below).
The selection rule is

v = £1. (27)
We may now achieve a transition between neighboring modes with
|6M| = 1in two different ways. We can either use
oy = =1, ip=0 (28)
or
o= +1, pp= Fl, (29)

where the upper or lower set of signs belong together respectively. All
other combinations lead to bigger values of |8M| and larger differ-
ences for the separation between the S-modes.

Figure 3 shows that the values of |68a| for P-modes are very nearly
independent of the mode number M. By using a Fourier spectrum (1)
with spatial frequencies in the range fa = 0.14 to 0.1415, we couple
all neighboring P-modes with |8M| = =+1. The hatched area in Fig. 3
labeled “S-modes” indicates the range of |8a| values that occurs for
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Fig. 3—The differences of propagation constants of adjacent modes with [sM| =1
as functions of the compound mode number M.

a given value of M. It is apparent how widely the differences between
S-modes with |8M| = =1 vary. Typically, the combination (28) leads
to smaller 38 differences. However, even the smallest spacing between
adjacent S-modes is so much larger than the corresponding spacing
between P-modes that it should be relatively easy to design the
coupling mechanism so that S-modes are not intentionally coupled
among each other. The differences between adjacent P-modes and
S-modes along the dash-dotted mode boundary in Fig. 2 cannot be
calculated from our simplified theory, so that we must assume that
P-modes, lying along the modé boundary, may be coupled to their
S-mode neighbors.

We have now proved that P-modes can be coupled among each other
by a spatial Fourier spectrum of very narrow width and that it is
relatively easy to discriminate between P-mode and S-mode coupling.
It remains to discuss mode coupling, study the degradation of pulse
performance that results from coupling a few S-modes along the mode
boundary to P-modes, and to discuss the performance of the mode
filters.
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1ll. MODE COUPLING AND PULSE SPREADING

Mode coupling is provided by implanting a refractive-index per-
turbation into the fiber core.? Instead of the index distribution » given
in (5), we now use a perturbed refractive-index distribution n so that
we have
n2—-n2=£f(z) cos ¢ |r| = a. (30)
The dependence of (30) on cos ¢ imposes the selection rule (27).2
Without such a selection rule we could not uncouple P-modes and
S-modes. The linear r dependence indicated in (30) is quite arbitrary.
It is necessary that (30) vanishes at » = 0 in order to have a well de-
fined value of the function at this point. The linear r dependence is
not only the simplest function that vanishes at r = 0 but also one for
which the coupling coefficient can be evaluated. Other r dependent
functions could be used as factors in (30). The function f(z) is assumed
to be a random function with the narrow Fourier spectrum (1) that
assures coupling among the P-modes but prevents coupling between
P-modes and S-modes.

The system of coupled P-modes can be described by coupled-power
equations.? The eoupling coefficients are obtained by solving overlap
integrals including the function (30) multiplied with the electric field
functions of the two modes whose coupling is to be evaluated. The
P-modes are described very well by the Laguerre-Gaussian field solu-
tions of the ideal parabolic-index distribution (3).°!' We obtain for
the power-coupling coefficients?:

hvpw—1,0 = K(p + ») (31)
hopp—1,p11 = K(p + 1) (32)
bopsrro = K(p + v + 1) (33)
hoppt1.0-1 = Kp (34)
with
i (35)

K = 16nia (24)} (F*(6) ).

The symbol ( ) indicates that an ensemble average has been taken.
The argument of the Fourier speetrum funection (1) is the appropriate
difference of the propagation constants of the coupled modes according
to (2). [See eq. (75).]

It is our intention to solve the coupled-power equations for the
P-modes with the coupling coefficients given by (31) through (35).
The coupling mechanism postulated by the refractive-index perturba-
tion (30) couples a given mode (v, p) to its neighbors (v + 1, p),
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(»=1Lp+1),(»—1,p),and (v + 1, p — 1). In the first two cases,
the M number is increased by one while it is decreased by one in the
third and fourth case. The coupled-power equations thus assume the
form?

aP,, 1 an
dz : Var 3$p + aPyp = hpoir,p(Pryr,p — Poy)

+hrp,r—1,p+1(Pv—l.1H-1 - P.p) + hvp.v—l.P(Pv—l.n - P.,,)
+h!p.r+l,p—l(PJ‘+l.P—1 - Pvp)- (36)

We have indicated by our notation that the group velocity v, depends
only on the compound mode number M defined by (15) and not on
the individual values of » and p. In addition, all modes are assumed
to suffer the same loss a caused by absorption and random scattering
processes.

To be able to solve equation system (36), we assume that modes
with equal values of the compound mode number M carry equal
amounts of power. It is not obvious that this must be the case, but
we may argue that modes with equal mode number M have identical
propagation constants and, thus, are coupled among each other by
the zero-spatial-frequency component of F(8). The zero-frequency
components of random distortions tend to be very large. Consider,
for example, the departures from perfect straightness of the fiber axis.
No fiber in actual use is ever perfectly straight. In fact, its slow varia-
tions tend to be particularly large so that its power spectrum peaks
at zero spatial frequencies. This fact has been observed whenever
power spectra of fiber distortions have been measured.’8 Conse-
quently, we assume that modes with equal values of M are strongly
coupled and, hence, equally populated by a coupling process that is
not explicitly taken into account. It is only incorporated into the
analysis by assuming that modes with the same values of M carry
equal amounts of power. Making this assumption and substituting
(31) through (35) into (36) allows us to write,

P.,p = PM
Poirp=Po1,pp1= Pup (37)
P-—l.p = P:-!-l.p—l = Py,
and
aP 1 aP
“on - 5+ aPu = K[(M + 1)(Pass — Pu)
2z Unr ot

—M(Py — Py-1)] (38)

If the number of guided modes is very large, we may regard them as a
quasi-continuum and treat M approximately as a continuous vari-

PARABOLIC-INDEX FIBERS 789



able. This assumption allows us to write the equation system (38)
as a partial differential equation,’

0Py | 1 oPx

d aP
oz Tom al =““PM+KW[M M]' (39)

aM

Using (16), we can approximate the inverse group veloeity in the
following way

1 _198_ no 2
’b'M_ Gak_ c +WM (40)
with the abbreviation
A
= nec(ka)? (41)

¢ is the velocity of light in vacuum. We have indicated in Section I
that a group of S-modes along the mode boundary between P- and
S-modes are coupled to the P-modes. These modes have different
group velocities. We incorporate this mode group into our theory by
assuming that the modes with the highest value of M, M = N, have
a group velocity that differs from the law given by (40) for P-modes.
Thus, we use
L= Moy Wi + pNw( — N)] (42)
M
The parameter p is the relative amount by which the inverse velocity
difference 1/vy — no/c of the mode group with M = N differs from
the normal value. If the S-modes followed the law for the P-mode
group velocity, we would have for the mode group with M=N
LTy e, (43)
Un [
Equation (42) states instead that the highest-mode group has inverse
group velocity
Loy 4w (44)
Un C
We solve the time-dependent coupled-power equations in the usual
way.? First, the time-independent problem is solved. The only differ-
ence from the normal procedure is that, in our present case, we do
not assume that the highest-mode group is depleted by a loss process.
Thus, instead of requiring Py = 0, we assume that power outflow
stops at M = N and require correspondingly
AP,

M at M = N. (45)

790 THE BELL SYSTEM TECHNICAL JOURNAL, JULY-AUGUST 1976



The time-independent problem, thus, has the solution

e JowNM/N)
Py fQ&WTEETF' (46)

The parameters u; are the roots of the Bessel function J,(z) = 0 with
uo defined as zero; thus,

u; = 0, 3.832, 7.016, 10.123, ---. (47)
The eigenvalues are
2
o= K % (48)

with K of (35). The coefficients ¢; determine the initial power distribu-
tion at z = 0. For large values of z, P,, reaches its steady-state solution

cﬂ — a2
PM ‘\[ﬁ € » (49)
which indicates that all modes carry equal amounts of power.

The time-dependent, steady-state solution is known to represent a
pulse with gaussian shape.?? Its full width (in time) between 1/e
points is given by second-order perturbation theory? and can be calcu-
lated to assume the following form:

T=Tu(1+5wp)- (50)

For p = 0, we obtain the pulse width of P-modes that are completely
independent of the S-modes,

_ 21’4716/2A5I‘N5”
To = VL fo eyt (Feoy) 7

L is the length of the fiber that has been traversed by the pulse. The
pulse width spreads only proportional to the square root of the dis-
tance traveled. Equation (50) shows that the group of S-modes that
is coupled to the P-modes widens the pulse more if its group velocity
departs more from that of the P-modes—that is, with increasing values
of p. Its influence is reduced with increasing values of the maximum
mode number N.

A comment needs to be made regarding our analysis. We have
calculated the impulse-response width (50) by treating the mode
boundary between P- and S-modes as being parallel to the lines
M = const. Figure 2 shows that this is not strictly true. In addition, it
is not true that all S-modes along the mode boundary have equal
group velocities. Our result must thus be regarded as an estimate and

(51)
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we must use an average group velocity for the S-modes. For M = N,
we use the value that is obtained by setting » = N/1.5 in (19) and
(20) and obtain,

N = [0.573n6kaV2A Jint. (52)

The subscript “int” attached to the bracket indicates that the nearest
integer to the number in brackets must be taken. The approximate
mode boundary (52) is shown in Fig. 2 as the dotted line labeled
M = 18.

IV. THE INFLUENCE OF RESIDUAL COUPLING BETWEEN P- AND S-MODES

If the intentionally introduced coupling were the only mechanism
by which the guided modes interact, we would have no further problem.
However, residual coupling between all the modes is unavoidable so
that we must consider the problem of power coupling from P-modes
to S-modes and vice versa.

If the P-modes carry light pulses, some of their power will couple to
S-modes. Since S-modes travel with different group velocities, the
power they receive from P-modes spreads out and forms an almost
continuous background of noise power. Some of this power is coupled
back into P-modes so that this noise background reaches the detector
even if we filter out the S-modes before they reach the fiber end.
Periodically spaced mode filters will reduce this noise problem, but
filters increase the overall losses of the system so that it is necessary
to reach a compromise between excess loss due to mode filters and
undesirable noise caused by unintentional S-mode coupling.

We treat the noise problem in two stages. First, we consider the
power-coupling process from P-modes to S-modes, and in the next
step we allow this power to couple back to the P-modes.

Consider the equation system?

Q. , 1 9Qa
s = T Hus @
These equations describe only coupling from P-modes to S-modes.
Coupling in the reverse direction is ignored as are losses. For weak
coupling in short, low-loss fiber sections, this equation system is a
reasonable approximation to the complete coupled power equation.
H ., represents the residual, undesired coupling mechanism ; the sum-
mation extends over all P-modes and the indexing system is simplified
by using one symbol for the complete set of mode labels. By using a
double Fourier integral transformation, it is possible to derive the
following solution of (53),

Q-3 (S Hul) 520 [erf(t—;T;/g) — erf (‘",1',—/"2/"’—)] , (54)

UV — Wa
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which is based on the assumptions that the pulses carried by the P-
modes travel with a uniform velocity » (these pulses are strongly
coupled by the intentional coupling mechanism) and that their shape
is gaussian,®?

_ (t —z/v)?
P, = A,exp [— W] (55)

with energy content

B, = f " P, (56)

and that the S-modes are slower than the P-modes,
wn, < v for all n. (67)

The shape of the pulse carried by one S-mode is shown in Fig. 4
as the solid line. The shape of the P-mode pulses is indicated by the
dotted line; the relative height of the two pulses is of no significance.
The width of the S-pulse is

02 =1tv — w.) = (v — wy) 'wi (58)

n

Because the P-pulses are spaced as closely as possible to maximize
the information rate, we may safely assume that the S-pulses overlap
after a distance z that is short compared to the total length of the
fiber. The number of S-pulses that overlap at any given point is, on
average,

= = — = (59)
where D indicates the spatial separation between the original P-pulses.

[} POWER

_ —S-PuLsE _—P-PuLSE

Fig. 4—The solid line is the shape of the S-pulse that results from coupling of
P-mode power whose shape is indicated by the dotted line. The relative height of
the two pulses is of no significance.
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The average power carried by a given S-mode is, thus,
Q= MQ.=v5 % Honlly (60)

[The difference of the two error functions in the bracket in (54) assumes
the value 2 over most of the region where its value does not vanish.
Equation (60) can also be obtained directly from (53).]

We have now determined the average power in a given S-mode due
to unintentional power coupling from the P-modes. We have also
convinced ourselves that the S-modes do not carry pulses, because of
extensive pulse overlap, but carry a quasi-continuous background noise
signal.

The amount of noise power that is coupled back from S-modes into
P-modes is obtained from the time-independent coupled-power
equations?

aP, _

Fw % H,.Qn. (61)

This equation is solved by simple integration. Summing over all modes
and substituting (60) yields the following expression for the total
noise power that is carried by all the P-modes,

_ 2
Ny,=X P, =v 2% Y S HyoHuE,. (62)
v v n H

Greek summation symbols are used to indicate summation over
P-modes while Latin symbols express summation over S-modes.

We assume that the fiber length between mode filters is 2 = d. At
the end of the fiber of length L, we collect the noise contribution from
L/d fiber sections between mode filters. The total noise is, thus,

Ld
N,=22°y S ¥ H,.H,E, (63)
oD & & &

So far we have ignored absorption and scattering losses. If all modes
suffer identical losses, we only need to multiply (63) by the total loss
that a signal suffers in traveling through the fiber. However, since our
objective is to derive an expression for the signal-to-noise ratio, the
absorption loss drops out in the end because signal and noise suffer
identical losses. The average signal power at the end of the fiber is

1
S=7% Zﬂj E,. (64)
The signal-to-noise ratio at the fiber end is, therefore,
s_a  E% (65)
N:. oTLd > 3 HyuHuuE,
e n
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If the unintentional coupling coefficients H., were known, we could
calculate the signal-to-noise ratio from (65). Equation (65) tells us
that the signal-to-noise ratio improves as the spacing D between pulses
is increased or the pulse width 7' is decreased. The signal-to-noise
ratio deteriorates with increasing unintentional coupling strength, in
fact this decrease is inversely proportional to the square of the coupling
strength. The signal-to-noise ratio decreases linearly with total fiber
length L and with increasing fiber length d between mode filters. It
is thus advantageous to space the mode filters as closely as the addi-
tional loss that filters introduce will allow.

For practical purposes, it will be necessary to obtain information
about the unintentional mode coupling by making signal-to-noise
measurements on a representative fiber sample. The signal-to-noise
ratio of a fiber sample of length L. follows from (65) if we set L = d
= L.. We may use pulses of length T'. for this measurement (7', or T
are measured at the end of each fiber) and use a pulse spacing D, for
the calibration measurement. This allows us to express the signal-to-
noise ratio of a fiber with mode filters in terms of the measured signal-
to-noise ratio (s/n), of a representative fiber sample,

S _DT.I?

F‘ = D_cTLd (S/Il)c. (66)

V. LOSSES CAUSED BY MODE FILTERS

We explained in the introduction that mode filters are required to
suppress the buildup of power in the S-modes. A mode filter is simply
a section of fiber—without the mechanism for intentional mode
coupling for P-modes—whose refractive index profile is modified from
the shape of Fig. 1¢ (used for most of the fiber) to the shape of Fig. 1b.

Mode filters introduce additional losses because the strong coupling
mechanism provided for the P-modes couples these modes to a group
of S-modes immediately adjacent to the common mode boundary.
Let us first consider how many modes there are for a given compound
mode number. If we count the number of combinations of » and p that
lead to a fixed value of M defined by (15), we find the following
expression,

NM=|:M;1]."+1. (67)

The subscript “int” indicates in this case that the integer smaller than
the number in brackets must be taken. For simplicity we use the
approximation

Nt m% (68)
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As a further approximation, we replace the mode boundary by the
straight line labeled M = 18 in Fig. 2. The total number of P-modes
is now approximately

M- N + 1), (69)

Z_
Because of the strong intentional coupling, each P-mode and each
mode in a group of Ny S-modes along the common mode boundary
carries the same amount of energy. The energy reaching the oth fiber

section is Er.. The total energy loss on the oth fiber section just after
the mode filter is, thus,
Ny
ET.¢+1 = E'fc e [m
The symbol « indicates the losses caused by absorption and random
scattering. We solve the difference equation and use the relation

g2ed (1 — 3‘2“")] Ep.. (70)

od = 2 (71)
to obtain with the help of (68) (with M = N) and (69),
N+1Yy
Er. = Eqo (N—::_—3) et (72)

At the end of the fiber, we have a total of L/d mode filter sections.
The excess loss caused by the mode filters is, thus,

Lid
e

This allows us to define the approximate power-loss coefficient per unit
length for the excess filter-loss penalty,

RSNl L Lk
Nd  nekav2A d
Equatlon (52) was used to obtain the right-hand side of this expres-

sion. Short fiber sections of length d between mode filters (in other
words, more mode filters) thus increase the excess loss.

2(1; = (74)

VI. DISCUSSION AND NUMERICAL EXAMPLES

In the introduction, we have outlined our strategy for reducing pulse
spreading in parabolic-index fibers. We are now in a position to offer
specific design criteria for our approach. The most important aspect
of the fiber design consists in incorporating index fluctuations into the
fiber core that obey the relation (30). As pointed out earlier, the r
dependence of the index perturbations is not particularly important.
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The linear dependence was chosen for convenience. The function f(z)
is a nearly periodic, random function that must contain spatial fre-
quencies in the range

o=

with §6 = 1.15 A

[This formula follows from (2) and (26) with the help of (16), (18),
(22), with 8M =1, and (52)]. The parameter A is defined by (3).
For the numerical example given by (21), we find that a (a is the
fiber-core radius) covers the range from 0.14 to 0.1415. To gain insight
into the meaning of these numbers, we assume that the vacuum wave-
length of the light transmitted through our fiber is A = 1 um. This
means that ka = 150 leads to a core radius of 23.87 um. The spatial
period length of the almost periodic random function must thus be
A = 1.07 mm.

Next, we must decide what amount of index fluctuation is required
to achieve a desired reduction in the width of the uncoupled pulse
(pulse carried by uncoupled modes). In the absence of coupling, the
pulse width is given by

2r _ V24 +2A
_"a__*T_‘h'w}. (75)

‘noL
Ty = 55 A2, (76)
The pulse width in the presence of mode coupling must be smaller
than this value, otherwise steady state has not been reached and (50)
and (51) are not applicable. First, let us consider how much harm
results from coupling between P-modes and the unwanted group of
S-modes along the common mode boundary. Using the values in (21),
we find from (52) that N = 18. Let us (arbitrarily) assume that p = 1;
we then find from (50) that the pulse width of the coupled modes is
28 percent larger than the width of ecoupled P-modes in the absence
of S-mode coupling. Ignoring the slight pulse-broadening effect of
residual S-mode coupling, we define an improvement factor R as
T,

R= gt (77)

It is desirable to make R as small as possible and only values with
R <1 are meaningful. From (51), (52), and (76) we get

141n38% 033
HED}) (Fron)

The numerical value on the right-hand side was obtained with the

R = (78)

PARABOLIC-INDEX FIBERS 797



help of (21). To achieve, for example, B = 0.1 would require

[§ (m(e))]’ - 33.

To understand what this result means in terms of the amplitude of
the refractive-index fluctuations, let us consider that the function f(z)
appearing in (30) has the form

f(z) = Asin [Qz + ¢(2)], (79)

where ¢(2) is a random phase function with correlation length Deorr.
The power spectrum of this function defined by (1) is*

e [0- 0 2]

(6 — 2)2Dcorr

(F*(6)) = A? (80)

Instead of the correlation length Do, we may introduce the width
86 of the spectral band by the relation

4r

0= P Bh
With @ = 6, we thus obtain from (80) and (81)
L 3 r L\}
[@(W(e»] = A(m—&) ~ 33, (82)

(The number on the right-hand side pertains to our example.) This
important relation shows how the amplitude A of the refractive-index
fluctuations is related to the spectral bandwidth 86, the core radius,
and the length of fiber over which a certain improvement factor R
(in our ease R = 0.1) is to be achieved. For our example, 6a ranges
from 0.14 to 0.1415 so that we have a8 = 0.0015. Assuming L = 1
km, and using a = 23.87 um, we have from (82)

A =11 X105 (83)

The refractive-index fluctuations follow from (30) and (79) if we
assume that n — n < 1 [n is the perfect index distribution (5)]:

1l A sin [0z + ¢(2)] cos ¢. (84)

n—n-=
21?,00,

It is apparent from (83) that very slight index fluctuations are very
effective for intentional mode coupling. Much more substantial pulse-
length shortening than R = 0.1 should, thus, be easily achievable.
The random phase fluctuations with correlation length Do can be
produced by keeping the phase y(z) of (79) constant over a fixed
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distance and introducing a random phase jump periodically in length
intervals Deor,. The relation between Do, and the desired bandwidth
of the random funection is given by (81) and (75).

Not much has been said about the problem of actually implementing
the refractive-index fluctuations prescribed by (30) or (84). In prin-
ciple, it is possible to introduce the refractive-index fluctuation during
the process of preform fabrication, since it is necessary to take special
care to produce the parabolic-index profile in any case. It may thus be
possible to produce the intentional deviations from the perfect para-
bolic-index profile in the core by programming the process of chemical
vapor deposition, or whatever process is used to control the refractive-
index profile. However, there is a much simpler way of realizing a
refractive-index fluctuation of the kind required by (30). Let us write
the index profile inside the fiber core in cartesian coordinates:

n=nu[1—12:;yzA]- (85)

If we displace the index profile in = direction from its symmetric posi-
tion, we may make the substitution

T—x — g.

Assuming the displacement g to be small, we obtain instead of (85)
xrg
ﬂ=n+2'nu?A (86)

with n once more given by (85). By transforming the cartesian co-
ordinates to cylindrical coordinates using
T = 7 cos ¢, (87)
we obtain
n? — n2 2 2ny(n — n) = 5 (4n§g %) cos . (88)
Comparison of (30) and (88) allows us to make the following associa-

tion:

1(@) = 4nig 3 (89)

The actual displacement of the fiber axis from perfect straightness can
be expressed as

g = Bsin [Qz + ¢(2)], (90)
with B being the displacement amplitude. Comparison of (79), (89),
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and (90) allows us to use the relation

aA

B= g

(91)

For our example values (21), we thus obtain from (83)
B =29 X 107% pm. (92)

This discussion shows that we may introduce the desired perturbation
by actually bending the fiber axis in the form indicated by (90) with
the very small amplitude B. Such bending could be accomplished by
surrounding the fiber with a suitably strained plastic jacket.

The abrupt refractive-index discontinuity of magnitude no(l1 — A)
—n, is necessary to insulate the P-modes from the radiation modes by
creating a buffer region of S-modes. The amount of this index step is
actually quite arbitrary. However, it is clear from the general formula
(65) for the signal-to-noise ratio that the sum over n in the denominator
of this expression is larger when it consists of more terms, that is, if
there are more S-modes. To keep the signal-to-noise ratio as small as
possible requires keeping the number of S-modes small, which is
achieved by keeping the abrupt index discontinuity small. What is the
minimum index step that is needed for effective isolation of the
P-modes? We can estimate a minimum index step by the following
consideration. The lowest possible value of the propagation constant
of P-modes is given by

Bm = no(l — A)k. (93)

The largest propagation constant of the radiation modes (actually,
what we call radiation modes become cladding modes in a fiber with
finite cladding thickness) is given by

Br = nak. (94)

Adjacent groups of P-modes with the same value M of the compound
mode number are spaced a distance 6 (in g-space) apart. A sufficiently
wide buffer zone of S-modes is required to isolate the P-modes from
radiation modes. Thus, we require that the P-mode group with propa-
gation constant (93) is separated (in B-space) by 36 from the radiation
modes. This requirement leads us to the desired condition for the
minimum height of the index step

nu(1—A)—n,=3§=3%- (95)

For the values listed in (21), we find ne(1 — A) — n: = 0.003.
It remains to consider the design of the mode filters. Mode filters
consist of fiber sections with the refractive index distribution of Fig.
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Fig. 5—Refractive-index profile of a fiber providing continuous mode filtering for
S-modes by electromagnetic tunneling.

1b and serve the purpose of stripping off S-modes. The length of the
filter sections depends on the S-mode losses of the filters. Since S-modes
are leaky waves on the filter sections, their losses are very high, so
that filters 10 em to 1 m long should be sufficient. We have seen that
the signal-to-noise ratio (66) increases as the distance d between mode
filters decreases. The only limitation on the length of d or the number
of mode filters L/d is the additional loss caused by the filters. If we
decide to tolerate an additional filter loss of 1 dB/km (2a; = 0.23 km™?)
for the entire fiber, we find from (74) with the numbers of (21)

d = 0.47 km. (96)

If the filter spacing is reduced below this distance, the filter-loss con-
tributions increase above 1 dB/km.

The signal-to-noise ratio that is caused by unintentional coupling
between P-modes and S-modes can be computed from (66) if a calibra-
tion measurement has been made. In principle, it would be possible
to compute this value from (65); however, such a calculation would
require a detailed knowledge of the unintentional power-coupling
coefficients H,,. In the absence of accurate information of unintentional
fiber imperfections, such a calculation is not possible.

Instead of using discrete mode filters spaced at certain intervals it
is also possible to design the fiber so that mode filtering is achieved
continuously over its entire length. The index profile of such a fiber
is shown in Fig. 5.
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