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Simulation of repeaters for an optical-fiberguide digital-communication
system requires the calculation of the statistical error rale of the signal.
The calculations of these error rates are difficult because of the non-
gaussian nature of the noise in the optical detector. In this paper, slatistical
techniques are described which are useful for simulating tails of distribu-
tions. In particular, the importance-sampling procedure is used to modify
the probability densities of the input values in a way that makes simula-
tion possible. Application of this procedure gives more accurate results
in reasonable computer times. The method is applied to the calculation
of the error rale of a fiberguide repeater. Realistic examples are simulated.
Results compare favorably with experimental measurements. The number
of samples needed for simulation was reduced by five to siz orders of mag-
nitude. An alternative numerical solution to the problem is also developed.

I. INTRODUCTION

Traditional computation of error rates of digital repeaters is often
done by assuming that the noise is gaussian in nature. For a linear
equalizer, the error rate at a given sampling time can then be easily
computed if the signal and standard deviation of the noise are given.!

The fiberguide repeater has essentially three kinds of noise sources.
Two noise sources are located in the detector, while the third is a
thermal gaussian noise generated by the input stage of the preamplifier
(see Fig. 1).

The detector, which is an avalanche photodiode is governed by two
intrinsic noise processes: the primary photo current, which is a Poisson
process, and the avalanche multiplication process which produces the
gain in the diode. Neither of these processes is gaussian.

The probability density functions (epr) for the output current of
the diode were derived by Personick?? and McIntyre.* The expressions
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Fig. 1—Optical repeater.

describing these distributions are quite complex, and excessively time
consuming for computer simulation of the repeater. An approximation
to these probability densities was obtained by Webb, McIntyre, and
Conradi (wmc).® The approximate ppF (referred to below as the
wMc PDF) is, according to the authors, fairly accurate in the practical
operating range, and is easily implemented on the computer.

The wMc poF for the current at the output of the diode is:

1 —(z — M)*

e Vara (147 ;\M)'exp[zcﬁ(1 +”;\M)] o 2

where

M = (n.g/T)G = mean output current
g = charge of an electron

T = time interval

G = average avalanche gain

ne = (9T/hQ)Pop, = number of primary electrons
n = optical conversion efficiency

P,,. = average optical power in time T
#Q = energy of a photon

o? = n,G*F.(q/T)? = variance of the diode current
A= Vn o/ (F, — 1)

F, = ketG + [2 — (1/G)](1 — kerr) = excess noise factor
kerr = effective ionization ratio (assumed constant over range of
G considered)
kot and % are photodiode parameters.

Equation (1) is, more precisely, the ppF of the mean diode current
over the time interval T for a given average optical input power,
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Fig. 2—Probability density function for ONE and ZERO signals using wMc and
gaussian approximation.

P, and a given average avalanche gain G. It corresponds to the sum
over all primary electrons of the product of the primary electron ppr
with the avalanche gain ppF. This equation, therefore, combines the
effects of both detector noise sources.

In Fig. 2 the solid lines represent current pprs for two signals: a
ONE where the optical power is P,y = —51 dBm and a ZERO
where P,y = —61 dBm. The other parameters are G = 80, n = 0.667,
kets = 0.04, T = 22 ns. The broken lines represent error pprs of the
same signals and same diode parameters where a normal approxima-
tion to the distribution is assumed. The asymmetry of the wmc dis-
tributions is clearly seen.

The noise generated by the first stage of the amplifier has to be
added to this detector-generated noise.

Il. POSSIBLE SOLUTION TO THE PROBLEM

To compute the error rate of the repeater, one has to know the
signal probability distribution at the decision-making point, i.e., at
the output of the equalizer in Fig. 1.
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The output of the equalizer with impulse response A(f) is

y® = [ a(on(t = ndr,

where (2)
Z(t) = I.(t) + TTH (t)
z.(t) = signal output of the avalanche diode
zru(f) = gaussian thermal noise generated by the amplifier.

The problem is to find the distribution of y(t) for given distributions
of z,(t) and zrx(t) and impulse response A(t).

Figure 3 shows the shapes of two distributions: Py(y) is the cumula-
tive distribution of y for a ONE signal transmitted, Po(y) is the prob-
ability that the output current exceeds y for a ZERO signal trans-
mitted. ¥, is the decision threshold of the comparator (Fig. 1). These
distributions are

v
Piy) = [ pu/ONE)y
; 6
Puw) = [ p(u/ZERO)dy,
where p(y/ONE) and p(y/ZERO) are the respective conditional
ppFs. It should be noted that, for practical laser sources, the ZERO
input signal could be on the order of 10 percent of the ONE signal,

LOG P{Y)
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LOG Pyy|—————————— ———

Yorr

Fig. 3—Distributions for ZERO and ONE signals.
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since the laser is not turned off completely. In addition, there is the
dark current of the detector diode present. The error rate of a digital
repeater is defined as

P, = aP1(yo) + bPo(yo). (4)

(The factors a and b are determined by the a priori distribution of
the data. For unbiased data, a = b = 0.5.)

One of the features that has to be determined is the optimum place-
ment of the decision threshold y,pt, that is, where P, is minimum.

A general analytical solution to this problem is not possible; there-
fore, the problem has to be approximated numerically or simulated
with the aid of a computer. Analysis of the system using a gaussian
approximation to the detector noise sources was considered by 8. D.
Personick.® This analysis, however, predicts optimum decision thresh-
olds considerably different from actual measured values.” Another
solution to this problem is to replace the exact solution by a simpler
solvable formulation that gives an upper-bound solution. This was
done by Personick®® using the Chernoff bounds. Finding upper
bounds is a very effective technique since it gives a degree of confidence.
Nevertheless, a method that gives more accurate results is needed
to estimate how close the bounds are to the real solutions for this class
of problems.

The problem can be solved either by the numerical solution of eq.
(3) or by statistical Monte Carlo simulation using importance sam-
pling. Both solutions were attempted and are described below. Particu-
lar emphasis was placed on the statistical simulation, since numerical
solutions require excessive amounts of computer time.

lll. DISCRETE STATISTICAL ANALYSIS (DIRECT COMPUTATION OF
OUTPUT PDF)

The output of equaiizer y(¢) is given in eq. (2). Since we are interested
in the output at the sampling time f,, it is not necessary to compute
the convolution for every t. The value of {, is selected to maximize
y(to):

y(to) = f 2(Dh(to — 7)dr (5)
since
z(t) = () + zru()

y(to) f * n (Mt — T)dr + f_ : 2on (Ph(to — 7)dr

—o0

= ys(to) + yru(to). (6)
The problem is to find the probability distribution of y(to).
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Fig. 4—Input signal and impulse response of the equalizer.

The probability distribution of yrm(fe) is gaussian since ztw is a
thermally generated noise. The standard deviation of yrx is

4kT B,,
OTH = RT’H ]

where B, is the effective noise bandwidth of A(t) and Rrm is the
thermal resistance.
The effective noise bandwidth is defined as

Y= l—ﬂl—l [T 1H W, (8)

where H(f) is the one-sided Fourier transform of h(f) and |H,| is
the maximum absolute value of H(f). If the impulse response is
approximated by a raised cosine of duration 7, By, = 3/4r.

Typical waveforms for z,(f) and h(f) are shown in Fig. 4. The dis-
crete approximation of the signal y,(fo) is:

@

B

TX 9
Ys = N ; ZTouh—n, ( )

where T is the duration of the signal and N is the number of samples
used in the approximation. The samples z, are independent and have
a distribution of the form of eq. (1) for a time interval AT = T/N.

3.1 Numerical computation of p(y)

If the random variables z, are independent, then the density of
their sum equals the convolution of their respective densities

p(W.) = . [ ( a1 )* (_L)*
) ATN'HIhﬂl p AT'hN’—l P AT'hN_g

»(a7m)]
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Since the thermal noise is also additive and independent, the total
density of the signal is
p(y) = p(y:)*p(yrn). (11)

3.2 Fourier transtorm approach

The simplest and fastest way to compute p(y) is to transform all
partial densities using the Frr, multiply them all, and take an inverse
FFT:

py) = mﬂ F“(I} 1""[1’(2sz+)]]
-F[P(ym)])‘ (12)

Unfortunately, the Fourier transform is computed as a sum of positive
and negative numbers and, therefore, suffers from large numerical
errors. Since we are interested in the tails of the distribution (error
rate of 10~?%), we conclude that the numerical errors will be excessive.

3.3 Direct convolution

Direct convolution produces less truncation error, because densities
are positive functions. But direct convolution requires an excessive
amount of arithmetic operations, e.g., if we have n distributions each
having M points, the number of operations (multiplication and addi-
tion) will be
n!M?

N = o

(13)

For M = 100 and n = 2, N = 10* which is a manageable number;
but for M = 100 and n = 10, N = 3.5 X 107 and the number of
operations becomes excessive. A program using direct convolution
was written for n = 2. A density for the average power of the input
pulses was convolved with the density of the thermal noise. This can
be regarded as a response of an integrate-and-dump equalizer (capaci-
tive input).

The results of this convolution are shown in Fig. 5. The solid lines
are the distributions for a ONE and ZERO being transmitted. The
average power of the ONE in this case is —51 dBm and of the ZERO
—61 dBm, with T = 22 ns, Rtg = 2.3 kilohms, and B, = 31 MHz,
which corresponds to a oy = 14.68 nA.

The decision threshold @ is usually expressed in percent of the mean
range of the output current as:

Yo— ¥

0= 77, 100 [percent], (14)
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Fig. 5—Distributions for ONE and ZERO signals with thermal noise; wwmc and
gaussian approximations.

where
¥: = mean output eurrent for ONE

Yo = mean output current for ZERO
Yo = threshold current.

As seen from the graph, the optimum decision threshold @ for this
case is 42.3 percent and the minimum error rate is 9.86 X 107"
These results were also observed in an experimental setup.” The broken
lines in Fig. 5 represent the same input but with the assumption that
the probability density of the detector current is normal. As seen from
the graph, the resultant threshold is considerably different from the
one obtained with the wumc distributions.

IV. STATISTICAL (MONTE CARLO) ANALYSIS

Monte Carlo (Mc) analysis has proven over the years to be a very
effective method for analysis of systems whose parameters or inputs
have known statistical distributions.®
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However, straightforward application of Mc analysis for caleulation
of error rates is impractical. The reason is that the error rates of in-
terest are in the order of 10~¢ to 10~°. To have some confidence in the
results, 10 to 100 samples have to be in that region of low probability.
This will require on the average 10" samples, which is impractical.

To overcome this shortcoming, we introduced a modified sampling
method called importance sampling.”? Conceptually, the idea is simple.
If the regions which contribute to the result are known, modify the
distributions in such a way that more samples are taken from the
important regions.

Let us consider the situation where the problem is to estimate the
value of

= [ g@p@as, (15)
where p(z) is a ppF. The importance-sampling procedure consists in
introducing another ppr p*(z), which is preferable for sampling pur-
poses. Then

Y p(x)
E - f‘m g(:r:) p*(&l’!) p (.’E)d.’E
= f_: g*(z)p*(z)dz.
¢ is then estimated from
N
£ = % ; g*(x:),

where z; is picked from the ppF p*(z:).

4.1 Defining the important reglons for error-rate computation

The problem is to define the regions where the errors come from.
In Fig. 6a is shown the input waveform for a ONE, while Fig. 6b
depicts the impulse response of the equalizer and 6c is the ppF of the
diode current for one time interval AT.

Since the input signal is always positive, it is obvious that for posi-
tive h, most of the errors, that is, outputs that are below the threshold
8, will come from region A in the ppF of Fig. 6¢c. Conversely, if A is
negative, most of the errors will come from region C. Exactly the
reverse is true for transmitted ZERO signals, since the signal is con-
sidered erroneous if it exceeds the threshold 8.

A very similar argument can be constructed for thermal noise,
where the “important” regions are the positive tail for a ZERO trans-
mitted and the negative tail for a ONE transmitted.
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Fig. 6—(a) Optical input signal. (b) Impulse response of the equalizer. (¢) ppF
of average detector current for AT

4.2 Blasing of the PDF

To implement the importance-sampling technique, the distributions
have to be modified so that the important regions are emphasized.
The ppFs in the random-number generator that we use are stored in
tabular form, as shown in Fig. 7a. The region in question can be
biased by a constant multiplier as in Fig. 7b, where p* = pB for
a = z = b and where the bias B is constant. In Fig. 7c, the ppF is
biased such that it is quasi-uniform in the region prescribed. The bias
B; is constant in intervals between two adjacent points in the table.
For each interval (z;_1, z:), this bias is

B, = “Prez, (16)
where p; is the value of the ppF at z; and « is a coefficient specified by
the user. The biasing and normalization is done automatically by the
program. The output of the random-number generator consists of
two values: a random number RV and its associated bias BV. BV is
the bias of the interval that RV was picked from.
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Fig. 7—Probability density functions. (a) Unbiased. (b) Constant bias. (c) Bias
for quasi-uniform ppF.

4.3 Computing the histogram

4.3.1 The usual histogram

The standard output of a Monte Carlo analysis is the histogram.
Usually the histogram is constructed by subdividing the output vari-
able into M bins, Fig. 8.

The statistical analysis program counts the number of outputs which
fall into each bin. For a large number of samples (N — =), the histo-
gram approximates the ppr. The probability p; that the output y will
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Fig. 8—Histogram.

be in the interval y; 1 S y < y:1s
(17)

where
n; = number of samples in bin ¢
N = total number of samples.

The accuracy of estimation of p; can be established by

_ o0 _ o [(1—p)

where e is the 95.4-percent confidence limit of p;, p is the desired
probability, and o, is the standard deviation of p;.

4.3.2 Histogram for importance sampling

Let us assume we have M independent random variables z;, - - -,
mm' .. -, xM}
Yy = f(xl: Ty Ty Yy xM):

p*(z,,) is the biased ppF of the random variable z,,. How do we com-
pute the unbiased histogram for y.

If a sample Zn is selected from p*(z.), its probability to be selected
is increased by the bias B,;. Therefore, the weight of the sample . is

'wmi=B

mi

Since y; is determined by M independent variables z, the probability
of y;, to be selected from these regions, is increased by the product of
all the biases of zm. Therefore, the weight of y;is w; = 1/(]] Bmi). The

average weight of all the n; samples that fell into bin j is given by

_lao _laf 1\,
w“j—n—il'gllwalj__ Z (HB’M')J' (19)

N;i=1
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The probability that the unbiased output willbe y;, + <= y < y; is
n; .
pi = 'wnvj:f\?, = Wav;iPj- (20)

Since this method increases the probability p in eq. (18), the error
¢ is reduced considerably.

(1 —p* Way — P |
—o (=P _ [Lav — B,
€= - Np* 2 Np (21)

For error-rate computation p < 1,

2 Wav
~ = 2 , 22
‘RN A f Np (22)

and since pj is increased in the interesting areas by 1/w,y;, the con-
fidence limit is decreased on the average by

Y = :cis' = NWavj, (23)

where

e1s = Monte Carlo analysis with importance sampling
conventional Monte Carlo analysis.

€C

4.4 Example

A simple example to illustrate the principle of importance sampling
is the problem of calculating the probability of obtaining a total of
three when one tosses two dice. Each die has six faces labeled from
one to six and each face has the probability p = 1/6 of being on top.

The problem, of course, can be solved analytically. Any particular
combination of the dice has the probability of 1/6-1/6 = 1/36 of
oceurring. Since there are two combinations which make three (one-
two and two-one), the probability of getting a three in a random toss
of the dice is 2/36 = 1/18.

If the probabilities of a one and a two are biased so that they occur
twice as often as usual, that is, p = 1/3 rather than 1/6, then the
probability of getting a three will be four times as great as in the un-
biased case. That is p = 2/9 instead of 1/18. The weight for this
example is

wy = 1/(B.B3) = 1/4

and the probability of obtaining a 3 is being approximated by
s_lm
4 N
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The error in eq. (18) is reduced by slightly more than a factor of two,
since for

8.24
=1/18, e = —
P / ¢ YN
and for
3.74
= 2 9, = —.
P / € Wi

V. ERROR-RATE ANALYSIS

The importance-sampling method described above was applied to
the error-rate analysis of the fiberguide repeater with an avalanche
diode detector.

To demonstrate the analysis procedure, we will analyze one
specific case. Let us assume that the input to the photodiode is as
shown in Fig. 9. The ONE is a square pulse of —51 dBm power of
22 ns duration. ZERO is 10 percent of the ONE power or —61 dBm.
The avalanche diode data are

average avalanche gain = 80.0
ionization ratio k= 0.04
conversion efficiency 7 = 0.667.

The equalizer impulse response A(t) is as in Fig. 10 and the thermal
input resistance is Rrg = 2.3 kilohms.

The pulses (ONE and ZERO) are subdivided into nine intervals
[eq. (9)], since this resolution is considered adequate for the impulse
response in Fig. 10. Nine distributions® of the form in eq. (1) are com-
puted for the ONE and ZERO pulses.

Popr IN dBm

=51~

t IN ns

—| T-220n f—

Fig. 9—Optical input.
* In this case the distributions are identical since the pulse is rectangular.
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Fig. 10—Impulse response.

The mean for ONE is M, = 400.3 nA
The standard deviation for ONE is a1 = 102.66 nA
The mean for ZERO is M, = 40.03 nA

The standard deviation for ZERO is ¢y = 32.46 nA

The effective noise bandwidth [eq. (8)] for the thermal noise is
B, = 31 MHz. The standard deviation is computed from eq. (7):

ocra = 14.68 nA.

From the above considerations, the output for N intervals is
T3 L s 24
y= N ngl TnliN—n + N ngl nl TH, ( )

where the z, and xrg are samples from the respective pprFs and A's
are discrete values obtained from £ (t). The impulse response is normal-
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ized to produce unity gain

n=1
hy = — (25)
2 ha
n=1
N *
y* = Zl hpZa + ZrH.

In addition, the above case has been analyzed for N = 1. This cor-
responds to the integrate-and-dump equalizer which was analyzed
numerically in Section 3.3.

5.1 Computation of distributions and biasing

The caleulations of distributions for the diode output are straight-
forward using the wuc distributions of eq. (1). The biasing is a more
complex procedure and sometimes requires a few trials. The idea is
to get a reasonable amount of samples in the “important” region of
the output. The ppF for ONE was computed for z, = 0 to 800 nA,
and was biased according to eq. (16),

B: = a 2™ for 0 to 400 nA with a = 1.

The por for ZERO was computed from 0 to 400 nA and was biased
from 40 nA to 400 nA with an o« = 0.1. The gaussian distribution for
the thermal noise was tabulated for =+7¢. The biased regions were
—7¢ to 0 for the ONE signal and 0 to 7¢ for the ZERO signal with
an @ = 0.5. The ppFs were stored in tabular form for 100 points. Since
the ZERO signal has a ppF which requires more detail for small cur-
rents (Fig. 2), the independent variable was spaced logarithmically.
All others were linearly spaced.

The distributions were computed by a discrete form of eq. (3):

Cuml (n) = g Hist1(3)
(26)

M

CumO(n) = > Hist0(3),

i=n

where Histl () and Hist0(z) are histograms of the outputs.

To calculate the minimum error rate of eq. (4), Cuml(n) and
CumO(n) were smoothed and approximated by asymptotic func-
tions. The minimum of the sum of these functions is the minimum error
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rate, and the current where this minimum occurs is the optimum

threshold.

5.2 Smoothing of the cumulative distributions

It was shown by S. B. Weinstein'? that for the class of ‘“‘exponential-
type' distributions the error-probability distribution has an asymptote
in the tails of the form

P.(x) ~ exp[—(;)’]- (27)

For v = 2 the distribution is gaussian.

To obtain better accuracy, this asymptotic function was expanded
to

P.(z) = exp{—exp[a(log z)* + blog x + c]}
or (28)
log (—log P.) = a(logz)* + blogz + ¢;

i.e., the log log of P, is a second-order polynomial of log z. This equa-
tion reduces to Weinstein’s form, eq. (27), for a = 0.

The second-order polynomials were then least square fit to both
Cuml and Cum0.

5.3 Minimum of error and optimum threshold
The probability of error, eq. (4), is defined as
P,(I) = 3[Pu(I) + P,(I)]

$(exp{ —exp[ai(log I)* + bi(log I) + c1]}
+exp|{ —exp[ao(log I)? + bo(log I) + ¢o]}), (29)

where I is the decision threshold current.
To find the minimum of P.(I), we compute I,,: from

dP.(I)
dI T=TIopt
Pe(I)min = Pe(Iopt)-

Equation (30) is solved using the Newton-Raphson method. The
threshold 8 is usually expressed in percent as in eq. (14).

= 0. (30)

VI. RESULTS

Figure 11 shows a histogram for the ZERO signal for 10,000 samples.
The abscissa is scaled logarithmically. In the tables on the right side
are indicated the ordinate values for the bins, the number of samples
in each bin, and the distribution for the bin. Below the histogram are the
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NO. OF Cum. 0
BIN I1(nA) SAMPLES DISTRIB.

1 5.000E +01 85  2.232E-03

2 6.000E+01 111  B.067E—04

3 7.000E+01 165  4.12BE-04

4 8.000E+01 168 1.667E—04

5 9.000E+01 216  9.279E—05

6 1.000E+02 277  2.061E—05

7 1.100E+02 293  1.573E—05

8 1.200E+02 331  9.328E—05

9 1.300E+02 339  6.31BE—06
10 1.400E+02 383  5.809E—05
n 1.500E+02 427  7.079E-08
12 1.600E+02 390  4.162E—08
13 1.700E+02 456  1.349E—08
14 1.800E+02 454  7.077€—09
15 1.900E+02 458  1.984E—09
16 2.000E+02 455  3.316E-10
17 2.100E+02 440  1.114E-10
18 2.200E+02 433  2.208E—11
19 2.300E+02 444  5.407E-12
20 2.400E+02 426  3.579E-13
21 2.500E+02 376 1.461E-13
22 2.600E+02 380  6.224E-14
23 2.700E+02 319 1.003E—14
24 2.800E+02 307  B.2B0E-15
25 2.900E+02 262  9.154E-16
26 3.000E+02 208  7.867E—16
27 3.100E+02 178  9.662E—17
28 3.200E+02 194  1.057E-17
o 3300E+02 156  1.557E—19
30 p———m————— 3.400E+02 142  1.030E—19
Mp_ 3500E+02 113  B.583E-20
32 p—————— 3.600E+02 98  7.897E-21
K] o ——— 3.700E+02 76 4.744E-22
] e 3.800E+02 49 2.739E-23
35 f——— 3.900E+02 54  2.839E-24
36— 4.000E+02 42 1.B40E-24
37— 4.100E+02 20  8.339E-25
38 p——— 4.200E+02 18 B.271E-25
39— 4,300E+02 20  5.5356-27
40 | | | | | 4.400E+02 13 2.754E-29

-25 —20 -15 —10 -5
DENSITY (LOG SCALE)

COEF. OF LEAST SQ. FIT Ag=08954 A, =-12324 A; =053019
NUMBER OF SAMPLES = 10,000

Fig. 11—Histogram for ZERO signal.

coefficients of the fitted polynomial R(I) = ao + a1 log I + as(log )%
where R(I) = logio [—logio Pe.(I)]-

Figure 12 shows the smoothed distributions for the above example
for one section (N = 1) and 1000 samples. The stars represent nu-
merical solutions for the same input parameters, as described in Section
II1. As seen from the data, if biasing is chosen rightly, a comparatively
small sample size is adequate to simulate the extreme tails of the pDF.

Figure 13 shows the smoothed distributions when A (f) is represented
by nine sections (N = 9). The broken lines represent the distributions
for N = 1. The sample size was 10,000 in both cases. As seen from
the graph in this example, an integrate-and-dump equalizer analysis
can be used as a first-order approximation to an equalizer design with
an impulse response similar to the A(t) shown in Fig. 10.
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The minimum error-rate and optimum threshold were

N =9 P,nn=3.03 X100 ¢ = 43.61 percent
N =1 Penn= 66X 10" 6 = 42.68 percent.

Figure 14 again shows the distribution of the above example (N = 9).
The circled points are results obtained using Chernoff bound approxi-
mations as obtained by J. H. Bobsin® using Personick’s® method. As
seen from the graph, the optimal threshold predicted by the Chernoff
approximation is identical with the one obtained by the statistical
analysis. The minimum error rate shown by the Chernoff bound is
about two orders of magnitude larger from the statistically simulated
value. However, the error rate obtained by the Chernoff approximation
is an upper bound. Therefore, if the result falls within the acceptable
design specifications, no further analysis is necessary. If, on the other
hand, the predicted error rate is marginal, a more accurate analysis
technique such as the one described in this paper is advisable.

Figure 15 depicts curves for the minimum error rate P.min and
optimum threshold as a function of the standard deviation of the
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Fig. 15—Minimum error rate and optimum threshold for 1 and 9 sections as a
function of thermal noise.

thermal noise org. For this example,

R 23.32
TH —,-——RTH

where Ry is the input impedance of the equalizer in kilohms.

The solid lines represent P.min and .55 for N = 9. The broken lines
depict the same case analyzed with N = 1.

As seen from the graphs, the optimum threshold for both types of
receivers is between 42 and 46 percent. Interestingly, the threshold has
a minimum at ¢ = 25 nA (Rrg = 0.87 kilohm).

The integrate-and-dump analysis has a lower error rate then the
nine-section equalizer analysis in the normal operating range of the
repeater.

Throughout this analysis, the avalanche gain was assumed to be
constant. In a more realistic design, the avalanche gain can be adjusted
to optimize the error rate. This will result in a higher avalanche gain
for higher thermal noise.

In this example, the input signals and the equalizer impulse re-
sponse were chosen so that there is no intersymbol interference. This
was done to simplify the example. However, the analysis procedure
is not limited to this case.

[nA],
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VIl. CONCLUSIONS

The statistical importance-sampling technique was used to calculate
error rates of optical repeaters. The application of this technique sub-
stantially reduced the number of samples needed for simulation of the
repeater and thus made computer simulation practical.

The importance-sampling technique is very effective and has general
applicability in areas where tails of distributions have to be computed
or particular sensitive areas of the statistical distribution have to be

emphasized.

This method cannot, however, be used automatically; a good prior
knowledge of the behavior of the system is necessary. To get an
accurate statistical simulation of a section of an output, all the im-
portant regions of input ppFs which may contribute to this section
have to be emphasized.
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