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A class of digital, linear generator-detectors, based wupon cyclotomic
polynomials, which have simple implementation and operate without
roundoff errors, is proposed. It i3 shown how these filters are optimal among
all linear generator-detectors which have no roundoff required in the feed-
back loop. The complexily of various cyclotomic filters are compared.
These filters in general require far fewer binary adds/s than conventional
second-order filters used for the same purpose.

I. INTRODUCTION

Devices for pure tone generation and detection have widespread
applications. The most notable examples are Touch-Tone® signaling,
frequency shift keying (Fsk), and multifrequency (MF) signaling.
Associated with such devices are problems of stability and prediet-
ability, which in practice are dealt with on an individual basis, using
techniques peculiar to the particular application. When these devices
are realized digitally, the above problems are manifest from errors due
to operational roundoff.

Generally, tones for signaling are analog signals of the form A sin wt
(A is the amplitude, 27r/w is the period, and /27 is the frequency).
Devices that generate these tones are usually oscillators of various
kinds. Because of the requirement of structural stability, in practice
these devices are limit cycle oscillators. These are simulations and
realizations in hardware of nonlinear differential equations that have
limit cycles. Because of the complexity of these equations, the ampli-
tude and frequency are not easily predicted from given values of resis-
tors and capacitors in the network.

For detection of these tones, linear analog filters are frequently used.
These are also used as generators, when the duration of the signal is not
too long compared to the period. However, passive linear analog oscil-
lators require inductors which are bulky, and the frequency and
amplitude of these oscillators can vary with changes in value of the
inductors and capacitors due to environmental conditions. Active
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linear oscillators using Rc elements are used in many applications.
However, they also generally need some form of limiting and end up
being nonlinear devices, thus usually preventing them from being used
as receivers.

Digital oscillators, on the other hand, are almost insensitive to chang-
ing parameter values and produce stable repeatable waveforms. How-
ever, in the mechanization of these oscillators (which are usually
based upon second-order linear equations), roundoff in multiplication
and addition produce errors in the feedback that lead to limit cycles
and can significantly impair the signal quality. Also, when such linear
digital devices are used as receivers, the precision required for satis-
factory performance goes up quite rapidly with increasing €. Although
the effects of this can be satisfactorily controlled in certain specific
applications (see, for example, Ref. 1), the difficulties, in general, can-
not be ameliorated except by increasing the accuraey of computations.?

In this paper, we present a class of digital filters that operate without
arithmetic roundoff. These filters are linear, and can be used both as
oscillators for signal generation and also as receivers for signal detec-
tion. The feedback loop of each filter is constructed in such a way as
to eliminate the possibility of roundoff or truncation errors, thus insur-
ing perfect arithmetic. This entirely eliminates the problem of limit
cycles. The filters presented, when used as generators, produce quan-
tized values of A sin wt of arbitrary accuracy. Implementation of these
filters as receivers involves first sampling an analog input signal to
produce a digital input into the filter. The filter is designed to resonate
for a particular input frequency, thus enabling detection.

The means by which arithmetic errors are eliminated in the feedback
loop involves constraining all feedback coefficients to be integers (a
constraint which turns out to be necessary to guarantee perfect
arithmetic in any digital filter). Thus multiplication by these coeffi-
cients can be performed as additions, simplifying implementation.

The behavior of the feedback loop of this filter is modeled by a linear
recursion whose characteristic polynomial is a cyclotomic polynomial.
In recognition of this, we call the filter consisting of the feedback loop
alone a “cyclotomic filter.” It will be demonstrated that the only way
to ensure perfect arithmetic with no limit on the period of operation
(and thus avoid limit cyecles) in a filter modeled by a linear recursion
(i.e., a linear digital filter) is to constrain the feedback coefficients to
be integers. Furthermore, it will be shown that, with this constraint
on the feedback coefficients and also subject to minimizing memory
and eliminating as many resonant harmonies as possible, the eyclotomie
filter is uniquely optimal among all digital linear filters, both for the
purpose of tone generation and the purpose of tone detection.
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In subsequent sections of this paper, it is demonstrated how a
weighting function can be applied externally to the cyclotomic filter
to drastically reduce the impact of those higher-order resonances that
remain. This is applied also to determine those impulse responses
which have a small number of integer levels and lack higher-order
harmonics. All the cyclotomic filters of practical significance, along
with their associated weighting functions and impulse responses, are
examined.

In Ref. 3, a specific proposal is described for the Touch-Tone receiver
(and tone generator), utilizing eight cyclotomic filters.

Il. CYCLOTOMIC FILTERS

The purpose of this filter, as discussed in Section I, is to generate or
detect a single pure tone w(f) = A sin (2xft + ¢) of frequency f.
Digital implementation involves realizing a discrete time filter with
k stages of memory (see Fig. 1), which is described recursively in terms
of an input sequence u, as

k
Tn = Z: Ailn—i + Un- (1)
=l
The numbers a«(i = 1, ---, k) are the feedback coefficients of the

filter. The filter is driven by a clock with the time interval = between
pulses. In tone generation, the filter must satisfy

zn = u(nr), (2)

at least for some initial conditions xo, ---, xx_1. When used as a
receiver, the analog input u(f) is sampled, producing a discrete input
u» = A sin (2xfnr + ¢); the filter (1) must distinguish between the
desired frequency fo and all other frequencies in a band containing fo.

aq as LR ] ay

Uq

Fig. 1—Recursive filter in k stages of memory.
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Specifically, it must satisfy the resonance property
lim sup |z.| = , (3)

when f = fo, and in a sufficiently large band B including f, there must
be no other such resonances. Then |z,| will be uniformly bounded in
B in the complement of any small interval 5 about fo, say, |xa| < m(8)
for all f € B, f & 6, for all n. A threshold detector can thus detect in
a finite amount of time N, the presence (or absence) within B of an
input frequency fo (with error &=48]). It does this by comparing the
gain sup, sy || with the bound m(3) ;if sup |axa| > m(8), then f € §;
otherwise it is not. Of course, the smaller the allowable error 8, the
larger N must be.

To know precisely when an input u. will resonate with respect to
this filter, we first observe that the general solution to (1) is

n k
Tw =L Z bio? ~u;, 4)
=0 i=1
where p1, - - -, pr are the roots (assumed to be distinct) of the charac-
teristic equation
k
AN — 3 gt =0 (5)
=1
and by, - - -, b, are complex functions of the roots. [This is derived in

(17) below.] If the magnitude of a root of (5) is greater than 1, the
filter will be unstable. However, if all roots are inside the unit circle,
then (1) will not have any resonance as defined in (3). Hence, in
general we will assume that all roots of (5) lie inside or on the unit circle.

Hence, the resonance (3) will oceur if and only if the frequency f is

such that with 6(z) = arg p; either
27 fr = 6(¢) (modulo 27) or 2xfr = —0(¢) (modulo 27) (6)

for some ¢ = 1, -- -, k with the propefty that |p:| = 1. That is, the
detector (see Fig. 2) will give a “yes” response iff (6) is satisfied. As we
are trying to detect the presence of the frequency f = fo, let us sup-
pose by way of example that 8(1) = 2xfor (|p1| = 1). Then an input
A sin (2rfot + ) would elicit a “yes’” response from our receiver. (Any
phase shift of A sin 27 fi¢ will not affect the resonance of this signal, as
A sin (2rfot + ¢) = (A cos ¢) sin 2rfot + (A sin @) cos 2w fot, and
cos ¢ and sin ¢ never simultaneously vanish.) However, let us now
suppose that also 8(2) = 2rfir (|pz| = 1). Then the receiver would
also detect an input frequency f; (and would not differentiate between
fo and f1). Hence, one would know only whether or not either fo or fi
is among the inputs. To positively identify the presence of fo, one
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must either insure that fi is out of band or use some other means to
differentiate between fo; and fi.

Similarly, because of (6), the filter cannot, distinguish between the
frequency f and the frequency ! — f, since 2x (! — f)r = 2r
— 2xfr = —2rfr (modulo 2x). In fact, 2xrfr and —2xfr are the re-
spective arguments of complex conjugates, and thus we see from (6)
that no new resonances can ocecur if the characteristic polynomial (5)
is altered to include among its roots any complex conjugates of py, - - -,
pr. We shall use this fact in our determination of a good structure for
the recursion (4). When the filter is such that an input of frequency
f will resonate, we shall say that the filter resonates (or has a reson-
ance) at f.

Recapitulating, because of (6), whenever the filter has a resonance
at a frequency f, it will also necessarily and unavoidably resonate at
the frequency r—! — f. To counter the effect of this in practice, 7 must
be made sufficiently small so that 1 — f is out of band. In keeping
with (6), we refer to resonance at the frequency f as ‘‘resonance at the
root €?/7”" and resonance at 77! — f as “resonance at the conjugate
root e~/ [the roots in question being, of course, roots of (5)].

The remaining resonances described by (6) are those due to aliasing.
These also are intrinsic to the system—a consequence of using diserete
(rather than continuous) input samples u,. Indeed, if resonance occurs
at a frequency f (or, equivalently, at the root e®/7), it will also occur
at all the frequencies f+ mr' for any integer m, as 2=fr
= 2r(f + mr™)7 (modulo 27) or, equivalently,

)

Fig. 2—Structure of a tone detector.

eierft = exp[z’?w(f + ?717'_1)7]'

In practice, if conjugate resonances are out of band, resonances due to
aliasing will also necessarily be out of band.
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Hence, if py, - - -, pm are those roots of (5) of modulus 1, the filter will
have resonances within the band [0, =] at the frequencies 6(1)/2x7,

[2r — 0(1)]/2nr, 6(2)/277, -+ [27 — 6(m)]/2wr. The number of
distinet resonances in the interval [0, (27)1] is m, less the number of
roots among py, - - -, pm Which appear along with their conjugates. This

picture is repeated in each successive interval [nr™, (n + 1)71]
(n= =1, £2, ---).

It should be clear that, in choosing the recursion (1), one desires to
have the number of resonances as small as possible—for the purpose
of generation, to minimize the number of harmonics that can be pro-
duced by perturbations of the initial conditions, and for the purpose of
detection, to maximize the band in which the filter can detect a unique
signal. Also, of course, one desires to have the memory k (a measure of
the complexity of implementation) as small as possible.

Ideally, one would like to have only one resonance, namely at the
frequency one is trying to detect or generate. This is possible within
the band [0, =], by using the recursion z, = —x.—1 + u.. However,
this resonates at a frequency equal to half the clock frequency ! and
thus also resonates at the third harmonic (27)~* + 7~ due to aliasing.
As the third harmonic is frequently in band, this recursion is generally
not satisfactory.

On the other hand, for some complex number p of unit modulus, one
could use the recursion 2, = pr._1 + u» which also has memory one.
By adjusting 7, one could make the argument of p = exp (i27for)
small, thus avoiding any resonance up to as high a frequency as
desired. However, there are problems with this recursion. First of all,
the memory (in implementation) is not really one but two, as the real
and imaginary parts of p must be handled separately. In fact, as seen
before, no new resonances would be introduced by including the com-
plex conjugate p of p to form a recursion of order two. Hence, one does
just as well by replacing the characteristic equation A\ — p = 0 with
0=(—p)(A— 5 =\ —ar+ 1 (where the real number a = p
+ 5). The corresponding recursion replacing Tn. = pa_1 + Ua, also
(but now explicitly) of memory two, is @ = @&n_1 — &n-2 + Un. This
is the recursion after which digital linear filters are customarily
modeled. However, as a (p) is, in general, not a rational number
(gaussian rational*), it must in general be truncated, leading to slight
frequency shifts, and multiplication round-off error in the feedback
loop of these filters (Fig. 1) ; this could lead to unwanted limit cycles.?
To avoid this, a (p) is restricted to be rational (gaussian rational).
Even for rational numbers, however, truncation error would occur if

* Has rational real and imaginary parts.
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the number of bits necessary to represent the number x, exceeded the
word length allowed. In Section V we show that this ecan be controlled
only if @ is an integer.

Hence, in the ease of the real recursion, we restrict a to be an integer,
and the only possibilities are a = 0, 1, +=2. We have already ruled
out a = —2 (this gives the square of the characteristic equation of
Tny1 = —&n + Un). If @ = 2, this gives the square of the characteristic
equation of T,41 = T. + %., which is even worse, as it produces
resonance at the second harmonic. The remaining three possibilities
for a correspond to cyclotomic polynomials of orders 3, 4, and 6 (as
defined subsequently in this section). It will be shown that, by taking
a cyclotomic polynomial for the characteristic equation (5), one
always obtains the best possible recursion (1) for the given amount of
memory.

In general, to have perfect arithmetic (the only means by which to
uniformly avoid unwanted limit cycles), it is necessary to constrain the
feedback coefficients a;, 7 = 1, - - -, k [see (1)] to be gaussian integers
(see Section V). In faet, it will be shown that one can take each a; = 0,
+1 so that each tap in the feedback loop involves at most changing
the sign. Hence, from here on we restrict ourselves to three cases: the
a/'s are gaussian integers, are integers, or are 0, =1. In what follows,
we will show that the three are, for practical purposes, equivalent.

For the first case, in the recursion corresponding to A — p = 0 (no
complex conjugate), the restriction to integer real and imaginary parts
requires p = =£1, = resulting in less generality than possible, as this
corresponds to the recursions of the previous example with a = £2
only. In fact, we can generalize this, and say it is always better to
include among the roots of (5) all the complex conjugates, and thus to
have a recursion (1), all of whose coefficients are real (and hence
integers). We will make this explicit in a moment, but let us first
indicate the reasoning. First of all, by including the conjugates, no new
resonances are introduced (as has already been demonstrated). Second,
if among the roots of (5) even one conjugate were missing, the coeffi-
cients of (1) would not all be real. In this case, the real and imaginary
parts of x, would have to be considered separately, and one would thus
need an effective memory of 2k. On the other hand, if one multiplies
(5) by factors of the form (A — 5), one for each root p of (5) whose
complex conjugate is not also a root of (5), then the resulting poly-
nomial and the corresponding recursion will have real coefficients. The
respective degree and memory will thus be raised to no more than 2k
(the effective memory of the complex recursion). Furthermore, as will
be shown in Theorem 1 below, the new polynomial (and recursion)
obtained from multiplication by the factors (A — 5) will also be
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guaranteed to have integer coefficients. Thus, we will do at least as
well (and, as we have seen above, even better) by restricting all the
recursions (1) to have real (and hence integer) coefficients.

Let us now make this explicit. Suppose one has the recursion

k
Tn = 2 Qn_j + Un,
J=1

where a;j(j = 1, - - -, k) are gaussian integers: a; = a; 4+ by (e; and b;

integers, 1 = ¥v—1). Let y. and z. be, respectively, the real and im-
aginary parts of zn. Then

k
Yn = 2 (@Yns — bjzngj) + Un,

i=1

Il

k
2 (bYn—j + ajzn—j).

=1

Zn

The only feature possibly mitigating in favor of the complex recursion
is this: We are constrained to have a; and b; be integers. If the new
recursion with added roots did not have integer coefficients, then in
spite of the other considerations above, one would choose the complex
recursion. However, in the following theorem we show this is not
possible.

Theorem 1: Suppose F()\) is a polynomial with gaussian integer coeffi-
cients, and suppose p1, - - -, pm are those roots of F(\) whose complex con-
jugates are not also roots of F. Then F(A) IT71 (A — ps) has integer
coeffictents. Furthermore, if F(\) has no polynomial with integer coeffi-
cients as a factor, then deg I' = m.

Proof: Write F(\) = g(\)h(\), where h(A) = IT (A — p:). Then g has
real coefficients. Let p(\) be any irreducible factor of F(A\) (considered
as a polynomial over the gaussian integers). Suppose p has the root r
in common with ¢ and the root s in common with k. Then p (the
polynomial in A whose coefficients are the complex conjugates of the
coefficients of p) has 7 as a root, and hence p must also be a factor of
F. But 5 is also a root of 5, whereas § is expressly not a root of F.
Hence, any irreducible factor of F must be a factor of either g or k. It
follows that g has integer coefficients, and h (and thus k) have gaussian
integer coefficients. As A(A)k(\) has real, and hence integer, coefficients
the theorem follows.

Thus, it is best to take the coefficients of the recursion (1) to be
integers. The theorem which follows completely characterizes those
recursions.
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First, however, a short description of cyclotomic polynomials must
be given. The Euler ¢-function is a funection on the positive integers,
defined as follows: ¢(m) is the number of positive integers less than or
equal to m and having no integer factor in common with m, other than
1 (such integers are said to be relatively prime to m). For example,
o(l) = ¢(2) =1, ¢(3) = ¢(4) = 2, ¢(9) = 6. The cyclotomic (“‘cir-
cle-dividing”) polynomial of order m, denoted Fn()\), is that monic
polynomial (coefficient of the term of highest degree is 1) with integer
coefficients all of whose roots are primitive mth roots of unity (that
is, 7 = 1, and r" % 1 for 0 < n < m). Over the integers, Fn(}) is
irreducible (not a nontrivial product of polynomials with integer coeffi-
cients).* From the definition, one can explicitly determine that F=(X)
= [Is (A — exp [2xi(d/m)]), where the product is taken over all d,
1 < d < m such that d and m are relatively prime. Thus, the degree
of F,, is ¢(m).

The next theorem shows that, whatever constraints there are on
available memory and acceptable resonant harmonics, the characteris-
tic polynomial of the optimal recursion will be a eyclotomie polynomial.

Theorem 2: Let F(\) = M — 3%, a\¥=i, whereay = 0,a; (i =1, -+, k)
are integers. Suppose every root p of F(\) = 0 salisfies |p| = 1. Then F
is a product of cyclotomic polynomials.

This is proved in Section V. Recall from our prior discussion that all
the roots of F must be chosen to satisfy |p| = 1 to have stable detec-
tion. As it is, of course, better to have fewer resonances, one would
hence choose for (4) a single eyclotomic polynomial. The cyclotomie
polynomials make very desirable characteristic polynomials because of
their extremely simple structure. For example, for m < 105 or for m a
product of two primes, the coefficients of F, are all 0, =1! For m a
power of a single prime, the coefficients are all 0, 1 and for m < 385,
the coefficients do not exceed 2 in absolute value. If m is a product of
three distinct odd primes, all the coefficients are less than the smallest
of those primes. These assertions are cited in Ref. 5.

This means that implementation of the recursion (1) in the filter
shown in Fig. 1 is very simple indeed. For all cases of practical interest,
the feedback coefficients a; will be 0, 1. Of course, when a; = 0, one
simply does not put a tap on the 7th stage. Because of the relation

Fpe...pon(X) = Fppepu (AP 02007)

(p: distinet primes—see Ref. 4), most of the coefficients of F, will
usually be zero, and hence the taps-to-memory ratio is generally low
(see Table I).

In the preceding discussion, the prinecipal emphasis has been on the
use of the filter as a receiver. However, considerations relating to its
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use as a generator lead to the same conclusion: that the characteristic
polynomial (5) of the recursion (1) should be a cyclotomic polynomial.
Indeed, for a generator, the problem of unwanted limit cycles is more
critical. There is again the requirement that all the roots p: of (5)
satisfy |pi| =1, as small perturbations in the initial conditions
To, -+ +, Tx—1 from the (ideal) values 0, sin 2w for, - - -, sin 2xfo(k — 1)7
(to generate sin 2« fon7) are inevitable; if such a perturbation oceurs
along an eigenvector corresponding to a root p;, where [p:| > 1, it
produces a nonzero coefficient b; for that root in the general solution
ZTn = Y5, bip? (where by, - - -, by are functions of the initial conditions
Zo, * -+, Te—1; see Section III). This component would attain an arbi-
trarily large amplitude (with time) and overwhelm the desired tone.

Hence, one again requires a filter that can perform perfect arithmetic
and whose characteristic equation has all its roots on the unit disec.
From Theorem 2 we thus deduce that (5) should be a product of cyelo-
tomic polynomials for the generator as well. As tone generation is
impeded by the presence of harmonic resonances at other roots (due,
again, to perturbation of initial conditions), one takes for (5) a single
cyclotomic polynomial.

Thus we have shown that, for both generating and receiving, the
best linear recursion is one whose characteristic polynomial is eyelo-
tomic. As the roots in this case are all of the form exp [2xi(d/m) ], the
resonant frequencies can be expressed as

2nfr = 21'% {(modulo 27) (7

for all positive integers d < m such that d is relatively prime to m.
Resonance at the fundamental is described by 2rfr = 2x(1/m), that
is, the fundamental of the filter is f = 7—!/m. Hence, if one requires a
fundamental frequency of fo (i.e., if fq is the frequency of the tone to
be generated or detected) and one intends to use a filter with memory
k = o(m), the clock rate 771 is set at 7! = fom. All other resonances
occur at various harmonies (multiples of fo) as follows: the resonant
harmonies in the band 0 < f < 7! occur when fr = d/m, that is, at
f = dfy, for all those integers d as above. For example, if m = 30 then
k = 8 and d assumes the values 1, 7, 11, 13, 17, 19, 23, 29. Hence, this
filter has no resonances between the fundamental f, and the seventh
harmonic. It resonates at the seventh harmonie 7 fo, and thereafter at
11 fo, 13f,, and so on. The resonances are at all the prime harmonics
greater than 5, since in general those integers less than and relatively
prime to the product m of the first p primes, are those primes lying
between the pth prime and m. Furthermore, note that 30 = 1 4 29
=74 23 =11 + 19 = 13 + 17. The first resonance due to aliasing
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will always be at f = fo+ ! = fo 4 fom = (m + 1) f,. In the case
of the previous example, this is the thirty-first harmonie.

Factors pertinent to the choice of which cyclotomic polynomial to
use are relegated to Section VI. Suffice it to say at this point that the
more memory available, the farther away from the fundamental can
the first resonance be made due to aliasing. However, except for the
cases m = 1 and m = 2, the first resonance after the fundamental will
be below the clock frequency 7. In these cases, for a given amount of
memory k, if the interest is to have the first higher-order resonance as
far from the fundamental as possible, one would find the largest integer
r such that the product m of the first r primes satisfies ¢(m) =< k. Then
the first higher-order resonance would oceur at the gth harmonic, where
q is the (r + 1)st prime.

1Il. ELIMINATING IN-BAND HIGHER-ORDER RESONANCES

The preceding analysis has indicated that, within the constraints
established, various higher-order resonances are unavoidable. This
could lead to difficulties. In practice, many higher-order harmonics are
introduced in the process of limiting the input signal. The limiter (see
Fig. 2) limits the amplitude of the input signal u(f). For example, a
common limiter is a ‘“hard-clipper.” This has output =41, depending
upon whether u(t) = 0 or u(f) < 0. The effect of hard-clipping on an
input is to produce all the odd harmonics: sin 2= ft — 2/7 sin 2r ft
+ 2/3w sin 6w ft + 2/57 sin 10w ft + - --. Hence, a filter with more
resonances frequently must be run for a longer period of time to attain
a threshold sufficiently high to reject spurious signals. Also, when used
as a generator, perturbations of the initial conditions of the filter could
lead to unwanted harmonics at all the resonances of the filter. As such
perturbations are inevitable, it is usually necessary to make allowance
for eliminating these harmonies.

While resonances due to aliasing are inherent to the discrete-time
nature of the system and are hence unavoidable, resonances below the
clock frequency 77! can be handled outside the feedback loop. In par-
ticular, it is possible (in theory) to eliminate (in practice, to reduce the
Fourier coefficients of) any or all resonances at a frequency f, 0 < f
< (27)7', along with the conjugate resonance at 7! — f. This is
effected through operations outside the feedback loop. Specifically, this
is accomplished either through alteration of the input before it enters
the filter: u, — v, = >.¢-, ciun_i, or equivalently through alteration
of the filter output before it enters the threshold detector: x, — ya
= Y%, civn_i (see Figs. 3 and 8). Although these two options are
mathematically equivalent, considerations with respect to minimizing
the word length necessary for perfect arithmetic would mitigate in
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favor of one or the other. This will be discussed in Section V. Here, we
will describe the latter option only.
Let X ()\) be the generating function for the sequence

k
Tn = X GiTaei + Un,

i=1

and let U(\) be the generating function for the input u.. That is,

X() = i;o zaAn,  UQ) = i UnA". (8)
Then
XO) = 3 adX(\) 4+ UQ), or X)) = ———— UQ).
=1 1— 'Zl a,-?\"

Notice that defining F(A) = A\* — X a:A*%, the characteristic poly-
nomial of the filter, we obtain

X\ = U). 9

_ 1
ARF (AT
Since F(\) is assumed to be a cyclotomic polynomial, it is real and all
its roots are of unit modulus. Hence p is a root if and only if 5 = p~'is
a root. It follows that A*F (A1) = F(A). Thus (9) may be rewritten as
1
F(x)

We define a weighting function W (A) with the property that the
resulting output function

YOO = WO)XO) (11)

X = U). (10)

has poles only at those roots of F()\) corresponding to those resonances
actually desired. Specifically, W ()\) will be a real polynomial of degree
k — 2r, where r is the number of resonances desired in the band
[0, (27)']; the roots of W shall be those roots of F' corresponding to
the unwanted resonances. Typically, one desires to eliminate all
resonances but the fundamental, in which case r = 1 and W(\)/F())
= 1/(A\* — a\x + 1) for an appropriate real number a. Then, from (10)
and (11), one obtains Y(A) = W)X Q) = (1/(A* — ax + 1))U(A) so
Y(A) = =2V (A) + adxY(A) + U(A), and

Yn = QYn-1 — Yn—2 T Un. (12)

This corresponds to a second-order filter with only one resonance in
the band [0, (27)~1] as shown in Fig. 3. Although there will be trunca-
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Fig. 3—Implementation of the weighting function.

tion error in (12), this will not lead to limit cycles, as there is no feed-
back from this to the filter [although (12) represents the performance
of the filter in terms of resonances, the filter, of course, is not realized
in this way]. Specifically, the weighting function is implemented as in
Fig. 3. This is derived from definition (11): if W) = Xfp ¢\,
then equating terms in (11) yields

d
Yn = 2 Cin_iy . (13)
i=o

where, typically, d = k — 2.

As mentioned earlier, the arithmetic of the weighting function is only
approximate; since there is truncation error in the computation of the
coefficients ¢;, the roots of W will not precisely cancel out the roots of
F. Rather, the roots of W will be slightly perturbed from the corre-
sponding roots of F. The effect of this, as will be shown, is that all the
resonances due to the roots of F (i.e., all the resonant harmonics of the
original feedback loop) will be present in the output y,—however, they
will have reduced energy (but for the fundamental). That is, the less
the error in the implementation of W, the smaller the Fourier coeffi-
cients of the higher resonant harmonies of the filter. This is demon-
strated below.

Suppose F is the cyclotomic polynomial of order m (or any poly-
nomial whose roots pi, - - -, px are distinet mth roots of unity, so that
each p; = e?/m for some integer ¢, 0 = ¢ < m). A continuous-time
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extension x(f) of the discrete-time function x,, satisfying x(nr) = z.
can be defined as

2(t) = "'z;: 2 (t — n), (14)

where v(f) describes a continuous-time extension of x.. Specifically,
v(t) is a periodic input pulse satisfying v(t + mr) = v(#) for all ¢
[typically, v(t) = 1 for 0 £t < r]. In (4), set u, = v(nr) and nor-
malize »(0) = 1. Then z, = X 5=, b;p} for n < m. Let £(q) [9(g)]
denote the gth Fourier coefficient of () [v(f)]. It follows that

1 [ x(t) exp (—z2r ) dt

m—1
= §(q) 2, xnexp (—'i21r in)
n=0 m

(g

= 9(q) ;é b; :Z:,; p7 exp (—‘i21r ﬁ n)
= 9(q)b;, (15)

where j is that index such that p; = exp [22wx(g/m)]; if no such index
exists, then £(q) = 0. To simplify matters, we will use the expression
“the Fourier coefficient at (the root) p;”’ to indicate what in the case of
(15) is the qth Fourier coefficient £(g).

These Fourier coefficients can be computed explicitly from (9).
Indeed, factoring A*F (A1) = J]%-: (1 — p;A) obtains

X0 = 1 == U

k 1
= 3 Biy=p5 U, (16)

where the B;’s are the coefficients of the partial fraction decomposition,
derived explicitly in Lemma 3 below (it is assumed that all the roots
p; are distinct; in the case of multiple roots, however, similar results
obtain). From (16) one obtains

X() = Z&i%Wém‘

=1 n=0

= T B T a1 (a7

80 Tn = E,=IB 32 0% 'u; [which is (4) above]. Hence, B; = b;
(j =1, ---, k) and their explicit form is given in the following lemma.
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Lemma 3: Suppose py, - - -, px are distinct numbers. Then

k 1 i (ﬁ pi 1
a‘I=]; 1—px  &S1\Gz (e — Pj)) 1 —p\
3

#1

Proof: The residue of the left-hand side at the 7th pole is the coeffi-
cient of that term in the sum above. The decomposition follows from
the Cauchy residue theorem.

Notice that, as the roots of F occur in conjugate pairs, a direet con-
sequence of (17) is that, if p; and p; are conjugate roots, then the cor-
responding Fourier coefficients are also conjugate: b; = b;.

The Fourier coefficients for the sequence y. can be determined as in
(15). For x, = Y b;o" as before, we obtain from (13)

d k
Yn = 2 € 2 by

1=0 =1

I

g W (5,)bso' (18)

Thus, the Fourier coefficient of the sequence y, at the root p; is W (5;)b;
(as could be expected, since Fourier transformations are multiplica-
tive). Again, the conjugate coefficient W(p;) = W(5;). Observe that,
if p; is a root of W, then the Fourier coefficients of i, vanish at the roots
p;and p; (W was chosen to be real). If W' is the result of perturbing the
coefficients of W to correspond to truncation error, then W'(g;) is (by
continuity) close to zero. Hence, as errors in the weighting functions
are reduced, so is the power at each of the resonant harmonics above
the fundamental (running the system for finite time, of course).
Surprisingly, W is very stable; if the coefficients of W' are simply those
of W rounded to the nearest integer (!), the results are frequently
virtually as good as if W itself were used. This is exhibited in Table I
and illustrated in Figs. 4, 5, and 6. These figures correspond to a filter
using the cyclotomic polynomial F3o. The input is a hard-clipped sine
wave for each given frequency up to 15 times the fundamental. The
input frequencies are normalized to units of the fundamental frequency
for each filter. For each input frequency, the filter is run for an amount
of time equal to seven cycles of the fundamental. If this time corre-
sponds to N steps of the filter, the output is max,<x |2/, as measured
at each input frequency (1500 samples). Using a W' with integer
coefficients (or any W’ with uniformly truncated coefficients) enables
one to perform all the multiplications as additions, simplifying im-
plementation and eliminating any further errors. As one expects, upon
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Fig. 5—Hard-clipped /rounded weighting.
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Fig. 6—Hard-clipped /exact weighting.

setting ps = pi1, the Fourier coefficient of y, at the fundamental

& 1 — 55
W 11 e T
i3 p1— p;  pL— p2j=3  P1— P p1— p2

is the Fourier coefficient of (12) at the fundamental.

IV. IMPULSE RESPONSE

The impulse response is the output resulting from an input of a
single pulse: wg = 1, %.>0 = 0. Since this output can also be produced
by appropriately setting initial conditions, we will refer to it as a pulse
train. From (4) we see that if the input . is a single pulse, then the
output z. reduces to

k
= L bil. (19)

In the context of the previous sections, it is assumed that the charac-
teristic polynomial of the sequence z, is cyclotomic. Since each p; is
then an mth root of unity, the sequence x, is periodi¢: Tnim = x» for
all n. As before, the resonant harmonics present in the pulse trains z,
correspond to the mth roots of unity which are roots p; ( = 1, ---, k)
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of F = F,,; the Fourier coefficient of the pulse train at the root p; is
b; (see Section IIT).

In particular, using the notations of Section ITI, U(A) = 1 and thus
(10) reduces to

1
X(\) = IOl (20)
But X(\) = XreozaA" = (X750 TaA") (X a0 A™") 8iNCE Tnim = To.
Defining f(\) = X.7Z} x.A", one obtains
1 —\m
FA) = F(\) (21)

from (20). Notice that fhas integer coefficients (the input u. is integer,
as are the coefficients a;). Indeed, 1 — A™ is a product of cyclotomic
polynomials, one of which is F'(A). Specifically,

l—hm=:bI|IF,.()\)

[the product is taken over all n which divide m; hence, for example,

1 — A8 = —F (N Fa(\N)Fs(\) Fa(A)
=A=—DA+DARF+FA+ DA -2+ 1T;

and, from (21),
FN) = % nHmFu(A)

n¥Em

obtains. Consequently, f(p) = 0 for all mth roots of unity p, except
for the primitive roots of unity [the roots of F.(\)]. This was antici-
pated by E. N. Gilbert in Ref. 6, where he showed that a pulse train
2, of period m has resonances at those harmonics corresponding to the
mth roots of unity which are not roots of > 7! z,A" = 0. Equation
(21) covers the general situation where f(\) [and consequently F(A)]
are arbitrary products of eyclotomic factors of 1 — A™.

In the same paper, Gilbert was concerned about the problem of
inereasing the power of the pulse train at the fundamental (relative to
the power at the other resonances). This could be done by shaping the
input u, for one period, but it is usually undesirable to do this. As
explained in Section III, however, the same effect is obtained by
utilizing a weighting function W. If utilized directly, this will introduce
noninteger levels into the pulse train. Nonetheless, it is possible to
avoid this by replacing W with W where the latter is obtained through
rounding off to the nearest integer the coefficients of the former. The
pulse train resulting from W7 will have integer levels, but the trunca-
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tion error will again introduce higher-order resonances. However,
Table I shows that these are very small indeed, leaving typically about
98 percent of the power at the fundamental. This compares with 25
percent or less (for Fis, Fas, F30) without WZ. Note, for example, Fs.
The pulse train 1, 0, 0, 0, —1, 0, 0, 0 has resonances at the third, fifth,
and seventh harmonics. However, by simply altering this to 1, 1, 1, 0,
—1, —1, —1, 0, the first appreciable resonance does not come until
the seventh harmonic. In this case, use of W! does not introduce any
new levels in the pulse train.

The worst case in Table I is Fy where 92 percent of the power is at
the fundamental. . N. Gilbert has pointed out that if one wished to
increase the proportion of the power at the fundamental of this train
(or any other), one could multiply the output ¥ (A) by some constant
¢ > 1, chosen so that the roundoff error of ¢cW — (¢W)! is smaller
than that for W7 alone [recall (11)7]. This, however, would introduce
more levels into the pulse train (although no more than ¢ times as
many).

Table I gives an indication of the possibilities for various filters.
Included are the filters with memory less than 12 which provide the
greatest separation between the fundamental and the first resonant
harmonic, either with or without the weighting function. The asterisks
and daggers indicate those which, for the amount of memory, have the
largest possible separation without or with the weighting function. For
utilization with a ‘“hard-clipper’’ (which has all odd harmonics), Fj,
F,, and Fy; are included. Although these resonate at all even harmeonies,
they have the same response to a hard-clipped input at the fundamental
as the respective cyclotomic filters of twice the sampling rate. To have
the first resonant harmonic higher than the seventh (without W)
would require a memory of 48 (and F to have a coefficient of 2). The
next interesting entry with respect to W is Fss with memory 12. The
columns to the right of the double line all deal with the integer-rounded
transfer function WZ. Columns A and B give |b:|2/X 3 |b:|? and
| by W (py) |3/ K2 |b;W1(p:) |2 as a percent, respectively, where b; is
the Fourier coefficient of the sequence x, at the root p: [see (6) and
Section ITT)]. Column C gives (maxz<i<i |b:;WZ(p:) [2)/|b1W(5y) |* as
a percent. The roots p; (1 = 1, - - -, k/2) are assumed to be in order of
ascending argument < (50 p1 is the fundamental). Columns D and E
give the moduli of the Fourier coefficients b; and b:;W7(5:) of the
sequences T, and y., respectively. Columns F and G give the pulse
trains of x, and y., respectively, with initial pulse up, = 1, Uas0 = 0.
The exponent denotes repeated digit; the arrow indicates that the
preceding train is followed by another identical train, but that each
digit is the negative of what it was.
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Table | — Characteristics of

Resonant Harmonics in the
Band [}g r‘;l], Anidle From Number of
... undamental First " Integer-Rounded
Mem- Cll-}g{ acg‘:;ﬁm Resonant Ta}()%?ﬁlgilhmr Weighting
ory y'}, Harmonic Due|  yyeirhiing Function
to Aliasing Funection) wr
Without With
Weighting Weighting
Funetion Function
*] | Fa=241 none — 3 1 —_
2 Fy=)\14+2A+1 2 —_ 4 2 —
2 Fi=2+1 3 —_ 5 1 _
*2 Fe=A1—A+1 5 — 7 2 —
4 Fe=)i+1 3,57 7 9 1 142422
14 Fig=x—x\+1 5 7,11 11 13 2 142042
6 | Fa=Ao4ni41 2,4,6,7,8 8 10 2 1+22+214203
U
16 Fia=xA6—2341 5, 7,11, 13, 17 17 19 2 1++2)\+37~’+27\l
N
8 | Fus=Ae—A7-26 | 2,4, 7, 8,11, 14 16 6 1A AN
—AN—A 13, 14 FRNNEY
+1
8 Frp=2x34+1 3,5,7,9 11, 15 17 1 14 22+2224-300
13, +2nd+ 2N\
8 Fay=\8=\i+41 b, 7, 11, 13, 17, 23 25 2 142043024308
19, 23 + 3nd4-2054-A8
1*8 Fao=M\+AT—28 | 7,11, 13, 17, 29 31 6 14+ 374-5524-5A8
— A= NIA 19, 23, 29 +5A54-3A5+A8
+1
*} See text for explanation

V. CONDITIONS FOR PERFECT ARITHMETIC

Here we indicate why cyeclotomie polynomials yield optimal recur-
sions for generating sinuosidal signals. When we use (1) to generate

tones, the u, is set to zero and some initial condition xg, @1, « -+, Tp—118
chosen to generate the required samples z,:
k
Ty, = Z Ailn—i. (22)

=1
If we use the usual second-order recursion, then (22) is of the form

Ty = ATpn—1 — Ta_g2, (23)

where |a| < 2, so we have complex roots. In this case, we show below
that the number of distinet values that z,, n =0, 1, - -+, N can take
grows at least as fast as N /2, with N. So, to simulate (22) with perfect
arithmetie, the number of ““words” needed grows at least as fast as N,
the number of samples needed.

Proposition 4: Suppose |a| < 2, and rational but not an integer. Then
for any initial conditions x,, x, (not both zero) and any positive integer N,
the number of distinct values among xo, ---, Zy, where Tn = aTu
— Zn_sg, for 2 = n = N, is at least N/2.
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some cyclotomic filters

A B D E F G
% of Total Highest Power .
[01%?;-; Pj[fﬁ‘ at uth’;ﬂ%:i‘:g’:d Cﬁ:ggizlnutss %an)‘;af: of Pulse Trains
Fundamental b O Arguments < =)
Tundamental)
Wi%]}}:ut “];;tih n on Zn Yn
100 — —_ 1 — 1, —1 —
100 — — 0.58 — 1, -1,0 —
100 — — 0.5 - 1,0, —1,0 —
100 — — 1.73 — 130 =120 —
50 97.1 2.9 Al10.25 0.60, 0.10 103—10% 130— 130
50 99.5 0.5 All 0.20 1.08, 0.08 1010°—10—10° | 12310—1—2'—10
33.3 92.7 7.8 Al10.19 o.%ség.m. 102—108 1212—12—2—10
33.3 99.6 0.3 Al10.19 7.%'&04. 102105 — 123210
53.3 98.9 0.8 0.33, 0.27, 4.78, 0.51, 1302 — 1307 123121 —1—2
0.09, 0.11 0.55, 0.75 —31—-2-10
25 98.0 1.8 All0.13 1'2963'%2'17 107—107 12232210 —
0.06, 0.
25 99.5 03 All 0.14 1'%7b3'%51 . 109107 —108—107 | 12324332210 —
6 98.4 1.0 0.11, 0.09, 2.41, 0.04, 1—110%1—1107— | 123254524531210 —
0.27, 0.33 0.19, 0.24

Proof: We can write x, = bip} + bap3, where pi, po are the distinct
roots of A2 — aX 4+ 1, as in (19). Sinee the roots are not real, let
p = pi(= p2), b = by(= by). Then z» = x. implies Re (bp™) = Re (bp™).
In this case, letting 8 = arg p, ¢ = arg b, we obtain cos (¢ + né)
= cos (¢ + mh) so ¢ + nf = = (¢ + mb) (mod 2x). Since p is not a
root of unity, the numbers nf (n = 0, 1, 2, ---) are all distinct and
hence for fixed m either n = m or nf = —2¢ — mé# (mod 27). As this
last congruence can be satisfied by at most one n, it follows that, for
each m, there is at most one n # m such that x, = Tm.

The following result shows that, if one wishes to generate sin wnf
with perfect accuracy using a linear recursion, e'*® must be a root of
the corresponding polynomial (3).

Proposition 5: If s, = sin wnf is a solution of xn = L @;Tn—; and 0 1s
not an inleger, then e'*® is a root of the polynomial N¥ — 3 aN¥=i."

Proof: From sin w(n + 1) = ¥ a; sin #(n + 1 — 7)8, we expand
both sides using a familiar trigonometric identity and get

sin mnf cos w0 + cos 7né sin 76 = sin w(n + 1)8
=Y a;jsinw(n+1— ;)8 = X a; sin v(n — j)§ cos wb
+ 3 a;cos w(n — j)@ sin w8 = sin wnd cos wb
+ ¥ a; cos w(n — 7)8 sin =f.
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Since 6 is not an integer, sin 78 # 0, and thus from the equality of the
first and last expressions, we obtain cos wné = 3 a; cos w(n — j)6.
Hence, cos mn8 is also a solution to the recursion, and it follows that
g™ = eos wnd + 7 sin 7nf is a solution too. Consequently, e™**
— ¥ gttt =,

The next theorem shows that every recursion which satisfies the
stability criterion |p| = 1 for all its roots, and for which perfect
arithmetic is possible, is eyclotomie.

Theorem 6: Suppose every root p of the polynomial F(\) = \*
— Yk, a\¥ satisfies |p| = 1.

(1) If ay, * -, ax are integers and ax # 0, then F(X) is a product of
cyclotomic polynomials.

(1) If ay, - - -, ax are rational numbers and x, = 2 @:iTa—: 18 periodic
(Tnsp = Tn for some p, all n) for some nonzero initial conditions
Zo, - -+, Tx_1, then F()\) has as a factor a cyclotomic polynomial.

Proof: For case (i), each irreducible factor (over the integers) of F(})
has the same form as F()\) itself by ‘Gauss’ Lemma’”.® Thus, it
suffices to assume that F(\) is irreducible, in which case all its roots are
distinet. In this case, we can write x, = Y bip! where the p's are the
roots of F()\) and z, is as in case (7). But then |z.| = X |b:], and as
for any integer initial conditions o, - - -, Zx—1, T Will be an integer for
all n, x, can in such a case assume only a finite number m of distinct
values (m = [L|b:|]). Hence for all n, the ktuple (Taty, * ) Tatk)
can assume at most m* distinet values, and as z, is recursively gen-
erated with memory k, x, must be periodic, of period p < m*. This
brings us to case (7).

For case (i7), let L be the rational canonical form associated with
the recursion z, (see Ref. 7, Section 5.2.1), and J be the Jordan
canonical form of L. Then for some initial state vector x, J*x = x, and
it follows that some diagonal element of J, that is, some root of F(}),
must be a pth root of unity. Hence, the irreducible factor of F(X)
having that root must be cyclotomie.

Hence, from the above the 8 of Proposition 5 must be rational when
perfect accuracy is required.

In all the preceding, the basic assumption has been that all the
coefficients of the recursion (22) are real. We can infer from Theorem 1
that this is no loss of generality as, if the recursion had complex coeffi-
cients (with rational real and imaginary parts) and was irreducible
over the field Q(z) (the field of gaussian rationals), then the roots of
the characteristic polynomial would be distinct, no pair being con-
jugate. Indeed, Theorem 1 remains true if the word “integer’ is every-
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where replaced by “rational number.” The arguments of Section II
show that we may as well assume all the coefficients are real.

VI. COMPUTING WORD LENGTH AND ADDITIONS PER CYCLE

To realize the cyclotomie filters in hardware with perfect arithmetie,
the necessary amount of memory and adder complexity must be pro-
vided. We describe here how to estimate the word length and the rate
of additions required to implement a cyclotomic filter with a weighting
function. It shall be assumed that all operations are performed in
binary form. The number of binary bits required to store each z, is
called the word length w of the system. For generators that produce a
signal approximating a sinusoid, the word length required will depend
on the accuracy of approximation needed. When the filter is used as a
tone detector, the word length required will depend on the duration of
operation, since the signal level tends to build up, especially at fre-
quencies close to any resonant frequency (Fig. 7). The signal level, of
course, does not uniquely specify the minimum word length. Even
though for storing z, we may need only w bits, it is conceivable that
during the computations numbers greater in magnitude than x,, which
need more bits for storage, could arise. To perform operations in a
serial-multiplexed fashion, it is desirable to have uniform word length
for all operations in the feedback loop of the filter. Hence, the word
length will have to be increased to accommodate any number en-
countered during the computations. However, for the filters considered

40
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Fig. 7—Growth of output.
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in Table II, it is possible to arrange the computations in such a way
that the word length is determined by the maximum magnitude of .
In general, there are a finite number of ways in which the additions
involved in the filter can be arranged. By simulation of the different
arrangements, the word length required can then be determined.

There are two possible ways of implementing the cyclotomic filters
as generators. The first is to generate the impulse response (19); this
is generally sufficient (see Table I). In this case, the weighting function
(13) shapes the effect of this impulse to simulate the initial conditions
o, -+ +, T4_1 Of the tone being generated. As the input is zero after the
initial pulse u, = 1, the weighting function need only be used during
the first d + 1 steps of the filter. Let m be the largest number in the
pulse train y, of Table I, and let [[x]] be the smallest integer larger
than z. The word length necessary for perfect arithmetic is at least
w = [[logzm]] + 1 and, for the filters considered here, w is also
sufficient. (We add 1 for a sign bit.) This word length is shown in
column B of Table II.

However, rounding off in the weighting function introduces errors
in the effective initial values of the signal. If this approximation is not
sufficiently good, then the initial conditions of the filter zo, - - -, 241
can be set as accurately as needed, and then the filter is operated with
the feedback loop alone. In particular, one can set the initial conditions
of the filter such that |2, — sin 2rn/p| < 2™ (n =10, -+, k — 1)
where sin 2rn/p is the desired signal. One can then compute the mini-
mum word length required by simulating the filter for one period. In
all cases of interest here, the word length including sign is (m + 1)
for m < 12. Hence, as an example, the cyclotomic filter of order 30
can generate a sequence (z,) such that |z, — sin 2wn/p|< 271 if
the initial conditions are set such that |z, — sin 2mn/p|< 2710
(n=0, ---, 7), using a word length of 11.

To determine the number of binary additions per period of the filter
(i.e., per cycle of the fundamental), one counts the number of bit
additions per step. If m denotes the number of additions per step, then
pmw is the number of binary additions per eycle, where p is the period
of (22) and w the word length used in the feedback loop (see above).
When the generator is implemented in the first way (using an initial
pulse and the weighting function), the number of additions is shown
in column C of Table II (not including those necessary in the initial
d 4+ 1 steps for the weighting function). When the generator is im-
plemented in the second way (setting the initial conditions), the num-
ber of additions ean be computed by multiplying the value in column C
by w/w’, where w is the word length chosen and ' is the corresponding
word length from column B.
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When the filter is used as a detector, we assume that the input to the
filter is a sequence which only assumes the values +1 and —1. This is
true, for example, when the analog signal to be detected is either hard-
clipped or delta-modulated. In these cases, it is advantageous to apply
the weight function to the input sequence u. rather than to the se-
quence & since, in general, x, can assume many values other than +1
and — 1, computations involving the weighting function are simplified
if they are performed on the input (see Section III). In fact, applying
the weighting function to the input is so simple arithmetically that it
can be implemented with read-only memory. On the other hand, if
read-only memory is not used and one wishes to save on computations
by checking the threshold (max {z.}) only in the last cycle of the filter
(with respect to its duration of operation for detection), then the
weighting function is best implemented as in Section III, on the output
of the feedback loop. Then the filter can be run during all but the last
cycle, without computing the weighting function.

When the weighting function is applied to the input, the filter is
described by

d

Up = 2 Cilbn—i (24)
1=
k

Tn = Z Al p—i + Un,y (25)

=1

where u, is the input into the filter and v, is the result of the weighting
function. Figure 8 describes this filter.

For the filters in Table I, the effect of rounding c; to the nearest
integer is slight. Hence, it is a fortiori suitable to round off
vn = ¥ cilin_; to the nearest integer. Therefore, since the only values

| X Xp2 f—eeipr o o 8 ——pf Xk
3 az ay
-
XFI
Co (o8 Cq
U, — U, > U i | o o o —p Ug4

Fig. 8—Implementation of the weighting function at the input.
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assumed by u; are =1, it suffices to have for v, a word length of
w = [[logz {3 |ei|}]]+ 1 (where {x} is the integer closest to x and
[[x]] is the smallest integer larger than z; 1 is added for a sign bit).
The sequence v, can then assume any value between — {3 |¢:|} and
{X |ei|}. With d as in (24) and w as above, implementations of the
weighting function with read-only memory then requires 2¢*! w memory
bits. The respective values for this are shown in column D of Table II.
When a bank of such tuned filters is used in one receiver (for example,
in a Touch-Tone® system such as described in Ref. 3), all the filters
could use one read-only memory for the weighting functions. Also, by
increasing w, we can make the round-off error as small as we wish.

To determine the word length for use in the feedback loop of the
detector, the maximum signal level can be determined by using an
input u, of the same frequency as the resonant frequency. Since the
impulse response [see (19)] of these filters is periodic and of the same
period as the resonant frequency, the latter produces the maximum
signal level sup,sxy 2., for duration of operation Nr. Let this maximum
be M. The word length required should then be at least [[logs M ]] + 1.
For all the filters considered here, [[log: M 1] + 1 is also sufficient.
The number of M, of course, is determined by N. If the cyclotomic
filter is of period p (i.e., Theorem 1 is F,), then the filter runs through
N /p periods, corresponding to N /p cycles of the fundamental. Calcula-
tions have been made for two values of N/p: 7 (the number of cycles
computed in Ref. 3 to be necessary for Touch-Tone interchannel rejec-
tion), and 10 (a more uniform point of reference).

In Table II, column E shows the word length required in the feed-
back loop for the indicated durations, when the weighting function is
computed on the input as in (24), implemented equivalently with or
without read-only memory, producing the filter response (25).

When there is no weighting function on the input, the word length
required is shown in column I (of course, a weighting function may be
applied to the output as in Section III).

The number of binary additions per cycle for the detector is de-
termined in the same way as for the generator; the number is pmw as
defined above. These numbers are shown in columns G, H, and K of
Table II. Column G shows the number of binary additions per cycle
in the feedback loop when read-only memory is used to implement the
weighting function, applied to the input as in (24). If read-only memory
is not used, then the weighting function has to be computed. Since the
numbers involved in the computation of the weighting function [when
implemented as in (24)] are generally smaller than those in the feed-
back loop, the word length required for their computations are smaller.
Hence, one can use two different adders, one for the weighting function
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Table |l — Complexity of some cyclotomic generator-detectors

Detector: 7 Cycles Detector: 10 Cycles
Generator
IUEmﬁ;
mpulse Word Word
Response Ler?gth Aggs/Cyc!e Ler?gt.h Acfld.s/Cycla
for (za) T (zn) for (zn) or (zn)
o o
A RER R AN
= - _ = .t £ o et 4
BleS|ge| % |Ss|ss| &g | s | ° |®s|%s| @3 | %3 |
E |85 |85 @ s | z2| @& g & 5 | g2 @2 =) H
£ |BI| <0 | & |BS|SE| BE | BE £ |BE|RES| BE | B8 =
A B C D E F G H K E F G H K
6 2 24 | — 6 6 72 72 — 7 7 84 B4
8 2 16 7 5 56 40 112 8 6 64 48 128
] 3 54 | 128 8 5 144 90 360 8 6 144 108 360
12 3 72 24 8 6 192 144 288 9 7 216 168 324
15 3 270 | 512 9 7 810 630 810 10 7 900 630
16 3 48 | 640 9 5 144 80 1276 10 6 160 96 1440
18 3 108 | 128 9 6 324 216 1134 10 7 360 252 1260
24 4 192 | 640 10 6 480 288 2160 11 7 528 336 2376
30 4 720 | 768 11 8 1980 1440 3630 11 8 1980 1440 3630

and one for the feedback loop. Using this arrangement, the number of
additions per cycle for calculating the weighting funection is shown in
column K. The number of binary additions per eycle when no weighting
function is used is shown in column H. This, of course, applies when
the weighting function is applied to the output as in Section III (but
does not include the number of additions necessary for the weighting
function). To calculate the number of additions when the weighting
function is applied to the input, but read-only memory is not used, add
columns H and K.

Column A indicates the respective eyclotomic filters deseribed by
their periods.

One important consideration that affects the choice of the order of
cyclotomic filter is the noise level at the input to limiter (together with
the noise in the limiter). This affects the output of the limiter when the
signal level is low. One could divide the period of the signal to be
detected into regions where errors could affect the decision about the
sign of the signal, and regions where no errors will oceur. Those sam-
pling instances where errors could occur lie in regions where the absolute
value of the signal is small. Suppose these regions are intervals of
length e around the zero crossings of the signal. The worst case cor-
responds to a phase shift of the signal with respect to the sampling
interval which maximizes the number of samples in the error regions.
For ¢ = 1/63 (corresponding to approximately 20 dB s/n), there are
at most two samples per period that are subject to errors for all the
filters we have considered here. Hence the ratio of error-susceptible
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samples to error-free ones decreases in this case as the period p in-
creases (for p = 30). This ratio indicates the perturbation of the thresh-
old one has to make in order to compensate for errors in the limiter.

VIl. APPLICATIONS

Possible uses for the systems described in this paper have been
mentioned in Section I. In particular, a scheme is proposed in Ref. 3
for utilizing eight eyclotomic filters as channel detectors in a Touch-
Tone receiver.

Another application of cyclotomic filters may be Fsk. As described
earlier, by selecting the initial conditions of a cyclotomic filter of
period p, one ean approximate uniformly sampled values of a sinusoid
of period p, i.e., sin 27n/p. By changing the clock rate of the filter, one
can shift the frequency of the sinusoid to any preassigned value.
Hence, when using the filter as a generator, one can shift the clock rate
to shift the frequency. This method of shifting frequencies does not
introduce any ‘“‘discontinuities’’ in the signal. If, instead of changing
clock rate, one were to change the coefficient of a filter, then the filter
has to be reinitialized to have constant amplitude, thus producing a
discontinuity in the signal. In a similar manner, when using the filter
as a detector, one can shift the resonant frequency by shifting clock
rate. Hence, with the same filter, one can generate and detect both
tones used in a typical Fsk arrangement. Furthermore, cyclotomic
filters have infinite @, allowing for the possibility of incereasing signaling
rate above the presently used systems with finite Q.
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