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A two-dimensional receiver siructure has been proposed, incorporating
two innovations: passband equalization, which mitigates intersymbol
interference, and data-directed carrier recovery and demodulation following
equalization, which enables compensation of carrier frequency offset and
phase jitter, but does not require transmission of a separate pilot tone with
the data signal. The receiver is fully adaptive; the adjustment of the equal-
1zer tap coefficients and of the estimate of the current channel phase shift is
based on a gradient algorithm for jointly minimizing the mean squared
error with respect to those parameters.

In this paper, we analyze the dynamic behavior of the deterministic
gradient algorithm (where channel parameters enlering into the gradient
expression are assumed known in advance). The corresponding estimated
gradient algorithm (where these parameters are initially unknown) has
previously been studied experimentally, but is not treated here.

The first part of the present study concerns system start-up (or transient)
response when the channel's phase shift is fixed. Examination of the analyt-
ical solution leads to the qualitative conclusion that, if the equalizer lap
adaptation coefficient 8 is small relative to the phase-tracking coefficient a,
the added phase estimation fealure does not strongly affect the start-up
behavior of the passband equalizer under typical operating conditions.
Indeed, if the equalizer tap coefficients all start at zero, their evolution in
the deterministic gradient algorithm is completely unaffected by the phase-
tracking loop. )

The second situation analyzed is the steady-state response of the system
to a constant carrier frequency offset. In this case, the phase-tracking loop
18 found to reduce the resulting rate of rotation of the equalizer taps to about
B/ (a + B) of the original frequency offset. As a result, the degradation in
system mean squared error due to frequency offset is typically quite small.

The final analysis is of the response of a linearized version of the
receiver structure to sinusoidal phase jitter. When the channel’s linear
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distortion is not too severe and the coefficient B s small, the system mean
squared error owing to phase tracking error is found to approximate that
of a simple, first-order, phase-locked loop.

I. INTRODUCTION

The combination of adaptive equalization and decision-directed
estimation of a fixed carrier phase offset in suppressed-carrier PAM
modems by means of a gradient algorithm has been suggested by
Chang' and by Kobayashi,? the latter also including adaptive timing
recovery. The receivers contemplated in those papers demodulated the
received data signal prior to equalization and carrier phase estimation.

Reference 3 describes an alternative receiver configuration for two-
dimensional modulated data transmission systems, combining equaliza-
tion and carrier recovery. This receiver’s distinction is that it employs
a passband equalizer* whose reference signal consists of receiver
decisions amplitude-modulating a carrier whose phase shift is the
receiver’s estimate of the channel phase shift. Following the passband
equalizer is a demodulator which compensates for the channel’s phase
shift (which may be time-varying as a result of frequency offset or
phase jitter).

The receiver's estimation of the carrier phase shift is based on a
decision-directed gradient algorithm for estimating a fixed phase shift,
as proposed in Refs. 1, 2, 5, and 6. An advantage of the demodulator
following the equalizer is that the demodulator’s phase reference is
delayed relative to the actual channel phase shift by only one symbol
interval instead of by the entire equalizer delay as in the traditional
“baseband” receiver configuration. This fact, plus the provision of a
sufficiently large gain coefficient in the phase-tracking gradient algo-
rithm, makes possible tracking and compensation of typical conditions
of frequency offset and phase jitter that may occur on voiceband
telephone channels. Computer simulations, reported in Refs. 3 and 7,
have confirmed this capability.

In this paper, we study the dynamic behavior of the gradient algo-
rithm for jointly adjusting the equalizer tap coefficients and the phase
estimate in each of the following situations: (z) start-up (transient
response) for a fixed carrier phase shift; (7) steady-state response to a
frequency offset ; (477) steady-state response to sinusoidal phase jitter.
Throughout, we consider only the deterministic gradient algorithm;
that is, receiver decisions are assumed perfect, and the gradient of the
mean squared error as a function of equalizer tap coefficients and carrier
reference is assumed known. A stochastic gradient algorithm, which
would be used in practice, has been simulated,®” but is not treated in
this paper.
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Il. SYSTEM EQUATIONS

The transmitted two-dimensional modulated data signal is assumed
to be of the form

s(t) = Re (X Ang(t — nT)ewset},

where A, is a two-dimensional (complex-valued) data symbol trans-
mitted in the nth symbol interval, g(f) is a band-limited baseband
pulse waveform, 7' is the duration of a symbol interval, and f, is the
carrier frequency. The set of possible discrete complex values that each
A, can assume constitutes the signal constellation. Quadrature ampli-
tude modulation (QaM) and digital phase modulation (pM) systems are
familiar examples of two-dimensional modulation systems. We shall
assume that successive data symbols are uncorrelated; i.e.,

(A A0 =1 forn = m
=0 otherwise.

Figure 1 shows the receiver structure. The received signal, after
transmission through a noisy, dispersive channel which may introduce
a slowly time-varying phase shift, is passed through a phase splitter
to produce parallel in-phase and quadrature components. These parallel
waveforms can be represented as a single complex waveform that is
sampled and passed on to a passband transversal equalizer with, say,
2N + 1 complex-valued tap coefficients. In the nth symbol interval,
when a decision is to be made on the nth data symbol, the latest
(2N + 1) complex-valued samples stored in the (2N + 1)-tap pass-
band equalizer can be represented by the complex (2N + 1)-dimen-
sional vector R.e*», where 6, is the channel phase shift (assumed
quasi-stationary in the nth symbol interval). A sequence {6,} changing
at a constant rate with time is an example of frequency offset, while
{0} varying randomly or quasi-periodically constitutes phase jitter.
Typically, the change in 8, in one or two symbol intervals is so small
as to allow us to neglect the phase-to-amplitude modulation con-
version effected by filtering the sequence of incidental frequency-
modulated components {e/n}.

A
exp[—j(2nf.nt +8,)]

RECEIVED
SIGNAL | pHASE PASSBAND
SPLITTER — > EQUALIZER | QUANTIZER [——2>
Relfn Qn Ya A,

Fig. 1—Two-dimensional receiver.
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The (2N + 1) complex equalizer tap coefficients in the nth symbol
interval are denoted by the complex (2N + 1)-dimensional vector
C.= (c_y, **+, €0, -+, cx).* The symbol * will denote transposed
complex conjugate throughout. Then the nth complex equalizer output
is

Q= CiR e, (1)
the real part being interpreted as the in-phase component and the
imaginary part as the qua.drature component.

The receiver's estimate of 8, is a real quantity denoted by 8., and
the demodulator output is written

Y, = Que-iCrfenT+in), (2)

This quantlty is passed into a simple quantizer to produce A », which
is the receiver’s decision on A, Based on this decision, the complex
reference signal used for updating the equalizer taps and the phase

estimate is
Qn — Anefﬂl'fe"T'Hn)_ (3)

We define the properties of the channel in terms of expectations
(denoted by ( )) with respect to the ensembles of information symbol

sequences and additive noise samples. The complex impulse response
X is defined by

X = gy (AR e erer. (@)

iA (4.1
The positive definite Hermitian @ matrix of the channel is defined by
R.R; 5
= AT RRD: (5)
The normalized mean squared error in the nth symbol interval is

defined to be
1

T (| Queroeramio — 4,9, (60)
which, by virtue of (1), (4), and (5), can be rewritten as
=1—-X*@'X + 7vn, (6b)

where v, = E;QE, = 0 is the excess mean squared error and E, is a

tap-error vector, )
E, = C,ei®n 2 — @71X. (7

Since @ is positive definite, the value of e, is a positive mlmmum,'r

1 — X*@'X, when the equalizer taps C, and phase shift estimate b,

. T The positive quantity X*@'X is therefore less than unity, a fact which is exploited
in the appendix.
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are adjusted so that E, = 0, or
C.efn = @'Xen, (8)

This equa.t.mn is also the condition for the gradients of e, with respect
to C. and 8, to be jointly zero; it is satisfied by an infinitude of points
(Cy, 85).

Thus, a gradient algorithm can be used to adjust the tap coefficients
C. and phase estimate 8, recursively toward optimal values. The
equations governing the evolution of {C.} and {6.} are?

Copr= (I — ga)C. + ,BXe—J("n—‘n) (9)
and
§n+1 = an + alm [C;Xg—ﬂin—qn)]j (10)

where I is the identity matrix and g and « are positive gain coefficients.
These equations [or the equivalent equations (13) and (14)] form the
basis for the results in this paper.

In practice, X and @ would generally not be known in advance, and
the following stochastic gradient algorithm,? involving the equalizer in-
puts R,e#» outputs Q., and modulated decisions (., would replace
the deterministic gradient algorithm described by egs. (9) and (10).

Coy1=C, — IBRﬂBJa"(Qn - Qn) (11)
Im (Q.0). (12)

duss = b + T
These are coupled stochastic difference equations, since successive
vectors {R,] are correlated random variables. Simple stochastic
gradient algorithms have been studied by Widrow.® The application
to equalizer adaptation, where no phase recovery is involved and under
the assumption that the {R.} are uncorrelated, has been studied by
Ungerboeck,® by Gersho,® and by Gitlin, Mazo, and Taylor." The
extension to correlated vectors {R.} has been introduced by Daniell.?

That the algorithm specified by (11) and (12) converges and can
perform satisfactorily is confirmed by the computer simulations re-
ported in Refs. 3 and 7. Analysis of the stochastic gradient algorithm is
complicated by the possibility of a cycle-slipping phenomenon as in
phase-lock loop systems. References 5 and 6 deal with continuous-
time, decision-directed, phase-locked loops in the absence of adaptive
equalization.

However, insight can be gained by studying instead the deterministic
gradient algorithm of (9) and (10), since the estimated gradlent algo-
rithm can be interpreted as implicitly performing the averaging in-
volved in determining X and @, provided the signal-to-noise ratio is
high and the gain coefficients a and g are sufficiently small.
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Using definition (7), we can rewrite the coupled difference equations
as
Eni1 = (I — BQ)Enei@rti—tnr 4 @-1X (eiBnti=ant) — 1) (13)

and
Any1 = aIm (EX), (14)

where
Ar|.+1 - 6n+1 — 0, and Bn+1 = 0n+1 = 6“.

lll. SYSTEM START-UP WITH FIXED CHANNEL PHASE SHIFT

In this section, we study the behavior of the deterministic gradient
algorithm during start-up, assuming the channel’s phase shift is fixed:
6, = 0. General theorems tell us that, if the initial error and the
coefficient of the gradient algorithm are small enough, convergence is
guaranteed.!* However, we are interested in sharper results for the
specific problem at hand.

The solution of (13) and (14) will depend on the initial choice of
E, (or Co) and 8, It is interesting to consider first the special case
Co = 0, the all-zero vector; i.e., E¢ = — @ 'X. In this case,

Ai = —alIm[X*eX] =0,
since @ is Hermitian, and
E,=—-({—-8a)a'X.
Continuing, it is easy to show that
A, =0 for all n

and that
E.= - —pga)ya'X. (15)

Thus, at least for this special all-zero starting condition, the estimated
carrier phase shift 8, does not change at all and the start-up behavior
of the deterministic algorithm is exactly the same as that of the pass-
band equalizer alone.*

Let us now consider the more general case, when E, is not necessarily
equal to the right-hand side of (15) for some n = 0. We remark that
the mathematical formulation of this start-up situation will be basi-
cally the same as that of a system transient caused by an abrupt change
in the channel’s carrier phase shift.

Expression (6b) for the normalized mean squared error involves the
positive definite quadratic form E;@E,. = v.. We can bound this term

1 There is no loss of generality in assuming a fixed gha.sa shift of zero, since any
nonzero fixed phase-shift factor ¢/? can be incorporated in the complex channel im-
pulse response X,
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and study its evolution by writing down a recursive expression for it
and upper-bounding the right-hand side of that expression. Using (13)
with A.;1 = 0 for all n, we can write

yui1 = EX(I — B@)G(I — BR)E, + X*@ X |efrn — 1|2
+ 2 Re {Ei(I — BA)X(1 — e~dwn1)}.  (16)

The right-hand side of expression (16) is upper-bounded in the ap-
pendix. The derivation of the bound requires the following assumptions
about the channel and algorithm parameters.

Assumption (1): The initial value vo = Eg@E, is less than unity. This
condition is fulfilled, for example, if Co = 0; i.e., Ey = —@™'X, for
then yo = X*@'X < 1, since the positive quadratic form X*@~'X,
which is one minus the minimum mean squared error, must be less
than unity.

Assumption (2): @ < ao, where a is the solution of

ao(l + Vyo) = 2 sine (ao\f%),

where
. sin @
sinc 8 = 5
Assumption (3): Let the maximum and minimum eigenvalues of the
positive definite Hermitian matrix @* be denoted respectively by Amax

and Muin. Then the gain coefficient 8 must satisfy

ZRmi):\
Mauax(1 + €)’

where €2 is defined in terms of « by

0<B <

a(1+m+§)=25inc(aﬁ): o < ap.
0

Figure 2 illustrates the solution of the equations defining e§ and a.
For example, if we assume a = 0.5 and yo = 1, then oo is 0.88 and
e is 0.543.

The upper bound obtained in the appendix is

Yntl = E:+1a'En+1 é E:GIEH - 2.BE;:(i'zEﬂ
4+ 82(1 + &)E,&3E.. (17a)

An explicit bound on 4., is obtained by first weakening (17a) using
(41) of the appendix to obtain

(1 - 2.6)\min + .32(1 + Eg))\rznnx)‘yﬂ: (17b)

IIA

'Yn+1
so that
Y n41 = (1 - 2ﬁ}\min + 62(1 + e%)kfnux)ﬁ'YD- (170)
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Fig. 2—TIllustration of the definitions of & and aq.

In the absence of phase tracking, « = A, = 0, and the mean
squared error at step n + 1 of the deterministic gradient algorithm is
obtained directly from expression (15)%:1014 as

Y1 = Z' Ai(1 — B Buil?, (18)

where the summation is over all the eigenvalues of the matrix @&, the
{N\:} are the set of eigenvalues, and &, is the inner product of E, with
the normalized 7th eigenvector.

Comparison of the upper bound (17¢) for the joint equalizing and
phase-tracking receiver and the exact expression (18) for the equalizer
alone yields some insight into the penalty in convergence rate imposed
by the additional phase-tracking algorithm. Consider an example where
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all {\;} (and therefore Ama.x and Amin) are equal to a common value A.
This would represent the case of a channel with delay distortion but
not amplitude distortion (flat Nyquist equivalent frequency charac-
teristic). Then inequality (17c¢) becomes

Yntl = [(1 - ﬁk)z + ﬁzhzegjﬂ‘yﬂt (19)

and, recognizing that
Yo = Z Rilguilz,

we can write equality (18) for the case of no-phase tracking as
Ynrr = (1 — BNy (20)

In practice, the equalizer adaptation coefficient g is small (B8 < 1/1),
to minimize the mean squared error resulting from a practical stochastic
gradient algorithm.® Thus the right-hand sides of (19) and (20) should
be nearly equal, and we conclude that an ideal gradient algorithm for
joint phase tracking and equalization should not converge appreciably
slower than the equalizer adjustment algorithm alone. An exact
analytical evaluation of the effect of phase tracking on the convergence
of a practical stochastic gradient algorithm for a severely distorted
(Amax >> Ami) channel remains elusive. However, the results of this
section suggest that the influence of the phase-tracking parameter
in the convergence is relatively small. This conjecture is bolstered by
the experimental results summarized in Figs. 3a and 3b. A 9600-b/s
two-dimensional data transmission system was simulated, employing
the stochastic gradient algorithm described by egs. (11) and (12).
The transmission channel, whose frequency characteristics are shown
in Fig. 3a, was regarded as severely distorted (it violates the minimum
standard for private line voiceband channel data transmission). The
plots of measured mean squared error versus time for a = 0 and for
a = 0.2 shown in Fig. 3b are very similar, indicating that little penalty
in convergence rate is to be ascribed to the use of joint decision-
directed phase tracking.

IV. CASE OF FREQUENCY OFFSET

In this section, we study the behavior of the system in the presence
of frequency offset by obtaining steady-state solutions to egs. (13) and
(14) when the channel phase shift increases linearly with time; ie.,
A, = 2xAT, where A is the frequency offset. In this case, eq. (13)
becomes

En= (I — Ba)Enej(3n+l.—2fAT) + a—lx(ei(ﬁnﬂﬂmm —1). (21)
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Fig. 3a—Frequency characteristics of the simulated channel.

A steady-state solution to (21) and (14) is obtained by substituting
the trial solution,
E,=E
An = 2r(A 4+ 8T,

and then solving for the fixed quantities E and 8. The substitution

results in
E = (e?77 — 1)M1@ X, (22)

where M is the matrix
M=1— e®T(] — B@R)

and
27(A + 8)T = aIm (E*X).

= aIm [(e?"T — 1)X*@-"M*—X]. (23)

It is clear from the definition of M that the eigenvectors {u;}¥y of @,
which form a complete orthonormal set, are also those of M. Thus,
expressing the vector X as a linear combination of u,, we write

N
X = Z G{yi,
i=—N
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NO PHASE TRACKING (a=0)
----- WITH PHASE TRACKING (a = 0.2)

RELATIVE MEAN SQUARED ERROR

0 100 200 300 400 500 600
TIME IN SYMBOL INTERVALS

Fig,. 3b—Convergence with and without phase tracking (ideal reference; all
equalizer top coefficients start at zero).

we can rewrite (23) after a little algebra as
N |G|
Ly NI = Tl — pr)]’

_ . N IG.‘l2
= —afsin 21r6Ti=):_:N 1 — 2(1 — 8\) cos 27T + (1 — BN)?’

2r(A+ 8)T = aIm[ (e 27T — 1)]

(24)

where {\;}{._y are the eigenvalues of @ and are positive and real.
The excess mean squared error is similarly given by
v» = EnQE, = [T — 1|2X*@M*aM'a'X
2(1 — cos 27T
& 1G4 ,
=N ?\[[1 —2(1 — B\;) cos 278T + (1 — B?\i)zj
Equation (24) is a transcendental equation whose solution & is

clearly not zero in general. The quantity  may be interpreted as a bias
in the receiver’s estimate of the frequency offset. This ‘‘residual”

(25)
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frequency offset then must be compensated for by a rotation of the
equalizer complex tap coefficients at rate § Hz.

For purposes of illustration, we again consider only a special case
of a “good”’ channel, for which all \; = 1 and 3_; |G:[* = 1. Then (24)

becomes

3 —af sin 2787 .
2r(A + )T = B+ 2(1 — B)(1 — cos 27xéT) 20)

Typically, 8 < a < 1; for example, 8 = 0.001 and & = 0.2. The left-
and right-hand sides of (26) as functions of 2x8T are sketched in Fig. 4.
Apparently in the region of intersection, 2x87 < 8 and sin 2xoT
2~ 2787T. Solving (26) with this approximation yields

—27ra

oT.

2r(A + )T =~

Thus
~ B8
LR T 5 (27)
and the necessary rate of rotation of the equalizer taps has been reduced

by a factor of 8/(a + B), which is about 1/200 for a typical case,
a = 0.2,8 = 0.001. The corresponding normalized excess mean squared

error is
. ~ (2w8T)* (27xAT)? .
EnGEw N G T  (a + B)° + (2rAT) (28)
If A=1 Hz a = 0.2, 8 =0.001, T =1/2400 s. This amounts to
about 10—4.

V. STEADY-STATE SINUSOIDAL RESPONSE

The phase jitter process {6.} that occurs in telephone channels is
typically quasi-periodic. It is thus of interest to determine the steady-
state solution of the coupled difference equations (13) and (14) when
the driving term {6} is sinusoidal.

It is convenient at this point to rewrite eqs. (13) and (14) further
in terms of eigenvalues and eigenvectors of the matrix @. Since @ is
Hermitian, its eigenvalues {A\:;}}L_y are positive real and its eigen-
vectors {w:}}~_y form an orthonormal set which is a basis in 2N + 1-
dimensional space. Using these properties and expressing the vectors
E, and X as linear combinations of the {u:},

N

En = Z gniui
i=—N
N

X= 2 Gy
i—N
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—aff sin x
2 +2(1-B)(1— cos x)

S~ 27AT #x

///, 0 x
/
7/
4
SOLUTION .~
x=2x6T

Fig. 4—TIllustration of the solution of
—ef sin 2787 .
82+ 2(1 — B)(1 — cos 2w8T)

2 (A + 8)T =

we can write (13) and (14) as

Eninyi = (1 — BA)) EnieiBrnti—tnsn 4 % (eiBnti—tn+y — 1)
’ ~N=i<N (29
and

Aﬂ+l = .=§_N Im (g;{G,'). (30)
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We now make the following change of variable in (29) and (30).

Define .
g:,iG{ij"q") = Uni + jvni- (31)

Then we can write the real and imaginary parts of (29) as

Gi|? - ”
U(ni1)i = 1 - BA)Un: + % [COS (Bn — 6,) — cos (3n+1 - 9n+1):|;
—N=Z2i1=N (32
and
|Gil® - 5
v = (1= BN)oai + = [sin (0 — 6.) — sin (Baya — 0ni1)]
—N=7{=N, (33

and we can write (30) in the form

N

foy1 — 8o = a _ZN [v,ico8 (B, — 6.) — unssin (6, — 6.)].  (34)
Equations (32), (33), and (34) are a set of nonlinear coupled differ-
ence equations. In particular, eq. (34) is reminiscent of the equation
governing a discrete-time, first-order, phase-locked loop. We shall solve
linearized versions of (32), (33), and (34). Assuming the steady-state
error angle (8, — 8,) for n >> 1 is very small, we replace cos (6, —8.)

by 1 and sin (8, — 6.) by (6. — 6.). Then (32) becomes

Ungni = (1 — BA)Uni,
= (1 — BN ug, —N=7=N,

which approaches zero in the steady state (assuming 8 < 1/X;for all 7).

Thus in the steady state we are left with the linearized versions of (33)

and (34):

|G:|*
A

(0n+1 - 871 - an-i-l + éu)
—N=7i=N (35

Vg = (1 — BA)vas +

and

N - N
9n+1 —_ Bn = o Z Vni. (36)

i=—N

Equations (35) and (36) are linear and can be solved for a given
sequence of channel phase shifts {6.}. We consider the case where the
phasge jitter is sinusoidal with frequency w rad/s; i.e.,

8. = Re (Je®T),
where J is a complex constant. The solution for {v,:} is also sinusoidal :

b= Re (Viem?). —N SisN. (87)
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Substitution of this trial solution in (35) and (36) yields a value of
V. after some algebraic manipulations.
J(1 — e~T)|Gy?

Vi= 5 .

)\,‘(1 - ﬁ?\.‘ - GJI“’T) (1 — o EN Ilez/[(l - ﬁ?\k — e"“T)Rk])

k=—
(38)

It follows from the sinusoidal variation of {v.:}iZ_» that the error
angle {6, — 0.} and the equalizer tap coefficient vector C. also vary
sinusoidally with frequency w in the steady state.

The excess time-averaged mean squared error can be calculated from
expression (31), (37), and (38).

Y= ('Tn) = (E:GE,.)

N
2 (] Eui]®
i=—N

[J[2]1 — a7 |28,

= 211 _ ejmT _ CESglz’ (39)
where
- |Gi|*
by = 1-=E_N ML — Bh/ (1 — e=T)]?
and
_ ¥ |Gi|?
Ba = .--Z-N N[ — BN/ — enT) ]
The total mean squared error is, from (6b),
() =1—X*aK + v
N |2 2|1 — giwl|2
- [Gil* | |T[2[1 — enT|%8, .

I{SZ_N }\" 2|1—3’-NT_QSZ|2.
Typically, if the overall mean squared error is close to zero,

NG‘_2
& e

~1 and BN <K |1 — e®T|.
i==N N
Then the excess mean squared error in (40) is approximately

|J[2[1 — en)?

2|1 — e T — af?

This expression corresponds to a previously derived, approximate, mean
squared error due to sinusoidal jitter in the absence of noise [see eq.
(39) of Ref. 3]. That equation, valid for a first-order, phase-locked loop,
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was derived ignoring the coupling between egs. (13) and (14) and
assuming perfect equalization. Calculated curves of mean squared
error versus « are found in Ref. 3.

VI. CONCLUSIONS

Previous studies have shown that the functions of joint passband
equalization and data-directed carrier recovery in a QAM receiver can
be formulated as a gradient search algorithm. If the channel parameters
entering into the expression for the gradient of the mean squared error
are known, it is termed a deterministic gradient algorithm. In this
paper we have analyzed the start-up behavior of the deterministic
gradient algorithm and also the steady-state response to frequency
offset and to sinusoidal phase jitter. The more practically motivated
stochastic or estimated gradient algorithm, in which the channel
parameters are initially unknown, has been studied experimentally and
awaits further analytical study.

It was shown that, under typical channel conditions, when the
carrier phase offset is fixed, phase tracking does not greatly slow down
the start-up behavior of the deterministic gradient algorithm, at least
provided the equalizer adaptation coefficient 8 is much less than that
of the phase estimator e.

The phase estimator was first proposed as an adjunct to the pass-
band equalizer, to mitigate the effects of too-rapid tap-coefficient
rotation in the presence of channel frequency offset. It has been shown
that frequency offset still causes tap rotation in the equalizer-plus-
phase estimator system, but that the rate of rotation is tolerable, being
on the order of 1/[1 + (a/8)] times the amount of frequency offset.

The steady-state response of the linearized system to sinusoidal phase
jitter was obtained. When linear distortion in the channel is not severe
and the coefficient 8 is small, the system mean squared error due to
tracking error approximates that of a first-order, phase-locked loop,
as was assumed in an earlier paper.

APPENDIX

We wish to upper-bound the right-hand side of (16), given assump-
tions (1), (2), and (3) of Section III.

E . GE.. = E:(I — 8@)a(l — BR)E, + X*@'X|efnn — 1|2
+ 2 Re {Ej(I — BA)X(1 — e~Bwn)},  (16)

where A,.; was given by (14).
The first term on the right-hand side can be written

E.QE, — 28E,QE, + f°E,Q°E..
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The matrix @ is positive definite and Hermitian; hence,
—E!@E, = — (Q*E,)*@(Q'E,) £ —\uinE,QE,,

where Amin is the minimum eigenvalue of @®. Similarly, E,GE,
= M:ErGE,, where Anax is the maximum eigenvalue. Thus we note
for future reference that the first term in (16) is bounded as

E:XI —Ba)a(l — BR)E, = (1 — 26Mnin + fmax) EZGE..  (41)
The second term in (16) is
X*@ X |ednt — 1|2 < sin? %i'—l ,
since X*a~X = 1. Upper—boun(iling sin? (An1/2) by (A.41/2)? and
substituting expression (14) for A,;:, we have
X*@-'X |edrrt — 1|2 < o2[Im (E;X) (42)
The third term in (16) can be written as the sum of three terms.

At

2 Re {Ei(I — @)X (1 — edwh)} = 4 Re [Ex(I — B@)X] sin?

— 2Im (EiX) sin A,y + 28 Im (E;@X) sin A,,,.  (43)

As in the inequality (42), the first term in (43) is upper-bounded by
o?|En(I — @)X |[Im (EZX)T.

The matrix I — 8@ is Hermitian ; its eigenvalues are {1 — 8\;}, where
the {A\:} are the eigenvalues of @. Let Amax and Amin be the maximum
and minimum eigenvalues, respectively. By assumption (3), 1 — f\max
> 0 and thus I — B@ is positive definite. Therefore,

|Ea(I — Ba)X| = |Ea(I — ga)ytata(I — ga)iX|
< [Eia*(I — f@)@E, JI[X*a (I — Ba)@X]}, (44)
where we have used Schwartz’s inequality. Using the positive definite-

ness of I — g@ and @, we can further upper-bound the right-hand
side of (44) by

|Ef(I — BR)X| = (1 — BAnin)2(ERQE,)H(X*@'X)}

<
< (E.GE.)}, (45)

since the quantities 1 — BA\min and X*@~'X are less than unity. Thus
we have upper-bounded the first term in (43) by

4 Re (E}(T — B@)X] sin? 22! < 2(ELGE.)i[Im (EX) . (46)
2
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After substituting for A.,; using eq. (14), we can express the second
term in (43) as
—21Im (EX) sin A,y; = —2a[Im (E;X)? sine [« Im (E;X)], (47)
where
sin @

smcﬂ=~—8—-

The third term in (43) is
28 Im (E;@X) sin A, 1,

which can be upper-bounded, using (14) and the inequality [sin A|
< |Al, by

208(|E,GX|)[|Im (E;X)|] = ¢8| E,aX|*
2
+ % [Im (E;X)J*  for any arbitrary e,

where we have used the simple inequality
2
208AB < /A + % B

But

|Eq.gX |2 = | (Ezah) (e 1X)|?

= (E,@3E.)[X*eX]
< E,G%E,,
by Schwartz’s inequality and the fact that X*@a—X < 1.

Thus the third term in (43) is upper-bounded by

2
@6*(E,@°E,) + % [Im (E;X) T (48)

Finally, substituting (42), (46), (47), and (48) into the right-hand

side of (16), we have

Yupr = Enp QE. ., £ ELGE, — 28E,G’E, + 8*(1 + &)E,GE,
+ a®.[Im (E:X)T, (49)

where e is arbitrary and
& = a [1 + (EXGE.)} +;12] — 2sine [a Im (EXX)].  (50)

We make the following choice of e: € = ¢, where € is defined by (with
7o = E;GEy)

a (1 + Vyo + :—5) = 2 sine (aVyo). (51)
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Figure 2 is a sketch of the left- and right-hand sides of eq. (51) as fune-
tions of « for various values of e,. Equation (51) has a unique solution
with 0 < € < « aslong as 0 < a < g, where aq is defined by

ao(l + Vyo) = 2 sine (aoVyo).

Note also that, by assumption (3), the coefficient 1 — 28Amin
+ B®Amax Of E;QE, in the bound (41) is less than 1 and hence (49)
can be weakened to

E:,.GE.,, < E.GE, + Q. [Im (EXX) T (52)

Lemma: R. is negalive, and hence the sequence {yn. = E,QE,} is mono-
tone decreasing.

Proof: We first observe that the sine function in (50) defining &, is
even, positive, and monotone decreasing provided its argument’s
absolute value is less than . But its argument is

oIm (EX) < o| E;ataiX|.
This can be bounded, using Schwartz’s inequality, by
a(E,QE,X*aX)! < a(E,QE,)}

and so
— sinc [e Im (E}X)] < —sinc [«(ErQE.)]  for a(EnGE.)! < .
(53)
In particular,
aIm (EX) £ aVyo < 7
by assumption (1), and hence we can upper-bound ®. by
(Ptoéa(1+\['}7n+%)—2sinc(a\[;—o). (54)
0

According to our choice of ¢ = e, defined by (51), the right-hand
side of (54) is zero, and so ®, < 0. It follows from (52) that Yy = \[?o,

which is less than = by hypothesis. Thus ®, is bounded, using (53) and
€ = €, by ®; £ ®,, where &, is defined by

Gn = a [1 + v} + 1—3] — 2 sine (avd), (55)

and o = 0 by the definition of &. Now since Vy; < Vyo £ m,

—2 sine (ay}) < —2sine (ayd)

and so
Rl é R1 é Ru = 0.
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Similarly, from (52), v» < v: and by induction

Tné?n—lé"'é Yo

and all &, = 0.
Q.E.D.

Finally, since ®, is negative, we obtain the following recursive upper
bound from (49):

Yni1 = Enp1@En < ERGE, — 28E;G%E, + §*(1 + &)E.Q°E,. (56)
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