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In this paper, the problem is discussed of designing a signal other than
the standard impulse function to be used to test a digital system of limated
dynamic range. The consiraints on such a signal are that it must be all-
pass, of limited duration (approzimately), and peak-amplitude-limited
s0 as to utilize the limited dynamic range of the system as far as possible.
Stated another way, the goal is to spread out the energy in the stgnal as
much as possible to reduce its peak amplitude and therefore to be able to
pass higher energy signals through the system without clipping them. The
class of all-pass signals (obtained as the impulse response of a variable
order all-pass filter) was investigated for use as the test signal. The parame-
ters of the all-pass filter of a given order were optimized to give an all-pass
signal whose peak amplitude was the smallest possible. Filier orders from
first to eighth order were designed and investigaled. It was found that
reductions in the peak signal level of up to 11.2 dB (relative to the signal
level of an equivalent energy impulse) could be obtained for an eighth-order
all-pass signal. Interpolated versions of these all-pass signals showed that
the peak value of the interpolated waveform was only on the order of 6 dB.
Thus, the use of an all-pass signal, rather than the standard impulse, for
testing a digital system can result in about 1 bit extra dynamaic range.

I. INTRODUCTION

The problem of designing digital signals for testing (e.g., evaluating
the impulse response) digital systems is one which has received very
little attention in the digital signal-processing literature. This is be-
cause the impulse function is used as the standard test signal for most
systems. Although the impulse function is suitable for this purpose in
a wide variety of digital systems, there are cases in which the use of
the impulse function leads to problems. Generally, such systems are
those that have limited dynamic range—e.g., digital hardware im-
plementations of a system, or fixed-point, finite, precision, software
implementation of a digital system. In this paper, the problem is con-
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sidered of designing signals other than the standard impulse function
to be used to test digital systems of limited dynamic range.
The desirable features of a test signal for digital systems are

(7) It must be an all-pass signal in that it must be capable of testing
the system (i.e., determining the frequency response of the
system) for any admissible frequency.

(#7) It should be of limited duration.
(#47) It should be peak-amplitude-limited, to give the maximum
utilization of the limited dynamic range of the system.

The above features define a desirable test signal as one whose energy
is spread out as much as possible to reduce the peak signal amplitude
and therefore be able to pass higher energy signals through the system
without clipping.

If we let z(n) denote the test signal, then the requirements deseribed
above can be related to z(n) and X (e*), the Fourier transform of
z(n), in the following manner. For the signal to be all-pass implies

|X(e)| =C, alla, (1)

where C is an arbitrary constant value. If we let C = 1, then by
Parseval’s theorem we have

2r ]
or [ 1X@) Mo = 1= 3 2w, (@)
27 0 n=0
i.e., the overall energy of the test signal is unity. For the signal to be

of limited duration (at least approximately) requires

;ﬂ xz(n) =7 (3)

where ¥ &~ 1 and N is the signal duration in samples. (The constraint
of (3) has not been used directly in the work presented here, since it
was found that it was satisfied by all the signals that were designed.)
Finally, the constraint that the peak signal amplitude be as small as
possible requires that max, |z(n)| be minimized over the design pa-
rameters of the signal.

Besides the standard impulse function, the only other class of signals
that is appropriate for a test function (i.e., that has the set of features
described above) is the set of all-pass filter impulse responses. Such
signals can be optimized to meet the design requirements by varying
the parameters of the all-pass network to minimize the peak signal
amplitude.

The purpose of this paper is to discuss the issues in the design of all-
pass signals to be used to test a digital system. In Section II, the design
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methods used to optimize these all-pass signals are discussed. In
Section 111, considerations dealing with the interpolation of the result-
ing all-pass test signals are given. Finally, in Section IV a brief discus-
sion of the effects of filtering these all-pass signals is given.

Il. DESIGN TECHNIQUES FOR ALL-PASS SIGNALS

The signal design problem is one of choosing the parameters (the
filter coefficients) in the implementation of an Nth-order all-pass filter
to minimize the peak amplitude of the resulting impulse response. For
the actual implementation of most all-pass filters, it is generally con-
venient to consider the cascade realization which is of the form

x@ = I B2, @

where N, is the number of sections in the cascade and H(z) are the
individual sections, which generally are either first-order or second-
order sections. A first-order all-pass section has the system function

_—a+z
H.(Z) - 1 — afl ’ (5)
whereas a second-order all-pass section has the system function
_ b“—C"Z_l—’-Z_z
Hi(z) = 1 —cz '+ biz? (6)

The design problem is thus to choose the all-pass parameters (a, b, ci)
to minimize the peak signal amplitude in the impulse response of the
filter.

For the first-order case, the parameter a can be analytically de-
termined. In this case, the difference equation is

z(n) = uo(n — 1) — auo(n) + ax(n — 1), (7N
where
wo(n) = 1 n=0
0 otherwise,

or

z(n) =0 n <0

z(0) = —a

z(1) = (1 — a?) @

z(n) = (1 — a¥)a™, n = 2.

Since |a| < 1 for stability, it is seen from (8) that the largest possible
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samples are z(0) and z(1). Thus, to minimize the larger of |z(0)| and
|z(1)| requires a choice of a such that

[z(0)| = [=(1)] 9)
or
[@min| = |1 — Qfua|- (10)

The solution to (10) gives Gmin = 0.618.

For optimization of higher-order all-pass filters, no analytical solu-
tion could be found. Thus, an optimization method was used to obtain
the desired solutions. In particular, a nonlinear unconstrained optimiza-
tion method developed by Powell'! was used in which the evaluation
of derivatives was not required. The maximum peak amplitude of the
all-pass signal can be minimized by minimizing the function

6 = lim [ £ [atm]]". (11)

In practice, however, the function of (11) is not unimodal or smooth,
and thus it is not practical to find the optimum choice of parameters
without a good starting point (initial choice of parameters) for the
optimization routine. To obtain such starting points, (11) was used as
the objective function for a value of p = 4. A variety of randomly
chosen starting points was used to obtain the best solutions for p = 4.
The p = 4 solutions were then used as starting points to determine the
optimum p = « solutions.

The parameters that were varied within the optimization program
were the b;'s and ¢/’s of the second-order sections within the cascade
and the a for a first-order section (used whenever the order of the
all-pass filter was odd). The advantage of using the cascade realization
is that it is simple to ensure stability of the resulting filter. Additionally,
instabilities occurring during the optimization program because of
poles drifting outside the unit circle were easily detected and cor-
rected with minimal computational effort.

Using the Powell optimization method, the optimum all-pass signals
of order 1 to 8 were designed. Table I gives values of the optimum
all-pass filter parameters and the resulting peak signal level for each
of these cases. It is seen in this table that the peak signal level falls
from 0.618 to 0.275 as the all-pass filter order varies from first to
eighth order. Further, it can be seen that progressive increases in the
order of the all-pass filter result only in very modest reductions of the
peak signal level beyond a second-order filter. Figures 1 and 2 show
the positions of the poles and zeros of the optimum all-pass filters and
their group delay responses for each of the filters of Table I.
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Fig. 1—Positions of the poles and zeros of the optimized all-pass signals of order
1to 8.

An interesting property of this class of signals is that the optimum
all-pass filter is not unique. This result is readily seen since the simple
replacement of z by 27! in the z transform leads to a multiplication of
the signal by (—1)", which does not affect the signal magnitude at all.
Thus, each pole and zero of Fig. 1 could equally be shown reflected
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e
N

(h)

about the imaginary z axis and still be a valid optimum solution.
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Fig. 2—Group delay responses of the optimized all-pass signals of order 1 to 8.

Ill. INTERPOLATION OF THE OPTIMUM ALL-PASS SIGNALS

The results of the preceding section indicate that reductions in the
peak level of the optimized all-pass signal on the order of 4 to 1 can be
obtained with an eighth-order filter. This result can be somewhat mis-
leading, however, since the continuous waveform (from which the
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signal samples could be derived) could peak up between samples—i.e.,
the actual reduction in signal level could be a fortuitous result obtained
by sampling the waveform at the most opportune sampling intervals.
If this were the case, and the test signal was used as input to a network
which approximated a noninteger delay, the output signal could be of
higher amplitude than the input signal simply because of the interpola-
tive properties of the network.

To investigate the true peak amplitude of the continuous waveform
associated with the test signal, each of the eight test signals of Table I
were interpolated using a 20-to-1 interpolator implemented using the
methods described by Crochiere and Rabiner.2? Figure 3 and Table II
show the results of interpolating the test signals. Figure 3a shows both
the test signal samples as well as the interpolated waveforms (dotted
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Fig. 3—Samples and interpolated waveforms of (a) the all-pass signals for orders
1 to 8 and (b) the all-pass signals modulated by (—1)".
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Fig. 3 (continued).

lines) associated with the signals. Figure 3b shows the alternate set of
peak-limited waveforms formed by multiplication of the signals in
Fig. 3a by (—1)". Although each test signal attains its peak amplitude
at a number of different sampling instants, its interpolated waveform
generally shows a distinet maximum amplitude. Table II also shows
that the peak interpolated waveform amplitude ranged from 0.766 for
the first-order signal to 0.421 for the seventh-order signal. Thus, in
terms of the interpolated waveform, on the order of a 2-to-1 reduction
in peak signal level was obtained for these test signals.

One more observation can be obtained from Fig. 3 and that is that
the test signals, although generated as the output of a recursive struc-
ture, damp out in level extremely rapidly and could be considered
finite duration signals. It was found that 128 samples of the test signal
were sufficient for obtaining 16-bit test signals to full 16-bit accuracy.
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IV. APPLICATION OF PEAK-LIMITED SIGNALS AS TEST SIGNALS

One application of the above class of peak-limited signals is for use
as test signals for systems of limited dynamic range. By spreading the
signal energy among many samples, a test signal of greater total energy
than an impulse can be used without exceeding the dynamic range of
the system. This then enhances the signal-to-noise ratio (s/n) of the
measurement.

For a system that has approximately a linear-phase response, s/n
improvements of the orders shown in Table II can be expected. If the
system has considerable phase distortion, the amount of s/n enhance-
ment may be less. In an extreme case, a system could act as a ‘“‘matched
filter” to a particular test signal and compress all the signal energy
back into a single sample. In this case, no s/n improvement would be
possible with that test signal, although other peak-limited test signals
in this class might be useful.

To investigate the use of the peak-limited signals as test signals, we
chose a system that consists of a complex modulator, a decimator, an
interpolator, and another complex modulator. The system was im-
plemented on a 16-bit computer, and the decimator and interpolator
were designed as discussed in Refs. 2 and 3. The net function of the
above system is that of a bandpass filtering operation. It represents a
useful type of system for speech-processing applications (e.g.,
vocoders).

The frequency response of the system is shown in Fig. 4a. It was
measured by exciting the system with the peak-limited signal for
N = 7 and taking the Fourier transform of the output. The largest
peak amplitude signal which could be used without overflow was
16384, or 24, Similarly, the largest impulse that could be used as a test
signal was 24, The frequency response measurement in this case was
essentially equivalent to that using the peak-limited signal (see Fig.
4a). The reason for this is apparent. The 16-bit system has a large
dynamic range (about 90 dB) compared to the frequency response of
the filter (about 45 dB). Obviously, the use of peak-limited signals is
not warranted.

We next considered a 12-bit implementation of the same system.*
This would very likely be the available word length of a practical
hardware implementation or small minicomputer implementation. In
this case, the dynamic range of the system is about 66 dB, and we can
expect that roundoff noise will affect the frequency response measure-
ment. The largest magnitude impulse that could be used to test this

_*This was simulated on the 16-bit system by not allowing the use of the four most
significant bits.
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(c)

16-bit system, (b) an impulse test signal in an

(b)

7 all-pass test signal

(a)

Fig. 4—Frequency response measurement using (a) an N

equivalent 12-bit system, and (c) an N = 7 all-pass test signal in the 12-bit system.
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system without overflow was 1024, or 2. A measurement of the fre-
quency response based on this impulse response is shown in Fig. 4b. It
is apparent that the roundoff noise has degraded the measurement con-
siderably. The passband response has been distorted, and the peak
stopband signal rejection measures only 31 dB compared to 41 dB in
Fig. 4a.

Figure 4c shows the frequency response measurement of the same
12-bit system based on the peak-limited signal for N = 7. The maxi-
mum amplitude that could be used for this signal was 2'° and, as can
be seen from Table II, it contains 10.75 dB more signal energy than
an impulse of the same amplitude. In comparing Figs. 4a, b, and ¢, it
is clear that the use of the peak-limited signal has improved the
frequency response measurement of the 12-bit system. The measure-
ment of the stopband rejection is on the order of 40 dB, or 9 dB better
than in Fig. 4b. The passband response looks more like the essentially
noiseless measurement in Fig. 4a.

V. CONCLUSIONS

It has been shown that a class of peak-limited and essentially finite
duration signals can be generated by optimizing the p = « norm of
the impulse responses of the class of all-pass networks. Signals were
generated for all-pass filter orders from N =1 to N = 8. It was
demonstrated that this class of signals is useful as test signals for
systems of limited dynamic range. Improvements of up to 11 dB in
s/n enhancement were found to be possible.
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