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A number of problems are considered relevant to understanding the
performance of optical-fiber communication systems that use pulse
transmission. The methods used are typically exact solutions or bounds,
and we concentrate on simple examples that aid our understanding.
Some of our work makes contact with previous studies, particularly by
Personick and Hubbard. The major results are:

(i) Presentation of an inlegral equation for the output density for single-
pulse detection with arbitrary avalanche gain
(i) Ezact solution for the probability distribution for gains in physical
avalanche diodes
(#33) Bounds on performance when intersymbol interference is present
(but no avalanche gain) which suggest that an oplimum-bit de-
tector can perform, under practical conditions, only two or three
dB better than a simple integrate-and-dump filter, yielding resulls
still many dB from the quantum limit. Thus, in particular, little
performance gain 1is to be expected from equalization techniques.

I. INTRODUCTION AND OVERVIEW

A large part of traditional communication theory has been directed
to detecting and processing electrical signals transmitted over wires,
cables, or the like. While the physical realization of each of these tradi-
tional systems may have led to mathematical treatments designed to
handle problems such as linear distortion or fading, which were peculiar
to one, or even perhaps several, systems, the principal concern of all
mathematical treatments of these time-continuous channels has been
the ubiquitous additive gaussian noise. In fact, it would be fair to
say that much of the structure of the mathematical treatments used
has been dictated by the mathematical properties of this noise. In the
absence of noise, many problems would immediately degenerate, at
least theoretically, to situations of perfect detection, infinite capacity,
ete.
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The consideration of some promising optical communication systems
seems to alter the above picture. We have in mind the transmission of
information by way of light pulses propagating through an optical
fiber and subsequently detected by a photodetector that converts
electromagnetic energy in the fiber to electrical signals in a circuit.
We immediately note certain features which this problem hasin common
with the traditional problems. For one thing, the fiber can delay,
attenuate, or spread the transmitted pulses. For another, the elec-
trical signal after photodetection may be corrupted by additive
gaussian noise. Yet there is another fundamental impairment. The elec-
tromagnetic signal that propagates in the fiber (which acts as a wave
guide) is, under practical considerations, of sufficiently weak intensity
that any effective detection mechanism must be based upon the
quantum nature of the electromagnetic disturbance. In other words,
detection must be based upon photon counting. Here, a new element
enters the problem—photon counting is subject to statistical fluctua-
tions. In the quantum case, a signal uncorrupted by any external
disturbance still carries with it its own “noise,” as it were, which is
not additive gaussian. This new noise manifests itself in the following
way. The photon-counting process is a time-varying Poisson process
whose intensity (or rate) function A(t) varies in direct proportion to the
information-bearing pulse train, the latter being thought of in the
conventional way (except it must now always be positive). Our pur-
pose here is to explore some of the communication theory of this new
situation, paying particular attention to the use of our considerations
in proposed fiber-optic communication systems.

The general background of the material that we treat, namely,
direct detection of photons in an optical fiber, may be found in works
by Personick!? and Foschini et al.? Direct detection refers to the pro-
cessing of the electrical signal at the output of a photodetector as op-
posed to, say, more esoteric detection schemes based on optimum
processing of the existing electromagnetic field, considered as a
quantum system. In the case of binary transmission, the choice be-
tween a one or a zero is, in the systems considered here, translated into
the presence or absence of a short burst of optical power (light) in the
fiber. To understand this in more detail, we shall trace the passage of
a single pulse through our mathematical model of the system (see
Fig. 1). In the case of a one being transmitted, an electrical signal (a
square pulse of duration T) turns on our “flashlight,” which in this
case is a laser or light-emitting diode, and electromagnetic energy is
sent into the transmission medium (optical fiber). If a photodetector
is placed at the end of the fiber, photons will be detected due to the
electromagnetic energy present. Exactly when in time the photons
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Fig. 1—Passage of a single pulse through the optical system.

register on the detector is random and is the Poisson process spoken
of earlier. The probability of receiving a count between time ¢ and
t + dt is given by h(t)dt, where, owing to effects in the fiber, 2(f) is a
distorted and attenuated version of the transmitted pulse. The ac-
cumulation of distortion as the pulse propagates down the fiber is also
sketched in Fig. 1. In practice, a background of counts also exists.
This is called the dark current and is modeled by introducing a con-
stant additive intensity function Ao before the detector, although some
of these counts can originate in the physical detector itself. Typically,
transmitted power and transmission loss are adjusted so that on the
order of one or two hundred photons per pulse are, on the average,
detected. The dark current contributes from about 1 to 5 percent of
the counts.

To transmit a zero, we simply do not turn on the transmitting power,
and the detector only registers counts resulting from the dark current.

We have been loosely speaking of the output of the photodetector
as ‘“‘counts.” The actual electrical current at the output of this device
caused by a photon is a wideband pulse g-w(t) (very narrow com-
pared with 7, a delta function in the limit), where g=integer-valued
random variable or g = 1, depending on whether or not an avalanche
diode is used. The electrical current at the output of the photodetector
is further distorted by gaussian noise whose effect is often lessened in
importance when an avalanche diode is used, but not for the g =1
case. In the most literal modeling of the experimental situation, the
finite bandwidth of w(f) prevents one from assuming that the Poisson

LIGHT-PULSE DETECTION 349



part of the observation is singular, i.e., can be separated out from the
background gaussian noise; however, whenever we feel there are
insights to be gained from the separation we shall make it.

If we take into account the facts that Personick* has shown super-
position to hold (approximately) for optical-fiber transmission and
that optical power is positive, then we may extend our single-pulse
description to a model for transmission of an entire pulse train. If we
transmit a sequence of on or off pulses, then the ‘‘received signal,”
defined as that electrical signal on which we may do processing, can
be written as

where the time points {t.} form a Poisson process having intensity
function A(f), with

At) = X aqh(t — nT) + o 2)
and
h(t) = 0 = distorted pulse
a, = 0, 1 = independent, equiprobable data symbols
Mo = 0 = dark current

T = signaling interval (3)
n(t) = gaussian noise

¢» = avalanche gain factors
w(t) = output pulse of photodetector.

At various stages of our discussion, we may, for interests of simplicity
or clarity, idealize or eliminate certain aspects of the full model given
by (1), (2), and (3).

The communication theorist is interested in processing the signal
(1) to estimate the a. given in (2). If the distortion is not severe, one
may simply process in an intuitive way and (assuming proper syn-
chronization) count the number of photons detected in the appropriate
T-second interval. If g, = 1, this is accomplished by integrating the
output for T seconds (so-called integrate-and-dump detection). How-
ever, the simplicity of this technique demands its investigation even
when g, are random. Neglecting the gaussian noise and assuming ¢
are exponential random variables allow one to determine exactly the
probability distribution of the output statistic and to determine error
rates. This is done in Section II. In Section III we return to the ¢ = 1
case to observe the effects of the random gain. In Section IV,
Personick’s implicit equation for the random gains g, of actual photo-
detectors is studied in detail and the exact distribution of these gains
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is found. Also, the use of Chernoff bounds for bounding the error rate
in the general situation is discussed. Section V branches out to include
a worst-case analysis of intersymbol interference [the case of appre-
ciable spreading of h({)] using integrate-and-dump detection. A
particular example is also computed. Finally, in Section VI, we con-
sider the question of replacing the integrate-and-dump detector with
an optimum detector. We know that equalization can achieve con-
siderable improvements for voiceband telephone transmission, but
can we expect the same here? Using the lower bound on performance
which we derive for the optimum detector and applying this to the
example of Section V, we find that performance greatly surpassing that
of integrate-and-dump detection cannot be expected.

Il. INTEGRATE-AND-DUMP DETECTION—AVALANCHE DETECTORS

As already mentioned in the introduction, a simple way to detect
the jth bit in (2) is to integrate the output of the photodetector over
the jth T-second interval and compare the random variable thus
obtained with a threshold F; if the output is greater than F, a one is
declared (pulse present); if it is less than F, a zero is declared (pulse
absent). In this section, we discuss the exact error rate for such a
situation when pulse overlap in (2) can be neglected, as well as the
additive noise. Further, the gains g. are assumed to be exponentially
distributed.

We shall need the moment-generating function (MGr) for the indi-
cated random variable, but we may as well begin by giving the MGF
for a general linear filter P(t) rather than simply an integrator. Con-
sider a Poisson point process having an arbitrary intensity function
A(f) [not necessarily of the form (2)], and let the nth count be given
nonnegative weight g,, i.e., consider

; Gna(t - tl’l)) (4)

where the sequence of time points {¢.} is Poisson with intensity func-
tion A(f). If (4) is linearly filtered, with P (f) being the impulse response
of the filter, then the output of the filter at time ¢, z(t) can be shown by
elementary calculations to have moment-generating function given by

Mx = Eexp [sX] = exp [[i Ao [M[sP(t — 7)] — l}dr], (5)

where M,(s) is the moment-generating function of the g., assumed
independent, and we have set z({) = X. In particular, if P(r) = 1 for
0 < 7 < T and zero elsewhere, and if ¢t = T, (5) will simplify to

Mx = exp {A[M,(s) — 1]}, (6)
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where

A= j; " \r)dr. 1)

If the pulse w(t) in (1) (assumed of unit area) is narrow enough so
that end effects are negligible when doing the integration and if pulse
overlap in (2) is negligible, then (6) and (7) are relevant quantities to
consider in determining the error rate for integrate-and-dump detec-
tion of (1) and (2). To treat the two separate cases of a one or a zero,
we need only replace A in (6) by A;, ¢ = 1 or 0, where

A= [ "R + Tho 8)

Ao = Tho. 9

While the gaussian noise will be neglected here, let us at least note
that to include the effect of the added noise term on the integrated
output, we would multiply (6) by the moment-generating function of
the noise M ,(s),

M.(s) = exp (s%‘z) , (10)

to obtain the MGF of the new output variable. In (10), the variance of
the noise ¢? is given by
2 = No

2 T (11)

a
for the case of the integrator with white noise of two-sided spectral
density No/2, or

ot = L 7 N(w)|Bw)|*da, (12)
27 J_w
in general, where N(w) denotes a general noise spectrum and P(w)

is the Fourier transform of P(t).
In the special case where the g, in (4) are continuous variables and

are exponentially distributed, i.e.,
p(g) = aexp (—eag), g >0, (13)

we have
M,(s) = ——, s<a. (14)

a— 8

At this stage, it is easier to work with the characteristic function
version of (6), namely,

Cx(w) = exp {A[C,(w) — 1]}, (15)
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with C'(w) denoting characteristics functions now, e.g.,
Cx(w) = Eexp (iwX).

To obtain our integral equation for p(z), differentiate (15) once with
respect to w, multiply by exp (—iwz), and integrate over z to obtain

zp(z) = A ﬁ ’ upg(u)p(z — u)du, (16)

where p(z) denotes the density of the random variable X in (14), and
p,(u) denotes the density of the nonnegative gain variable g.

For the exponential gain case (13), an exact solution to (16) can be
found. Note that then the variable z has probability exp (—A of
being zero (no counts) and p(z) will thus contain a & function at the
origin. Introducing this explicitly by writing

p(z) = exp (—A)é(z) + exp (—az)f(2), (17)

we find

2f(z) = (aheNz + o fo " (& — w) f(w)duw, (18)

where use has been made of (13). Differentiating (18) twice, we obtain

Bessel’s equation
22 f" + 2xf — (aA)zf = 0, (19)

where f’ stands for differentiation. The appropriate solution of (19)
gives, finally, for the density p(z) of the detection statistic

p(x) = e78(z) + e“‘@ ~2=11(2VaAz), (20)

I,(-) being the modified Bessel function.* The following may be useful
in connection with (20):

L) < e’“;%, z20 1)
wr

Li(z) ~ %‘%, z large (22)
T

I(z) ~ -;- .z small (23)

Typically, A, is in the range of 100 to 200 for a light pulse present and

* This exact result, as well as several useful approximations to it found later in this
section, were first derived by Hubbard (Ref. 5) using other techniques.

LIGHT-PULSE DETECTION 353



Ao in the range of 5 to 10 for dark current only. The quantity 1/a, the
average gain, may be 100 or 200. The average number of counts for a
pulse is then A;/a so, to within a factor of 2 or so, the decision threshold
will be around A;/2a. Thus, virtually all the area of interest in (20)
oceurs for z > 1/aA; for both 7 = 1 or 2, and (22) may be used and,
to excellent accuracy,

o (@A)t 1 _(ﬂ—ﬁ/a)z} 1
p(x)dr =~ Vir (zﬁexp{ /%) dz, x >aA (24)

Equation (24) is slightly more attractive if we write instead the density
for u = Vz, pu(u),

exp {_ (u — ﬁ/a)z}
(M) LR ) e
pu(u)du ~ (a ) 'Jql—,; ‘Jﬂ(ﬁ/za) du: u > mr (25)

showing that VX is, over a rather wide range, gaussian with mean
VA/a and variance 1/2a. Note A/a = EX, while variance of X is
2A /a2 Also, eq. (25) should not be confused with the central limit
theorem version of (24), which is obtained when one writes (for large
A) z = (A/a) + e and € becomes gaussian. Since, from (21), eq. (22)
is an upper bound as well as being asymptotic, we have

p[x SF> %] < (—F%)*Q(J%—F _ \22), (26)

where
e—'l.l".r 2

__1_ ® —ulf2 ~ .
Q(y)_mj; ey m

Likewise, in the same spirit of approximation that indicates (26) to be
an excellent approximation (in addition to being an upper bound), one
may write for the lower tail

p[z<F<%]%(%)}Q(J2——W). (28)

(27)

Even for A’s differing by a factor of 100, the fourth root factor in front
of (26) and (28) is weak indeed. Thus, we may, to excellent approxima-
tion, find the best threshold by equating the arguments of the  func-
tion for the two cases of error. This results in

V2A; — V2aF = V2aF — \2A,. (29)

The left-hand side of (29) comes, of course, from using (28) for a pulse
present (the number of counts is then expected to exceed the threshold).
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Table | — Tabulation of error rate and threshold for an avalanche
detector with exponentially distributed gains

Ao Als Foptla = 1) P, [eq. (31)] Quantum Limit
4 100 37.20 2.09 X 107° 1.86 X 10—+
4 200 66.28 8.88 X 1071 ~ 10~
4 400 122.1 3.9 X 1078 ~ 107176
10 100 46.58 8.03 X 1078 1.86 X 10~#
10 200 77.91 3.61 X 107 ~ 1088
10 400 137.0 3.66 X 10— ~ 107178

Likewise, the right member of (29) comes from using (26) for only
dark current where the counts usually fall below the threshold F and
an error is made only if they exceed it. We immediately obtain from

(29)
I Ay Ao
Fopt = E + E ) (30)

where, again, A, is not to be too small, for example, A = 2. In the
above, we have in mind, from (8), taking A; = A;, + Ay where Ay, is
due to signal alone.

For future comparisons, we should inject at this point the fact that
the best detection probability one can obtain with no dark current
(or no gaussian noise) is § exp (— A1), often referred to as the quantum
limit.

Table I displays values of the right member of (26), for the optimum
F given by (30), i.e., it displays the quantity

RNGE-E)

evaluated for several values of Ay and A,,, along with the quantum
limit. Note that only «F enters the expressions, and thus the actual
value of a plays no role in determining the probabilities for this prob-
lem. The fact should also be evident from the scaling properties of
the problem. In real applications, 1/a would be large so that the
electronic circuitry could ‘‘see’ the pulses above the gaussian noise.

Table I shows (for the parameters shown) about a 7-dB loss rela-
tive to the quantum limit, owing to the dark current, and also in part
to the random nature of the gain mechanism.”

*To be perfectly clear on this point, it is really the additional (random) gain
provided by the avalanche detector that allows one to formulate the physical problem
as in (4) without gaussian noise. However, from a mathematical point of view, once
(4) is written down, the random gains are hypothesis-insensitive, and thus would be
ignored by an optimum detector.
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Ill. INTEGRATE-AND-DUMP DETECTION—PURE POISSON CASE
We now give a brief discussion for the g = 1 case of (4), namely,
the random variable X is Poisson,

‘—AATI»

p(X =n) = n=2012"--, (32)

EX = A, var X = A% (33)

The purpose of the remarks will be to shed light on the degradation
suffered when the g. are random, as mentioned at the end of the last

section.
If X is Poisson, then the probability that X is larger than or equal

to kis

© e—AAn eﬁAA A!
L TR [1+k+1+(k+1)(k+2)+”']' 34)

If, in addition, we assume (k 4+ 1) > A, then a simple consequence of
(34) is that

Lt ) S <PriX z k>4 - 1]
1)
1 eAAF

<t—amFDn K G

Similarly, for the lower tail we have

e—A —AAK
(1 +§) k‘,‘ <Prz <k <A]< T?tm'fk—j‘ (36)
Thus, ignoring the weak effects of the coefficient in front, the
optimum threshold F for a problem such as the one described in Sec-
tion II is obtained by equating probabilities such as these in (35) and
(36), yielding
e—hopl = g AAT (37)

or, equivalently, the optimum threshold in this case is

AL — A

F=n@/ag (38)

Table II displays the right-hand side of (35) for & given by the
rounded-off values of (38). In particular, we see degradation ranging
from 3.5 to 4 dB compared to the quantum limits given in Table I.
Typically, then, detecting the presence or absence of a single pulse
using random amplitudes, as a linear detector might, results in a 3- to
4-dB degradation (for the exponential case), compared with an “ideal”
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Table Il — Tabulation of error rate and threshold for detection
with constant gain

Ao Ay Fﬂpt P. [eq. (35):]
4 100 30.69 1,17 X 107V
4 200 50.87 6.49 X 1078
4 400 86.67 2.18 X 1078

10 100 41.70 421 X 1074

10 200 65.69 9.80 X 107

10 400 107.7 3.78 X 10~

avalanche detector, which has a large gain but whose distribution is
concentrated at a delta function.

The loss due to ‘“‘gain jitter” suggests a possible remedy. The
physical pulse g.w(t — ¢,) in the detection circuits following the
avalanche diode should be clearly detectable against the background
noise if ¢, is sufficiently large; in particular, if it is something like the
mean gain (. Suppose this is also true for pulse gains ¢. = fG, f < 1.
Now suppose one processed the circuit output of the avalanche diode
by first passing it through a pulse detector that detects pulses of height
greater than fG and generates a pulse of fixed height if a pulse is
detected. The output pulses of this device have fixed gain, which is
beneficial, but, on the other hand, we have lost a fraction 8,

= (l; fnm exp (—g/G)dg, (39)

of light intensity. Seemingly, by a simple scheme we may have still
gained a dB or two in performance. Because of effects such as possible
overlap of two close pulses w(f) and even in the pulse shape of w(f)
itself, the merits of this proposal are hard to assess without further
study. It does appear to be an interesting possibility for a future
detailed investigation.

IV. INTEGRATE-AND-DUMP DETECTION—OTHER AVALANCHE

GAIN DISTRIBUTIONS

Personick® has considered the physies of a class of real avalanche
detectors in considerable detail and has derived the following implicit
equation for their moment-generating function M, (s):*

s=1InM — lkln[(l—a)M-i—a], (40)

1 —

* We shall drop the subscript on the Mar M, of the gain variable when we refer to
the particular M, given by (40). Also, the k in this section has nothing to do with
the k in (35) and (36).
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where we have set

M= M(s) = Zl Py, (41)
The parameters k and a are related to the physical properties of these
photon detectors. Since (40) has never been explicitly solved for M (s),
we think it worthwhile to investigate the structure of M (s) implied by
(40) in more detail. In addition to yielding structural properties of
M (s), we shall find that (40) allows us to determine the p. of (41)
exactly.

To begin with, the gain G, given by G = Eg, is

d
G=Eg= I M (s) L (42)
which, using (40), yields
1—k
¢=12k (43)
From (43) we see that the restrictions
O0<a=1
0=k <a (44)

are to be imposed on the parameters in (40).
When a = 1, (40) gives M = e*, the g = 1 case. When k = 0, (40)
is easily solved to give

ae’

m, k=0. (45)

M(s) =
Equation (45) is the MaF of the discrete geometric distribution having
probabilities p, concentrated on the positive integers, where

a
— a

Pn =7 1—a)m n=12,---. (46)
It is reasonable to treat the continuous version of this density, and

that was done in Section II.
In the general case of (40), the variance may be calculated to give

(1 —a)
varg = G* [1 - 1—_—k—] — G (47)
If higher moments are desired, they can be obtained recursively from
(40). This can be done by expanding M (s) in a power series and equat-
ing like powers in s.

In view of the discussion in Section III, one might prefer the de-
tectors represented by (40) that have small variance. A simple in-
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vestigation of (47) reveals that, for any ¢ < 1, £ = 0 uniquely gives
minimum variance. Since even this minimum variance is large (equal
to the mean), it may well not be a reliable guide.

Returning to the general case represented in (40), it is evident from
the relation

M(s) = gt e P

that the maF exists for all s = 0. However, it does not exist for all
positive s, and, in fact, setting ds/dM = 0 yields a critical value of M
(call it M) given by

a 1—Fk
M, = 1—a & (48)
and thus a critical value s, of s given by
1—k k a
SE—S(MC)—].D'I-_—&—mhlE, (49)

beyond which M (s) does not exist. Note that, if b # 0 (and a = 1),
the value of the MmaF at the critical s is finite. This shows that the far-
tail behavior of the ¢ variable has an exponential-like tail, with damp-
ing factor related to s., but in general there is a multiplicative factor,
e.g., an inverse power that allows the MGF to be finite at its critical

value.
Ifwelets. —s=6>0 M. — M(s) = A >0, and write

ds

s, —s==s(M)=s(M,— A) =s(M,) — AdM

M

1 @

M.

we obtain, after evaluating the second derivative in (50), that

A3 \/% M, (51)

or, equivalently,

M,cs,Mc[1 —\/%\fs_—s] (52)

thus exhibiting a square-root singularity of M (s) in the neighborhood
of s.. This type of behavior is consistent with a far-tail fall-off of the
“density’” of the g variable being given by

const. w ) (53)
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Let us now proceed to the exact solution for the p, in (41) when
M(s) is given by (40). We use instead z = exp (s) and write, with a
slight abuse of notation,

M@ =3 2. (54)

A=l
Equation (40) becomes, setting M = M (z) when convenient,
M

2= IMA —a) Falh (5)
In (55) it is useful to make the substitutions
M@ = g a — F[(1 — a)a*t=bz] (56a)
u= (1 — a)atl-Pz (56b)
1
P=1"% (56¢)
to obtain
N - (57)
S+ FP

where F(0) = 0 and F is regarded as an implicit function of u in the
neighborhood of u = 0. Equation (57) is a canonical form for the
Lagrange inversion formula’ for obtaining the coefficients ¢; in the
power series

F= i cius. (58)

=1

The formula yields, for the present problem,

1 d \1 .
6= {(@) A + Fy }M (59)
or
C = 1,
T Go—s) .
_ %0 T/ =k +1] .
6= T =rgForea-wp+zr 2% 60

From (54) and (56), the probabilities p; are then given by

a
—a

p; =7 [(1 — a)ak =BT, (61)
For (kj) large, we have, from Stirling’s asymptotic formula for the
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gamma function,

Iz + 1) ~ e =z=+ 27, (62)

that
1 1 1

™ Jom NI — k) (GHO—R)3 as kj—eo. (63)
One can show that the behavior given in (63) is, via (61), in complete
agreement with (49) and (53).

Remarkably, Personick reports that Melntyre,* from special-case
calculations, has conjectured the exact form of (61).

Knowing the p; does, in principle, allow the exact calculation of the
output statistics of the integrate-and-dump filter. The integral equa-
tion (16), appropriately interpreted with sums, provides one such way.
Instead of discussing this, however, we now turn our attention to
bounding techniques. We shall make some remarks directed toward the
Chernoff bound, used by Personick® for this type of problem.

The Chernoff bound states that, if x has meF M. (s), then the prob-
ability that x is greater than (less than) F obeys

Pr[z > F] < exp (—sF)M.(s) for any s > 0. (64)
(<) (<)

One makes the bound as tight as possible by minimizing the right
member of (64) over s. This, of course, assumes that M, (s) is known or
can be obtained explicitly as a function of s. For the general class of
avalanche diodes for which Personick derives the moment-generating
function, we saw that s is given explicitly as a function of M and, in
fact, an explicit function of M vs s is difficult to obtain analytically.
Personick gets M numerically as a function of s and then proceeds to
optimize with respect to s—a rather tedious procedure. We found from
our experience that a simpler approach is to eliminate s in (64) by
using (40) and then to optimize over M. This optimization still has to
be done numerically. Nevertheless, we could generate curves very
quickly this way. We do not present these curves here, since they do
not reveal more than those which Personick has already published.

For insight concerning the accuracy of the bound for present pur-
poses, we shall apply it below to the problem of exponential gains, for
which we have exact solutions available for comparison.

The function appearing in the right member of (64) is, for the
exponential gain case,

exp (—sF) exp {A[1/(1 — s) — 17}. (65)

* In addition to the cited reference of Personick, other experimental properties of
avalanche photodiodes may be found in Webb, McIntyre, and Conradi (Ref. 8).
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Finding the optimum s is easy in this case, and (64) then yields, for
these optimum s,* sops = 1 — YA/F, and, consequently,

P[z > F > A] < exp [— (VA — VF)2]
Pz < F <A] Zexp [— (VA — VF)2].

From the asymptotic forms of (26) and (28), we see that the Chernoff
bound has given us the “right exponent.”

From saddle-point considerations, this would be expected to be
true in this problem for any M, (s); however, it by no means has to be
true in general, where complex variable (saddle-point) techniques must
be resorted to in order to decide the question.

The optimum threshold for single-bit detection that would be ob-
tained by equating the two expressions in (64) (for different A’s, of
course) also results in (30). Table III lists the Chernoff upper bounds
to the bit error rate, and these should be compared to the exact answers
shown in Table I. Numerically, the Chernoff bound is off by one to
two orders of magnitude in error rate due to ‘“coefficient effects.”
However, even numerically this bound is judged to perform respect-
ably. Also shown in Table III is sopt = a[1 — VA/F, where the gain
(a) effect has been included. For the optimum choice of F, it turns out
that the two choices of sop: (due to two possible A’s) are the negative
of each other. Hence, only the positive one is shown in Table III.

If one wishes to include the effects of gaussian noise here, one
multiplies the right-hand side of (64) by the appropriate MGF, namely,
(10). Instead of finding the optimum s for this problem, one can use
the Sop. that held for the problem without additive noise (any s of
appropriate sign furnishes a bound). The value ¢ = 10* was used in
further Chernoff bound calculations for the M,(s) given in (41) and
may be found in the article by Personick.®

(66)

V. INTERSYMBOL INTERFERENCE—INTEGRATE-AND-DUMP FILTER

We turn now to the situation where A(t) is given by (2), ie., a
train of interfering pulses instead of just one of them. Personick has
claimed that h({) has a gaussian shape in real fibers and, hence, in
practice only a few pulses would be expected to contribute inter-
symbol interference.

It is evident that, if the filter P(f) that processes the output of the
photon detector is always positive, as, for example, for an integrate-
and-dump filter, the presence of intersymbol interference increases

* In setting the derivative equal to zero, one must choose the positive s that satisfies
8 < 1, since in the real-variable techniques used here, the MGr of the exponential
does not exist for s = 1.

362 THE BELL SYSTEM TECHNICAL JOURNAL, MARCH 1976



Table Ill — Tabulation of Chernoff bound (CB) for error rate,
exponential gain case. Also given are S, = a[1 — VA/F]
for a gain 1/« = 100, and a correction exp|[s.,. ¢*/2]
for ¢ = 10,000. The latter is a correction for
gaussian noise.

2 2
Ao A CB [eq. (66)] | sope (gain = 100) | exp 2=
4 100 5.00 X 1078 6.72 X 1079 1.25
4 200 4.16 X 10717 7.54 X 107 1.33
4 400 2.70 X 10738 8.19 X 107* 1.40
10 100 1.49 X 10—¢ 5.37 X 107 1.16
10 200 1.16 X 10 6.42 X 107 1.23
10 400 2.01 X 107 7.30 X 107° 1.31

the counts observed over any interval. Therefore, if a pulse is present,
this intersymbol interference helps detection (helps keep output
greater than the threshold) while, if the pulse is absent and no-counts
is ideal, it hurts. Hence, the worst-case situation is to evaluate the
probability of a one being decoded into a zero when no other pulses
are present, while for the reverse error we assume all pulses are on.

Since we are still considering an integrator, i.e., P(f) = 1, |[{| < 7,
we are still to use (6), but now for the two worst cases given we replace
A in (6) by either

AL = 27\ +[’ h(t)dt
or (67)
Ao=2mho+ X [ At — nT)dt.
n#0 J—1

Of course, we assume A, < A, for any reasonable operating situation.
In addition to the threshold choice, we must also contend with the
optimum choice of 7, half the time width of the integration. This
latter step is easily handled numerically.

Many calculations may be done and, for the worst-case situation
described, nothing new is involved in addition to what has already
been discussed. As an illustration, we will deal explicitly with one ex-
ample. We take Ay = 0, no avalanche gain (g = 1), and

%0 =l%9[1—%], (68)

where T is the pulse repetition rate. Thus, there is considerable over-
lap from neighboring pulses, but not from others. Also, Sh(t)dt = 100,
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Table IV — An intersymbol interference example from Section V

7’, F P. [eq. (35)]
0.1 7 7.3 X 1075
0.2 15 1.5 X 1078
0.3 25 5.7 X 108
0.4 34 1.5 X 1075
0.5 46 5.1 X 1078

so the quantum limit for single-pulse detection may be read from
Table I.

Table IV gives the worst-case error rate for the above example,
using formulas (35) and (38) for the Poisson case. The optimum choice
of = here is 0.3, i.e., 30 percent toward the peak of the neighboring
pulse. Also, a 20-percent change in the value of r does not change the
error rate drastically. Note that we are not inferring that one should
be careless in the choice of r, because in calculating Table IV the
optimum threshold (F) for each 7 is assumed. Also, note the large
degradation with respect to the quantum limit caused by the inter-
symbol interference. For the present example, the error rate averaged
over all sequences cannot be much better than shown, because the
worst case occurs with probability %, and hence (P.)., cannot be more
than a factor of 4 better.

VI. AN INTERSYMBOL INTERFERENCE EXAMPLE AND A LOWER
BOUND ON PERFORMANCE

We present now a lower bound on performance which can be readily
evaluated for the intersymbol interference problem of the last section
[pulses given by (68)]. This lower bound is valid for optimum bit
detection and thus sets a limit on how well any detector can do in
coping with intersymbol interference. In particular, the bound sheds
light on the performance in the present situation of suboptimum
schemes such as equalization, which have found such wide application
in voiceband telephone transmission.

The derivation of the lower bound proceeds along lines used by
Mazo® to generalize Forney’s lower bound for optimum bit-by-bit
detection in the gaussian noise. Our approach is to assume that we
are optimally detecting the kth bit in a sequence of (N + 1) inde-
pendent bits, i.e., sequences of the form (2) of length (N + 1) are
being considered. We suppose a. are binary, equiprobable, and inde-
pendent. Let p,(x|7) and po(z|7) be the two probability densities of
the received signal under the hypotheses a, = 1 or 0, respectively,
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and 7 denote conditioning on the 7th, ¢ = 1, ---, 2¥ sequence being
transmitted. Then the probability of error for the optimum detector
is (in somewhat formal notation)

oN 2N
Po= [armin| S ¥ mGeld, g5 £l ], @9

=1

which, as in Ref. 9, can be lower-bounded by
P, 2 517, P, (binary i, j problem). (70)

In (70), P, (binary i, j problem) is the probability of error which
would result for the simple binary problem of distinguishing between
sequence i (one having a; = + 1) from sequence j (one having
ar = 0). The bound (70) holds for all such (¢, j) pairs. Finally, (70)
holds if the sequences of length (N + 1) are shortened to N’ + 1,
with N being replaced by N’ on the right side of (65).

For communication in the Poisson regime, the right member of
(70) has no known evaluation as it does for the gaussian case. What is
known about the binary problem is the optimum detector, which is
linear. The optimum filter P(¢) and threshold F are known explicitly
if one is deciding between equiprobable intensity functions X, () and
As(t). In fact, from the work of Bar-David,%

o M
P() =1 hb(t) (71)
and
F =f>\a(¢) —/?\b(t). (72)

Thus, the set of received impulses is filtered through P(f) and the
resulting output variable X at the end of the observation interval is
compared to the threshold F, choosing A.(f) if X > F and As(t) other-
wise. Assuming A, (f) is transmitted, the moment-generating function
of X is, from (5) and (71) (recall ¢ = 1 in this section),

M,(s) = exp [fho(t)[exp {sIn [M(8)/Ae(®)]) — 1:|dt:|
= exp [ f RO O ?\o(t)]dt]- (73)
From this MaF, one can see why the right side of (70) is not known in

general.
We now apply (73) to the intersymbol interference of the previous
section, where h(t) is given by (68). We choose N = 2, A,(t) to cor-
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respond to the pulse sequence (1, 1, 1) and A(f) to correspond to the
pulse sequence (1, 0, 1). When applied to (70), we interpret the results
as applying to the center bit of the sequence. We have, explicitly,*

M) =1 for |t| =1
M(t) = |¢t], for |t| =1 (74)
)tl(t) = }\(](t) for |t| > 1.

Since, from (71), P(t) =0 for [t{| > 1, the detection interval
t € [—1, 1]. Using (74) in (73), the decision variable has MGF

M) = o | 52 - 1] (75)

Remarkably enough, this is the moment-generating function of the
random variable dealt with in Section II; in the notation of that sec-
tion, it corresponds to A = 1, « = 2. The density is given by (20),
and the threshold is, from (72) and (74), to be set equal to unity.
Putting this all together, (70) becomes

P, 2 Lo f ” \/2 o], (227) dx. (76)
4 1 i
Or, scaling (76) to reinsert the factor of 100 in front of (68),

= [200 —
1 g1 f 200 —2z], (2V200z) dz. (77)
4 1 z

00

P,

v

So an excellent approximation in the right-hand side of (77) may be
evaluated via (26) to give

P, = 1(3)}Q (V400 — +200) = 5.06 X 10—, (78)

The numerical value of (78) should be compared with Table IV for
performance with integrate-and-dump filter and Table I for the
quantum limit. Indeed, for this case our bound shows that the optimum
detector performance is still far from the quantum limit and, in fact,
is roughly only 2.2 dB (comparing powers of 10) better than the
integrate-and-dump filter.! The present problem seems to imply that
equalization,! in particular, cannot be expected to approach the
quantum limit bound for the type of distortion found in present optical
fibers. In fact, a simple integrate-and-dump receiver with properly

* For the moment, we ignore the factor of 100 in (68) and also set T' = 1. These
are reintroduced only in the final numerical calculations.

T More precisely, the figure is 2.9 dB for strong signals.

;S1°1me references on equalization for optical communication systems are Refs. 1
an .
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chosen threshold compares well with a lower performance bound. The
above problem ignored many practical factors, but in fact ignoring
them focused even more on the pure intersymbol interference problem
in the Poisson regime. It would seem that effects such as dark current
and finite width of w(¢) would surely make the integrate-and-dump
and the optimum detector perform even more equally, and it would
seem too much for an equalizer to compensate for gain jitter, which is a
rather nonlinear effect.

Another linear filter P (t), which performs better than the integrate-
and-dump, may be inferred from (71). This is discussed and evaluated
in the appendix for the present problem. This new linear filter has a
worst-case exponent approximately 1 dB better than the integrate-
and-dump situation.

APPENDIX
A New Filter

We have already noted that (asymptotically) the integrate-and-
dump filter performs within 2.9 dB of a lower bound on performance
for the optimum processor for our particular example. We now show
how a modified P(f) can perform within 2 dB of this bound. We
confine ourselves to the worst case again, for which, we recall, the
best integrator had P(¢) = 1for [¢{| =< 0.3 (choosing T = 1). The worst
case with signal present was M (8) = 1 — [¢], |t] < 1, and Mo(t) = [t],
|t| < 1, for the worst case with signal absent. Now the optimum filter

1 — |t
el

P(t) =In [t] < 1, (79)
which distinguishes between these two signals, is not always positive
(it is negative for |t| > 3). Therefore, if (79) were used, there could
be no claim for a worst-case bound. However, we modify (79) and use

1 — |t

lel

instead. The filter represented by (80) is always positive, and therefore
worst-case claims still obtain. The filter (80) clearly has to outperform
our integrate-and-dump one, since the latter integrated only to
[t| = 0.3, while (80) is optimum for an observation interval [¢| = 0.5.
The optimum threshold for (80) is, from (72),

F = f_ A (b)dt — [_i No()dt = 3. 81)

P({t) =In lt] < 3 (80)

Using the Chernoff bound for the case when \o(t) is sent, we have, from
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(64) and (73),

P,

IIA

exp [ f)\n(t)[e'”” - 1] - sF}

i
= exp {2[0 t—+(1 — t)*dt — i - —;] , s >0, (82)

where we have used the expression for Ao(f), the filter (80), and thresh-
old (81). If we let u = (1 — t)/t, then we may write

# 1—a —_— 2 P ® ___'M'
Lz ) dt—fl T (83)

Two integrations by parts give

= _1 . s s(s—=1) j‘“’ w2
——du—8+4+ 3 . 1+udu, (84)

1 (14 u)?
or, using (84) in (82),
P, < exp [s(s — 1)[” lufu du]- (85)

Equation (85) makes it evident that the exponent in (82) will be
negative for 0 < s < 1. If we expand the 1/(1 + u) part of the inte-
grand in (80) in powers of (1/u) and integrate term by term, the
exponent in (85) becomes
_1 5 (=DF
s(s—1) Z s
1
== ¥ GG FI=

k even

(86)

Convergence in (86) can be improved if we write

> =3X 4+ T -3 T

k even all & k even k odd

and use the fact that
Z": 1 _ 1
Ziz+nE+n+1l) 1+=x

to obtain

1
s(s—1) [2(2 ) + Z (k+2—s)(k+3—s)(k+4— )] (87)

even

The optimum s is easily found numerically by plotting (87); we
truncated the sum after k=10. We find the optimum s is about 0.6,
giving a value of (87) of 0.11138. As a check on the possible accuracy
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of our use of (87), we note that our technique gives 0.10696 when
s = %, for which the exact answer can be shown to be n/8 — } 2
0.10730. Thus, the Chernoff bound is

P, =< exp (—0.111A0)

1 (88)
[ No(t)dt,

—1

while (73) yields as a lower bound something which behaves ex-
ponentially as

exp (—Ao [d_‘l—;—@ ]) = exp (—0.172A,). (89)

The exponent of (88) is 1.9 dB worse than that of (89). Concluding, we
note that (80) has a logarithm singularity at ¢ = 0. Including dark
current in the A;(¢f) will remove this, and will also decrease the im-
provement which this kind of filter provides over the integrate-and-
dump filter.

Ao
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