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We calculate the potential of a line charge embedded in a dielectric
medium of permitlivity e: in the presence of a dielectric wedge of per-
mittivity e;. The potential is calculated with the aid of the Mellin transform,
and the answer is given as a definite integral which is then transformed
wto an infinite series. We show that, for all wedge angles and all ratios
e/ €1, Vo is singular at the tip of the wedge, and we give the strength of the
singularity. The results have relevance lo the design of conlacts on semi-
conductor devices.

I. INTRODUCTION

Lewis and Wasserstrom! have calculated the strength of the field
singularity at the tip of a dielectric wedge in the configuration shown
in Fig. 1. In particular, with a wedge permittivity e, greater than the
permittivity e of the surrounding medium and a conductor angle
B = = (the “overhanging electrode’), they found that the tip field
was singular for all wedge angles a greater than =/2. From this analy-
sis, it was concluded that semiconductor devices with undercut edges
(@ < 7/2) would be advantageous in reducing local field strength and
thus preventing breakdown.

Because the analysis of Ref. 1 was strictly local, based on an ex-
pansion of the potential in positive powers of the distance from the
wedge vertex, multiplied by trigonometric functions of the polar
angle, it was felt by some that the results were suspect, since they
were not based on the solution of a complete boundary value problem.
Here we lay that suspicion to rest by presenting the solution of such
a problem, namely the field due to a line charge near a dielectric wedge,
as shown in Fig. 2. The solution of this problem, previously treated by
Smythe? in a somewhat involved fashion, gives Green’s function for
the composite region. Here we use the Mellin transform, obtaining an
expansion of the potential near the wedge tip in terms of the poles of
the transform. Based on this analysis, we conclude for the charge-
wedge configuration of Fig. 2 that, for arbitrary ratios e:/e:, the wedge
tip field is singular for all values of the half-angle a. We show that,
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Fig. 1—Electrode, insulator, semiconductor configuration.

when the plane y = 0 is replaced by a perfectly conducting sheet, the
field singularity due to the line charge is ezactly as described by Lewis
and Wasserstrom.! In general, we can conclude that, for any charge
distribution for which the resulting potential is neither purely even
nor purely odd, the field at the tip of the wedge will be singular for all
ratios e;/e; and all half-angles o.

Il. THE PROBLEM

We consider the electrostatic potential due to a line charge of
strength ¢ in the presence of a dielectric wedge, as shown in Fig. 2.
The charge lies at a distance a from the wedge tip in a dielectric
medium with permittivity e, while the wedge, with permittivity e,
occupies the region —a < 6 < a. We shall always assume that

Fig. 2—The dielectric wedge and line charge.
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v > a, taking into account the case where the charge lies within the
dielectric wedge by interchanging e and e, replacing a by » — «
and ¥ by = — v where v < «. Finally, instead of working with the
dimensional potential ¢(x, y) and distances (z, y), we introduce the
dimensionless potential u(r, 8) = (e:/q) ¢(z, ¥), and the dimensionless
distance r = (2? + y?)!/a. Thus, we will calculate the dimensionless
potential due to a unit line charge at unit distance from the origin.
Although we assume no trapped surface charge on the surface of the
wedge, our analysis could be extended to cover this case also. It should
be noted that, in these units, a unit line charge located at the origin
of a homogeneous medium (e; = e2) gives the potential

_1,n
u-_27r T

In the composite medium, » satisfies Laplace’s equation

VU = U + 77U + 12U = 0, (1)
in the wedge |#| < «, and the inhomogeneous equation
Viy = — (2ar)~8(r — 1)8(0 — =), (2)

where § is the Dirac delta function, giving the effect of the charge at
(r,8) = (1, %), for @ < 8 < 2r — a. The problem is completed by
the requirement that u and eus be continuous across # = +a.

To facilitate further ealculations, we split % into the sum of an odd
funetion in ¥ and an even function in y, setting

u =3+ w),

where v and w satisfy eqs. (1) and (2), the continuity conditions, and
the boundary conditions

v(r,0) = v(r, ) = we(r, 0) = we(r, ) = 0. (3)

Obviously, the pair of problems for » and w are equivalent to the
original problem for u. It should be noted, though, that » alone is the
potential due to a positive unit line charge at (1, y) and a negative
unit line charge at (1, 2r — +), in the presence of the dielectric wedge.
Alternatively, of course, it can be interpreted as the potential of the
unit line charge at (1, ¥) in the presence of the wedge, when the plane
y = 0 is replaced by a perfectly conducting sheet. This corresponds to
the model of the overhanging electrode used by Lewis and Wasser-
strom.! Further, w alone is the potential due to positive unit line
charges at (1, v) and (1, 2r — =) in the presence of the wedge.

We now proceed to calculate v and w, or rather their Mellin trans-
forms, the form of eq. (2) having been chosen to facilitate the applica-
tion of the transform.
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IIl. THE MELLIN TRANSFORM
The Mellin transform (8, s) of v(r, 8) is given by?

5(6, 5) = fo * rel(r, 8)dr. 4)

If eq. (2) is multiplied by *+! and integrated from 0 to «, after several
integrations by parts there results the ordinary differential equation

7+ s o= — %r 86 — ), (5)

provided that s lies in the strip o1 < Re s < o3, where
retly, — (0, rip—0 (6)

for both » — 0 and r — . These terms arise from the integration by
parts of r*+'(v,, + r,). We will determine appropriate values of o,
and o later.

First, let us dispose of the singularity by calculating # = 7, for a
homogeneous medium for which n = ex/ex = 1. Then 7, satisfies eq.
(5)in 0 < # < v and the boundary conditions

71(0, 5) = #y(m, 8) = 0.
The expression
]
By = A sin 56 — % f 5(8' — ) sin s(0 — 8)d8’
0

satisfies the equation and the first boundary condition. 4 is chosen to
satisfy the secondary boundary condition. We finally obtain

sin s(x — ) sin s8/s sin s, 0<8<m,
91(6, s) = <sin sy sin s(w — 6)/s sin s, y <0<, (7)
—5,(2r — 6, 8), T <0< 2.

Now in this case, v1(r, 8) is known, and v, ~ 7 for small » and v, ~ 1/r
for large 7, so for (6) to be satisfied for »; it is necessary that —1

< Res < 1.
An analogous calculation yields % in the homogeneous medium, viz,

—cos s(m — 7) sin s8/s sin s, 0<8 <y,
W, = < —cos 8y cos s(w — 6)/s sin sw, vy <0 <m, (8)
1D1(2W — 0, T), T < 8 < 2.

Again in this case, w, (r, 8) is known, w, ~ r for small r and w; ~ Inr
for large r, so for (6) to be satisfied for w; it is necessary that —1
< Res <0.

We now use these expressions for the potentials due to a line charge
in a homogeneous medium to obtain the potentials in the presence of
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the wedge. Note the way 6 and v are interchanged in egs. (7) and (8)
to make 7, and @, continuous. We choose a similar form for 7, setting

sin s(r — ) sin s, for 0<f#<a
sin sa sin s(r — 6), for a < <m,

=10+ B
thus satisfying the differential equations, the boundary conditions
at § = 0, § = x, and the continuity condition

i(a—,s8) — (at,s) = 0.
B is determined from the second continuity condition
?'(ax—,s) — o' (a+, s) = 0,
where
1= e&fe.
We find

B = — (1 — ’1)17’;(0!, S) .
8[n sin sa cos s(m — a) + cos sa sin s(r — a) ]

The transform of the odd part of the potential % is then given by

(0, 8) = M(6, s)/sP(s, &, m), (9)
where
P(s, 8, 8) sin s(r — v), 0<i<a
_ | P(s, e, 6) sin s(r — «), a <l <4z
M6, s) = P(s, a, v) sin s(r — 6), y< < (10)
—M2r — 8,s), T <6 < 2,
and

P(s,a,8) = (1 + 4)sinsf — (1 — 7) sin s(2a — 6). (11)

A similar calculation yields the transform of the even part of the
potential, viz,

w(8, s) = N(0, s)/sQ(s, a, ), (12)
where
—R(s, 8, 8) cos s(r — v), 0<fi<c
_ | —=R(s, @, 8) cos s(m — v), a< <4«
N(®, ) = —R(s, &, v) cos s(r — 6), y<0<w (13)
N(2r —0,s), T <6 <2,
and
Q(s,a,8) = (1 + 7) sinsf + (1 — 7) sin s(2a — ), (14)

R(s,a,8) = (1 + ) cos s — (1 — n) cos s(2a — 6).

Next, we must invert #(6, s), w(6, s) to obtain v(r, 8) and w(r, 6), or
rather their forms for small r, since we are primarily interested in the
behavior of the potential near the wedge tip.
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IV. THE INVERSION INTEGRAL

If the integral (4) defining #(6, s) converges absolutely for all s in
the strip o1 < Res < 3, then u(r, 6) is given by the inversion integral®

1 c+iwo
(6, s)r—ds, (15)

Zﬂ c—1io0

u(r, ) =

where the integration contour in the complex s plane is any vertical
straight line Re s = ¢ with ¢, < ¢ < s2. We have already seen from
the derivation of #; and %; that —1 < g2 < o1 < 0. An examination
of (9) to (14) shows that, while #(6, s) is regular at s = 0, w(0, s) has
double pole there. Further, as we shortly show, both # and % have a
countably infinite number of poles. They are all real, and the nonzero
poles are all simple. The largest of the negative poles, at s = s,
satisfies —1 < —sp < 0. Since the strip ¢; < Re s < ¢2 can contain
no singularities of %(8, s), it follows that ¢; = so, 02 = 0. Assuming so
is known, since @(8, s) = 1[5(8, s) + w(6, s)], eqs. (9) to (15) provide
an explicit integral representation of the desired potential u(r, ).
This expression for u seems much more suitable than the expression
given by Smythe? for determining the small r behavior of .

The integral can be evaluated by the residue theorem* by closing
this contour with large semicircles, to the left for small r and to the
right for large r. Examination of the forms for # and , given by eqs.
(9) to (14), reveals that the integrand of eq. (14) vanishes so rapidly
on the semicircles that, as the semicircle radii tend to infinity, the
semicircles make no contribution to the integral around the contour.
The sum of the residues enclosed by the left semicircle thus gives the
small r behavior of u; those to the right the large r behavior. It is clear
from (11) and (14) that, if p # 0 is a zero of P(s, @, 7), then so is —p,
and, similarly, the nonzero roots of Q(s, @, ) come in pairs. Let pa,
gn, n = 1, 2, -+ denote the positive roots of P and @, respectively.
Then it follows that, for r < 1,

_ o1& | M@ pyr . NG g
u(r, 3) = 2;::1 { PnP’('Pn, @, 1r) QnQ’(Qn, a, 1r) } ] (16)
while, for r > 1,
_ _N(s,0)
w0 = 5570, a1 ™"

_ls { M8, p)r— | N(8, gu)r 9"
2 n=1 'PnP’(Pm a: 7") an’(qn» «, T)
The poles of # and  lie at the zeros of P(s, a, v) and Q(s, @, 7)

except, of course, when M (s, 6) and N (s, 6) also vanish for the same
value of s. For example, 7 has a removable singularity at s = 0. Since

} L)
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the zeros also depend on 5, we emphasize this by writing P (s, «, 7)
and Q(s, a, 7) as P(s, o, 7;n) and Q(s, o, m;n). Then it is simple to
show that

QG 0 mim = 1P (s,0,mi7 ), (18)

Q(SJ CE,TF;T,‘) =P(s,1r—a,1r;7;). (19)
If we set s = p, then P(s, o, 7; 7) = 0 can be written
1+ 9)sinpr + (1 — 9) sinp(r — 22) =0,

which is identical to eq. (15) of Ref. 1 with 8 = =, the case of an over-
hanging electrode. The two smallest values of p for various values of
n are then given by Fig. 11 of Ref. 1, here reproduced as Fig. 3. From
Fig. 3 and eqs. (18) and (19) we see that, if 0 <7 < 1,0 < a < 7/2,
or 1 <n, /2 <a<m then p, > 1, ¢ <1, while if 0 <7 <1,
/2 <a<wmorl<n 0<a<mnr/2 then p; <1, ¢ > 1. In all
cases, P2 > 1, ¢ > 1. If p, = min (p,, ¢1), we have shown that for
r < 1, Vu ~ ro-1 and that for all angles « and ratios 5, py < 1 so the
field is always singular at the tip of the wedge. For the case of an over-
hanging electrode for which the potential is given by v alone, Vo ~ r71=},
so we have substantiated the local analysis of Ref. 1 by the solution
of a complete boundary value problem.

Fig. 3—The zeros of P (s, , =) for various ».
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V. REALITY AND SIMPLICITY OF POLES

One minor task remains to complete our analysis. We must show
that all the roots of P(s, @, #) = 0 and Q(s, a, ) = 0 are real and
simple. We write the two equations as

sin s = +FE sin (7 — 2a)s, (20)

where E = (1 — n)/(1 + ). We exclude the case 2a = m, for which
the zeros are clearly real and simple. If we set s = o + 47, the real
and imaginary parts of eq. (20) become

sin 7o cosh 77 = =+E sin (r — 2a)¢ cosh (v — 2a)7.

cos o sinh 77 = +E cos (r — 2a)e sinh (r — 2a)7.
Divide the first by cosh =r, the second by sinh =, square, and add to
obtain
cosh? (r — 2a)7

2 (o
coshi 7y + cos? (v — 2a)0

_sinh? (x — 2a)7

sinh? wr

B [sinz (x — 2a)0
]=L (21)

With 2a # =, |r — 2a| <, 7 # 0, so that cosh? (x — 2a)r < cosh? =7,
sinh? (7 — 2a)7 < sinh? =, eq. (21) implies E? > 1, which is impossible
since £? < 1 for 0 £ 5 < . By assuming a complex zero, we arrive
at a contradiction, so all the zeros of P and @ must be real.

If s is a multiple zero of (20), it must also be a zero of one of the
equations obtained by differentiating (20),

cosws = +=F (1 — 2?&) cos (2o — m)s. (22)
If we square and add (21) and (22), we get
2
$=ﬁmw—mm+(1—%)mﬁ@a—ﬂ. (23)

Since (1 — 2a/#)% < 1, (23) implies (1/E?) < 1, which is a contradic-
tion. Thus, all the zeros of P and @ must be simple.
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