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Using the paraxial ray approximation, simple formulas for the cross
polarization introduced by curved reflectors are developed. In particular,
when the reflectors are quadric surfaces of revolution with the cenler ray
of the beam passing through the foci, the maximum cross-polarized field
amplitude throughout a gaussian beam, relative to the on-axis copolarized
field, is

2y
RC

where e is the base of the natural logarithm, £ is the 1/e power radius of
the beam, k, is the curvature of the reflector perpendicular to the plane of
incidence, and 8; is the angle of incidence. For such reflectors, the beam
fields are accurately represented by a superposition of just two gaussian
modes for each plane of polarization: the fundamental mode, which cor-
responds to the co-polarized gaussian beam, and a higher-order mode, which
accounts for the cross-polarized field and the amplitude “‘space”’ taper.
Transformation of a beam through a general sequence of such reflectors is
influenced by three factors: the curved reflectors, longitudinal propagation
lengths, and rotations of the plane of incidence. The effect of each factor
is described by a 4 X 4 matriz relating the input and output gaussian
modes. Several typical beam-reflector systems are analyzed by this method.
Theoretical cross-polarization patterns are shown to be in accurate agree-
ment with measurements on a symmetrical dual-reflector system.

- C sin 6,

I. INTRODUCTION

At millimeter wavelengths, normal waveguide losses become too
large in many applications. For example, long lengths of waveguide are
required in satellite earth stations between the transceiver and the
reflector antenna focus. To reduce these losses one may use quasi-
optical beams! which employ reflectors or lenses for refocusing at
various intervals, thereby confining the beam within a geometric tube
with no (lossy) guiding walls. Long-focal-length, multiple-reflector
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antennas (e.g., Cassegrainian and Gregorian antennas) may them-
selves be thought of in the context of beam waveguides.

In another application, periodically refocussed beams of millimeter
or submillimeter wavelength electromagnetic waves might be used? as
a means of distributing large amounts of information in cities. Such a
transmission system is referred to as Hertzian cable.

In the above beam waveguide systems, it is desirable to double the
system capacity by transmitting separate signals on each of two
orthogonal polarizations (e.g., vertical and horizontal linear polariza-
tions). In such dual-polarization systems, cross-polarization coupling
introduced by the refocusers can significantly decrease system per-
formance because of crosstalk between the different signals carried on
each of the two polarizations.

The purpose of this paper is to describe simple formulas for com-
puting the cross-polarization coupling introduced by sequences of beam
refocusers which consist of quadric reflector surfaces arranged with the
beam axis passing through their foci.

Il. CROSS POLARIZATION OWING TO REFLECTOR CURVATURE

Consider a beam incident on a flat reflector, as in Fig. 1a. We restrict
our attention to beams with narrow angular divergence where the
paraxial ray approximation applies so that, for example, the beam
field may be described in terms of gaussian beam modes.? The paraxial
ray approximation applies roughly whenever the 3-dB angular diver-
gence of the beam is less than one radian.

The geometrical opties law of reflection from a perfect conductor is*

é = 2A(R-&) — &, (1)

where ¢; and ¢, are unit vectors in the direction of the incident and
reflected field polarizations, respectively, and A is the surface unit
normal vector. The caret ““*” indicates a unit vector. If the polarization
of the incident field is a fixed linear polarization throughout the beam
and is perpendicular to the surface normal, then

ér = '—é:; (2)

i.e., the reflected field is also a fixed linear polarization throughout the
beam. As expected, a flat plate introduces no eross polarization.

In general, a reflector will be curved with two principal radii of
curvature,* as shown in Fig. 1b. The surface unit normal vector will no
longer be perpendicular to é; at all points. In fact, for small displace-
ments Ar and Ay along the directions of maximum and minimum

* See Ref. 9, Sec. 6.11, for example.
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Fig. 1—(a) Reflection of a beam from a flat plate. (b) Reflection of a beam from
a curved surface.

curvature, respectively, the unit normal vector will change by
Aﬁ = —Kl(Ax).'ﬁ _— Kz{Ay)y, (3)

where «; and «; are the maximum and minimum curvatures, respec-
tively, and positive curvature indicates the surface bends toward the
incident radiation.

This change in the surface unit normal vector causes the term (#-¢;)
in eq. (1) to change from zero to

(-6) = —xi(Az) sin » + ka(Ay) cos , (4)

where » is the angle between the plane of incidence and the direction
of maximum curvature as shown in Fig. 1b.

Thus, due to surface curvature, the polarization of the reflected field
varies over the surface from that resulting from a flat plate (—é&;) by
an additional component 27 (7i-é;). Part of this component represents
the change in the in-line polarization as a consequence of the change in
the reflected-ray direction, and part represents cross-polarized signal
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introduced by the surface curvature. The portion of 7 that is aligned
with the cross-polarized field (the field in the plane of incidence and
perpendicular to the reflected ray) is of magnitude sin #;. Thus, the
ratio of the cross-polarized field to the incident field at a given point is

¢ = 2 sin 6;[ —«x:(Az) sin v + k2(Ay) cos v] (8)

or

¢ = —2(Ap) sin 6;V(x; sin »)? + (k2 cos ) cos (¢ + o), (6)
where

o = arctan (E cot, p)-
K1
Ap is the displacement of the reflection point from that of the beam
center and ¢ is the angular direction of that displacement relative to
the axis of maximum curvature. For a fixed displacement, Ap, the
direction, ¢, that gives maximum cross-polarized signal ratio, ¢, is
Pmax = —0. .

If one assumes the incident polarization is in the plane of incidence
rather than perpendicular to the plane of incidence, the resulting cross-
polarized field is also found to be given by eqs. (5) and (6).

If the incident beam has a gaussian amplitude distribution

2
E;= Eyexp{— (35'02) [1 — sin?#8; cos? (¢ — »)] (7
(where £ is the 1/e beam intensity radius), one may calculate the ratio
of the cross-polarized field relative to the in-line on-axis field (denoted
by capital C to differentiate from the lower case ¢, representing the
ratio of in-line and cross-polarized fields at the same point),

C = —2(Ap) sin 0;V (k; sin »)? + (ks cos »)? cos (¢ + o)

exXp § — (ggﬂ)z [1 — sin?f;cos? (¢ — »)1;- (8)

For a fixed direction ¢, the radius Ap at which the relative cross
polarization is maximum is

£
fCmex V1 — sin? 6; cos? (¢ — ») ®)

with

2¢ sin 0,V (k; sin »)? + (x5 cOS »)?
Cmax = - ’ 10
Ve V1 — sin? 8; cos? (¢ — ») co8 (¢ + o) (10)

and the direction, ¢¢,,,, which provides the greatest cross polarization,
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is given by

(11)

. sin? §; sin (v + o) cos (v + o)

Plmax = arctan [ 1 — sin? 4, sin? (v + o) 7

When the plane of incidence coincides with either of the principal

curvature planes (» = 0° or 90°), as in the case of quadric surfaces with

the beam center ray passing through the surface foci, the expression
for the maximum cross polarization of eq. (10) simplifies to

2 .
Cmnx = Té Ki SIn 6;‘ (12)

(plane of incidence coincides with either plane of principal curvature),
where «, is the curvature in the direction normal to the plane of
incidence. Thus, in this case, the maximum ecross-polarized field is
found in a direction normal to the plane of incidence in the direction
of maximum (if » = 0°) or minimum (if » = 90°) surface curvature.

In one example, an antenna is formed from two cylindrical mirrors
such that » = 0° and x, = 0 for both mirrors, which by eq. (12) in-
dicates that no cross polarization is generated by the mirrors, in agree-
ment with the results of Ref. 5.

Another example is the offset paraboloid launcher, shown in Fig. 2.
The maximum cross-polarization amplitude ratio was derived in Ref. 6
and found to be

6. tan (8q/2)
Jeln10 ’

Cmax = (13)

T ‘. AXIS OF
FOCAL LENGTH=F PARABOLOID

Fig. 2—Offset paraboloid launcher.
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where 6, is the 10-dB half angle of the gaussian beam incident from the
focus and @, is the offset angle of the beam center ray.

The 1/e beam intensity radius £ at the paraboloidal reflector is
related to the 10-dB half angle, 6., by

£ = 6.F sec? (8o/2) .
Vin10 '’

where F is the focal length of the paraboloid. The curvature of the
paraboloid in the direction perpendicular to the plane of incidence is

cos (60/2)
= TaF

00 = 29,‘, (14)

(15)

Using eqs. (14) and (15), it is seen that eq. (12) is in agreement with
eq. (13).

Another example is the use of e¢ylindrical mirrors in Hertzian cable
systems. A typical refocuser mirror arrangement’ is shown in Fig. 3.
The beam remains in a horizontal plane (the plane of incidence) as it
is refocused by two cylindrical mirrors both tilted so that their direc-
tion of curvature makes an angle » = 50.5 degrees with the plane of
incidence. The output beam has changed direction from the input beam
by 225 degrees. The angle of incidence at both mirrors is 33.75 degrees
and the curvatures are

Ky = 0,
Ky = 1 meters™!
66 ’
and the beam radius is
£ = 0.212 meters.

The tilted orientation of the mirrors allows the mirrors to have equal
curvature and large aperture efficiency while maintaining sharp focus-
ing and beam symmetry.’

The maximum cross polarization for the pair of reflectors is less than
twice the maximum cross polarization from either one of the reflectors
alone. From eq. (6), ¢ is zero, and from eq. (11)

emae = 10.515 degrees.
From eq. (10) the maximum cross polarization is
20 logio (2Cmax) = —48.4 dB. (16)

This is indeed a small value; however, in Hertzian cables with many
such refocusers, this cross polarization could accumulate to be a
problem.
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Fig. 3—Typical Hertzian cable refocuser-redirector.

By using geometric optics, eqs. (1) and (7), the cross polarization
has been numerically computed for various ellipsoids and paraboloids.
The maximum cross polarization was found by a trial-and-error search
and compared with that predicted from the paraxial ray result, eq. (12).
The comparisons indicate that eq. (12) is accurate to within 0.1 dB
for 10-dB half angles of the beam less than 45 degrees.

lll. DECOMPOSITION INTO GAUSSIAN BEAM MODES

As described in the previous section, with quadric surface mirrors
and the beam center ray passing through the foci of the surfaces, the
cross-polarized field resulting from reflection of a perfectly polarized
incident gaussian beam is maximum in a direction perpendicular to the
plane of incidence and has the maximum value, relative to the in-line
polarized field on axis, given by eq. (12), at a distance £ from the beam
center ray.

It is shown in Ref. 6 that this type of reflected field can be repre-
sented as the superposition of two gaussian beam modes :?

(z) Fundamental mode

V25

w0
. Core— P 2\ _ ket
exp Jkz S + [a.rctan (kéﬁo) 2Ron :” , (A7)
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(72) Higher-order mode
. r . V2np
Ey = [Vu(fcosa — gsina) — Ho(£sine + § cos a:)]—2
Vg

e — 24 2 ) __ ke
exp jkz 2E§1+3[2amtan(k£§1) 2Ru1]}’ (18)

where 5 is the free-space impedance, /uo/eo, and Voo, Hoo, and Vo,
Ho, are the phasor coefficients of the fundamental and higher-order
gaussian beam fields for the cases when the incident electric field is in
the plane of incidence (V) and perpendicular to the plane of incidence
(H), respectively. The subscripts refer to the standard TEMg, and
TEM,: mode notations of Ref. 8, not the “m” and “n” of Ref. 3. 9
and #£ are unit vectors normal to the beam axis in the plane of incidence
and normal to the plane of incidence, respectively; p, «, and z are
cylindrical coordinates, with z denoting distance along the beam axis
from the beam waist.

At the beam waist, z = 0, the radius of curvature of the phase front
of the beam field, R, is infinite, and the field varies with increasing
distance, p, from the axis at a rate determined by £. For the fundamental
mode, the field is maximum on axis and decreases to 1/+/e of its maxi-
mum value at p = £q. For the higher-order mode, the field is maxi-
mum at p = £, and decreases to \(2—/93 of its maximum value at
p = V2£o. Away from the beam waist z 0, the beam-field amplitude
varies with p at a rate determined by ¢ instead of £ and the phase
front has a finite radius of curvature R. £ and R are determined from
£ and z by the following formulas :*

= ¢ 1+(ki£2)” (19)

R=z[1+(%)2]- (20)

The choice of eq. (18) as the higher-order mode is based® on its
ability to approximate simultaneously both the cross-polarization and
the “space” taper (amplitude asymmetry from top to bottom of mirror)
properties of offset reflectors.

Both modes have a characteristic exponential attenuation with
distance from axis, exp(—p?/2£%), and a spherical wavefront near the
axis at constant z, denoted by the term, exp (— jkp?/2R). As one passes
through a beam waist, with increasing z, the on-axis phase advances
by = for the fundamental mode and 2= for the higher-order mode
(relative to the plane-wave retardation, e—*2). Thus, if the cross-

and
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polarization field (due to the higher-order mode) is in phase with the
in-line polarization field at the beam waist, it will be in phase quadra-
ture at large distances, z >> k£, from the beam waist.

From the results of Section IT and eqs. (17) and (18), we find that,
if the higher-order mode is generated by reflection with incidence
angle, 8;, from a quadric surface with curvature, «,, perpendicular to
the plane of incidence, beam radius, £, and reflected phase front radius
of curvature R at the reflector, then

£00(zr) = Eul(zr) = ¢ (21)
Ru(2;) = Ru(z:) = R, (22)
and
aVa_ Hoa _ - in 6,
Y = VU{] = Hoo = ‘Jécmax = 255,1 sin gt: (23)

where the reflector is at z = 2,, and the beam waist is at z = 0. A
picture of a typical aperture-field decomposition into gaussian beam-
mode fields is shown in Fig. 4.

Note that, at the reflector z,, the two modes are in phase with equal
beam radii and phase-front curvatures. As one progresses along the
beam to an observation point, 2z, the beam radii and phase-front

'v '} Y
! 1
I I
I -/ L\‘ \ I
I '['_ - t -\ =% = 71 -~
Eoo + Eos = Eror
FUNDAMENTAL HIGHER ORDER TOTAL
(a)
% %
' ' p
|
4 T =
— % ¥ (_ R s—
/--\ —
Ego + Eg1 = Eror
FUNDAMENTAL HIGHER ORDER TOTAL

(b)

Fig. 4—Two-mode decomposition of aperture field (looking opposite to direction
of propagation). (a) Feed horn vertically polarized (parallel to plane of incidence).
(b) Feed horn horizontally polarized (perpendicular to plane of incidence).
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curvature are still equal

Fool2o) = bonlen) = Eqf1 + (,f—f,) (24)

and
F 2
Roo(z0) = Roi(20) = 20 [1 + (%) ] j (25)
where £ and z, are given by?®
P £
L. S— 26
N =
and
R
= T R/ 0

However, at z, there is a relative phase shift between the higher-order
mode and the fundamental mode, from eqs. (17) and (18),

AD = Pg1(20) — Poo(20) = arctan (f;—z) — arctan ({—'E;) (28)
This is the relative phase shift near the beam waist mentioned above.
When the beam is focusing down towards the beam waist, R and z are
negative; when diverging away from the beam waist, B and 2 are
positive.

The power carried by each of the modes in terms of their mode
phasors is

0 2r 2
P = ] _odpf da|l2§—|= |A |2 (29)
0 0 n

where A is the phasor of the particular mode in question;i.e., Voo, Hoo,
Vﬂ.l, or Ho].

IV. MATRIX REPRESENTATION OF BEAM-WAVEGUIDE FACTORS

To keep track of the cross polarization generated by a sequence of
factors in a beam-waveguide system, it is useful to represent each
factor in terms of its transmission matrix® for the fundamental and
higher-order modes. We will consider three types of factors that
normally affect cross polarization in the reflection process: (7) the re-
flectors per se, (i) the longitudinal propagation length, and (i77) the
rotation of plane of incidence. See Fig. 5 for an example.

If £ and R are the same for all modes at the input to a series of
reflectors, they remain so throughout the system. Thus, we will assume
£ and R the same for all modes in what follows. If several modes are
injected with different pairs of £ and R, the response to each mode may
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Fig. 5—Factors influencing cross polarization in a reflector-type beam system.

be computed as shown herein and then superposition used to find the
total output.

As a dual-mode beam progresses along, undergoing a number of
reflections, each factor may be thought of as a reflectionless, passive,
eight-port device, as shown in Fig. 6. The coupling between the various
modes may be expressed by the matrix equation

b = Ta, (30)
SIDE a SIDE b
— 2
[o T ——
Voo —=0 Vou
—aa
Hop O=——— BEAM p—————0 Hg
—a WAVEGUIDE =b
Vo O=—— FACTOR ——=52 Vo
— a
[ ———— ]
Hoq =152 Ho
b= Ta
Voon Voos
T - | Hoos T _ | Mooa
Vo1 Voia
Hoip Hoia

Fig. 6—The beam waveguide factor as a reflectionless eight port.
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where a is a four vector whose components are the phasors of the input
modes,

V(I[)a
H 00a
VOlu !
H Ola

(31)

and b is the four vector whose components are the phasors of the
output modes

Voos
Hﬂﬂb .
Vﬂlb
H!!lb

b= (32)

The properties of the beam factor are described by the four-by-four
factor matrix,
Tu le T13 Tld
_ |Taa Tea Tas Ta
=11y Tu Tu T (33)
T41 T42 T43 T4'i

In general, the matrix T depends on the parameters of the beam
propagating through the system. However, it is a simple matter to
compute the appropriate matrix for each beam and beam direction one
wishes to apply to the system.

4.1 Curved-reflector matrix

To express the beam modes in a form which allows the reflectors to
be oriented arbitrarily in space, the beam coordinates at the input and
output of a reflector are defined with z in the direction of propagation,
y in the plane of incidence perpendicular to z and toward the surface
normal, and z normal to z and y (thus normal to the plane of incidence)
so that (z, y, ) forms a right-handed cartesian coordinate system, as
shown in Fig. 7.

By using the cross-polarization analysis of Section II, the mode
definitions of Section III, and conservation of power, the matrix
elements applying when a fundamental mode is incident are easily
determined :

Tll = Ul - 72: Tlﬂ = =%, TZE = - Nl - 72) T24 = ‘Y} (34)
Tiw=Tu=Tu=Tu=0,

where v is given in eq. (23) as 2, sin 6;. Note that, for reflectors
concave or convex in the direction perpendicular to the plane of
incidence, vy is positive or negative, respectively.
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Fig. 7—Reflector matrix components (fields viewed in direction opposite to propa-
gation direction). (a) Vo incident. (b) Hgg incident.

Since the complex conjugate electric field satisfies Maxwell’s equa-
tions and the boundary conditions on a perfect conductor (time re-
versal symmetry), the remaining matrix elements follow readily from
the above real matrix elements of eq. (34):

Tow= —V1—9% Ta=—vy, Tu=+vN1—17% Tu=y,

Tu = Taz = Tda = Tu = 0. (35)

Note that V modes (plane-of-incidence modes) do not couple to H
modes (normal-to-plane-of-incidence modes) during reflection from a
curved reflector. Thus we have

1— 42 0 —y 0
0 —V1l — 42 0 ¥
Tra= 36
= o T e s (36)
0 5 0 1 — 42

Since the matrix only describes transmission one way, the matrix
elements are not necessarily directly related by reciprocity.
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4.2 Longitudinal-propagation matrix

As mentioned in Section II, there is a relative phase shift between
higher-order modes and their corresponding fundamental modes. In
analyzing beam propagation through a system, it is only required to
keep track of the relative mode phases to compute the overall cross-
polarization coupling. Thus, we will lump all the differential beam-
waist phase shifts, A®, of eq. (28) with the higher-order modes. As a
result, the beam-factor matrix for a longitudinal-propagation length
lis

1 0 0 0
01 0 0
Tlp = 0 0 e_l_jA@ 0 ] (37)
0 0 0 etid®
where
— &\ Fa
A® = arctan ( A E’) arctan ( VE ) ) (38)

and 2, and 2, are the positions, relative to the beam waist, of the input
and output, respectively.

4.3 Rotation-of-plane-of-incidence matrix

As described in Section 4.1, the beam coordinates are attached to the
plane of incidence of each reflector. Thus as one passes from one reflec-
tor to another, the plane of incidence may rotate, and what had been
a plane-of-incidence mode (V mode) may become a normal-to-plane-
of-incidence mode (H mode). From Fig. 4, if one rotates the plane of
incidence clockwise by an angle 8, the projections of the input modes
onto the output modes give the following beam factor matrix for rota-
tion of plane of incidence:

cosf —sin 8 0 0
__|sinpB cos 8 0 0 '
Tro = 0 0 cos28 —sin 28 (39)
0 0 sin 28 cos 28

V. TYPICAL BEAM-WAVEGUIDE APPLICATIONS

In this section, we illustrate the application of the above formulas by
considering some typical beam-reflector systems.

5.1 Symmetrical dual reflector

In the symmetrical dual-reflector configuration shown in Fig. 8a,
there is no rotation of plane of incidence. The arrangement comprises
a curved reflector, followed by a longitudinal propagation length,
followed by another reflector. Thus the overall beam system matrix is
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the product of three beam-factor matrices
T = TretoT1pT et 1, (40)

where T is given by eq. (36) and T;, by eq. (37). Neglecting terms
of order %, we have

1 0 —71 + %y, 0
. 0 1 0 —v1 + e#8Ty,
T= —7v: + em'p‘h 0 eia® 0 |
0 — 2 + %y 0 gia®

(41)

From eq. (41), we see that to avoid conversion from a fundamental
mode input to a higher-order mode at the output,

e — Y1 _ fiwiisinba (42)
Yo Exi28infi’

which implies
El“ll Sin 0 = EZKJ.‘J sin 0,’2, AP =0 (43)

or
Eixy1 8in 0; = — Eakyo Sin By, AP = . (44)

Assuming symmetry, & = £ and §,; = 6:s, and eq. (43) shows that
cross polarization is avoided if the two mirrors have equal concave
curvature perpendicular to the plane of incidence and are close enough,
Az < k£, or both far enough to one side or the other of the beam
waist so that negligible ‘“beam waist” phase shift takes place. From
eq. (44), cross polarization can also be avoided if the reflectors are on
opposite sides of the beam waist and in its far field, Az >> k£, if one
reflector is concave and the other convex with equal and opposite
curvature normal to the plane of incidence.

Note, from eq. (41), if two identical reflectors are placed symmetri-
cally about the beam waist in the far field, then y; = v, and A® = =
so the cross-polarization coupling is 6 dB higher than that resulting
from just one of the reflectors.

Measurements made by K. C. Kelley® on a symmetrical dual-
reflector beam-waveguide feed subsystem for a Cassegrainian antenna
provide a valuable check on this theory for the combined effect of two
of the factors, reflector curvature and longitudinal propagation
length. An analysis of his 11-GHz measurements is given in the
appendix. The reflectors had equal curvature, the beam size was nearly
the same at both curved reflectors, and the relative phase shift was ap-
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T = Trer, Tlp TREF,
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(a)

T = Taee, Tl Trot Ther,

|- —————— AZ ————— ——|
VERTICAL

T =Trer, Tep Trot Trer,
w2

T —=HORIZONTAL RAY

()

Fig. 8—Some typical beam waveguide applications. (a) Symmetrical dual re-
flector. (b) Asymmetrical dual reflector. (¢) Right-angle dual reflector.

proximately 90 degrees between fundamental and higher-order modes.
Thus, from eq. (41), the cross-polarization coupling of the pair at the
center frequency is approximately 3 dB higher than that from a single
reflector, as confirmed by the measurements. Also, the theoretical
frequency dependence of cross-polarization coupling is in approximate
agreement with the measurements as shown in the appendix and
Fig. 13.
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5.2 Asymmeirical dual reflector

In the asymmetrical dual reflector shown in Fig. 8b, the plane of
incidence is rotated = radians. The overall matrix is the product of
four beam factor matrices,

T = Tref ZT!meh tTref 1 (45)
where, from eq. (39), since 8 = ,
-1 0 00
0 -1 0 0
Trot.r - 0 0 1 0 (46)
0 0 01
Thus (neglecting terms of order v?),
-1 0 (71 + €%y3) 0
T = 0 -1 0 (y1 + e?8%y,)
(v2 + €2%y1) 0 % 0 '
0 (v2 + e%y,) 0 eid®
(47)
and the requirement that higher-order modes be avoided is
g—idh — _ Eik1 sin Oir (48)

EgKlg sin ﬂ,’z

Thus the conclusions stated above for the symmetrical dual-reflector
configuration with equal (or opposite) curvature on reflectors 1 and 2
apply to the asymmetrical dual-reflector system with opposite (or equal)
curvatures on reflectors 1 and 2, respectively.

Note, with closely spaced reflectors in the asymmetrical reflector
arrangement (Az — 0, 6;; = 6..), a pair of equal curvature mirrors give
6 dB more cross-polarization power coupling than just one of the
mirrors, whereas oppositely curved mirrors give cancellation of cross
polarization (a well-known property of the Cassegrainian reflector
arrangement).

5.3 Right-angle dual reflector

In the right-angle dual reflector shown in Fig. 8e, the plane of
incidence is rotated by /2 radians. From eq. (39), with 8 = 7/2, the
matrix for rotation of the plane of incidence is

0 —1 0 0
1 0 0 0

Trut /2 = 0 0 _ 1 0 ] (49)
0 0 0 -1
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and the resulting overall matrix is (neglecting terms of order v*)

0 1 —ettyy -y
~1 0 yi —eidty,
T = , _ .
—eitty,  —yy —e? 0 (50)
v — gid¥y, 0 —piA®

From eq. (50), it is seen that the cross polarization introduced by the
first curved reflector cannot be cancelled by the second curved reflector
in a right-angle dual-reflector system.

5.4 Confocal beam feed for an offset Cassegrainian antenna

As mentioned in the introduction, an attractive application of beam
reflectors is as a feed for a satellite-system ground-station reflector
antenna. To show how the above theory may be applied to multiple-
reflector antennas, we consider the example of an offset Cassegrainian
antenna fed by a beam waveguide. The offset Cassegrainian' con-
figuration provides a main reflector aperture with little or no blockage
and is shown in Fig. 9 along with a beam reflector feed path from the

z|

5.2 MAIN REFLECTOR
5% » - PARABOLOID
N
2]
]

CENTER RAY OF BEAM

ELLIPSOID

REFOCUSER™ HYPERBOLOID

_~ “SUBREFLECTOR

- AXIs oF
=7 MaIN PARABOLlIC
P REFLECTOR
FOCUS
OF MAIN
REFLECTOR

«\c; OFFSET
W% LAUNCHER
\fc/v;!» IN SIDE CAB
A4 {ELLIPSOID)

Fig. 9—Beam reflector feed for offset Cassegrainian antenna.
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subreflector to a focusing reflector at the elevation axis and on out the
elevation axis to an offset launcher® in a side cab.

We assume a confocal feed-reflector arrangement as suggested by
Arnaud.? Subreflector A is an hyperboloid with foci at F and B, re-
focuser B an ellipsoid with foci at A and C, and the offset launcher
reflector is an ellipsoid with foci at ¢ and B. The advantage of this
arrangement is that the beam diameters at A and C remain constant
with frequency, as do the reflector curvatures, since the beam always
seems to originate from the fixed points G, C, B, A, or F. This assumes
the feed horn at ¢ has constant beam width and phase center position
over the range of frequency variation.

Tracing from ( through the beam reflector system, we have the
following factors: reflector C, longitudinal propagation length dpe,
plane of incidence rotation fge, reflector B, longitudinal propagation
length dag, plane of incidence rotation 845 = —w/2, reflector A, longi-
tudinal propagation length dy 4, plane of incidence rotation By = m,
and reflector M. Thus the overall matrix

T = Trel' MTrobrTIp dMATrel A Trot—r,'ﬂTlpdABTref BTmtﬂycTIdecTref C- (51)

Since the cross polarization is small and we may neglect terms of
second order (v* << 1), it is easier to add the phasor higher-order mode
coupling coefficients as one progresses through the system than to
multiply out all the matrices shown in eq. (51).

Yvv = Yag = —{vm + exp(jAPara)ya
+ sin B¢ eXP[j(A‘I’MA + A®up + Aq’Bc)]TG}, (52)
YVH = —YHV
= exp[j(A®ya + APap)][vs — cos Bac exp(jAPac)ycl, (53)

where, for example, yyx is the “normal to plane of incidence” output
higher-order mode, when unit “parallel to plane of incidence” funda-
mental mode is present at the output, and

ZR Z2¢
Adpe = arctan | s5- | — arctan | -~ |, 54
e (i) (#5.) 59
and _
YB = 2EBKJ_B sin 855, (55)

Epc being the beam waist radius of the beam traveling from reflector C
to reflector B, zg, and z¢ the longitudinal positions of reflectors B and C,
respectively, relative to that beam waist, £ the beam radius at reflec-
tor B, and «,, the curvature of reflector B perpendicular to the plane
of incidence.

The curvature in the plane perpendicular to the plane of incidence
for quadric surfaces of revolution, with beam center rays passing
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through the foci, may be shown to equal*

W= o (56)
where a is the major axis, b the minor axis, and 6; the angle of incidence
of the beam center ray. Using eq. (56) and neglecting diffraction
(A®y4 = 0) between the subreflector A and the main reflector M, one
finds that the cross-polarization coupling due to the Cassegrainian
combination of M and A4 is

ins
Yeass = Yu + ¥4 = 'YM%%{“E) ) (57)

where ¢ is the offset angle, relative to the main reflector axis of the
beam center ray incident on the subreflector A. Equation (57) is just
the result one would obtain from an equivalent parabola'® with focal
length (e + 1)/(e — 1) times that of reflector M and with beam center
ray offset angle ¢. ,

As frequency decreases from infinity, a beam waist appears on both
sides of reflector B; however, A®,p and A®pc remain equal to /2.2
Because of this phase relation, it is not possible to cancel vz with y¢ in
(53). However, the residual of va + v4 in eq. (52) may be cancelled
by a special choice of 8gc. In fact, if y¢ is adjusted to equal yu + va,
Bsc = w/2 will minimize the cross-polarized modes of both (52) and
(53). To maintain Bz = w/2, it is necessary to rotate the ofiset
launcher in Fig. 9 as the antenna is rotated around the elevation axis,
just as the fundamental mode polarization at the side cab launcher
rotates with antenna elevation angle.

Thus, with A4 = 0, y. = var + va, and Bzc = 7/2, we have

yvv = yar = 0 (58)
and
|yve| = lvav| = vs. (59)
From (23) and (25) and 8z = 45°,
(Lt 1 Y yang, o Lot dan/dae
va = &g (dAB + dBC) tan 8y kEa (60)

To satisfy the condition on v., we may choose an incidence angle,
8., as follows, from eq. (57),

Ec(LJr L)tang!.c = o, S (5/2)

d(;c dﬂc sin? Oinr !
* Use the method of Ref. 4, Sec. 19.8, for example.
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or

tan ({/2)
(dsc/dsc) + 1

As a specific example to illustrate the cross polarization encountered
in practice, consider the following typical antenna dimensions:

dap _ 23 dpo _ 14
dsc 14’ dgo 4’

tan 8;, = (61)

3' = 7-301 kEA = 4.f1 (62)

where fis the frequency in GHz. Thus, the cross-polarization coupling
becomes

20 log 1o (%) = —8 — 20 logy fdB, (63)

e.g., —34 dB at 20 GHz. The incidence angle required on the offset
launcher to cancel vy + v4(= —54.3 dB) in (52) becomes 1.6 degrees,
which is too small to be practical without blockage, thus other means
would be required to reduce vy¢; for example, the launcher could itself
be an offset Cassegrainian antenna.

The cross polarization due to the ellipsoid refocuser at B can be
reduced by using an additional flat mirror in combination!* as shown
in Fig. 10. With long focal lengths, the beam is essentially of constant
width through the combination, and the resultant incidence angle
allowing no beam blockage for a beam diameter D depends on the
available space A,

1 . (D
6ip = 5 aresin (}T) . (64)

As a specific example, assume there is space available for D/h = %;
whence 6,5 is reduced from 45 to 19 degrees and from eq. (60) the cross
polarization is reduced 9 dB.

ELLIPSOID B
REFOCUSER™ . ‘I
|
_ FLAT |
~~ MIRROR
._r__l_ 3.\_.- 'l
5 |
Y |
| |
| |
¥ __ - _ ¥

Fig. 10—Combination ellipsoid and flat to reduce 8;5.
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VI. CONCLUSIONS

By using the paraxial ray approximation, it has been possible to
develop simple formulas for the cross polarization introduced by curved
reflectors, e.g., eq. (12). The effect of curved reflectors in a beam-
reflector configuration using quadric surfaces of revolution, with the
beam center ray passing through the foci, is shown to be accurately
characterized by two gaussian modes for each of two planes of polariza-
tion. Cross polarization in a general beam-reflector arrangement de-
pends on three factors: reflector curvature, longitudinal propagation
length, and rotation of plane of incidence. Using the gaussian modes
allows one to represent the effect of the above factors by beam factor
matrices which relate the input and output fundamental and higher-
order gaussian modes. Some typical beam-reflector configurations were
analyzed using these techniques. The theory agrees well with measure-
ments on single reflectors,® on a symmetrical dual-reflector system,™
and with numerical ray tracing computations.

There has been considerable interest in the effect of reflector curva-
ture in beam-reflector configurations. In particular, the work by
Mizusawa and Kitsuregawa's is worth noting. They show that the
symmetric amplitude distribution of an optical beam passing through
the foci of a pair of quadric surface-of-revolution reflectors will be
preserved if all the foci lie on a straight line and if the eccentricities of
the two reflectors are properly related. If both reflectors are ellipsoids
or both reflectors are hyperboloids, then the eccentricities must be
equal and the exit beam will be parallel to the entrance beam. If one
reflector is an ellipsoid and one reflector is an hyperboloid, then one
eccentricity must be the inverse of the other eccentricity and the
direction of the exit beam is the reflection around the line through the
foci of the direction of the entrance beam. By using eq. (12), one can
show that only in the case of equal eccentricities does the preservation
of amplitude symmetry imply zero cross polarization and then only
in the infinite frequency limit where beam waist diffraction is negligible
so the relative phase shift between fundamental and higher-order modes
is either O or 180 degrees.

The frequency dependence of the cross-polarization coupling in a
beam-reflector system is an important property not generally indicated
in the literature. The paraxial ray approximation for beam diffraction
used herein provides a convenient means for computing the frequency
dependence of the cross-polarization coupling which, in some cases,
can be quite strong; e.g., in eq. (63) for the reflector configuration of
Fig. 9 the cross-polarized power varies as the inverse square of the
frequency.
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APPENDIX
Comparison of the Matrix Theory With Measurements on a Beam Waveguide

The measurements described in Ref. 10 involved a beam-waveguide
feed for a Cassegrainian antenna arranged as shown in Fig. 11.
Reflectors 9a and 9c are identical ellipsoids approximately 0.76 m by
1.09 m in size with major and minor axes a = 3.656 m and b = 3.656
m/V2, respectively. Reflectors 9b and 9d are flat mirrors. When one
uses the images of the flat mirrors to unfold the beam waveguide, it is
seen that a symmetrical dual-reflector type results as shown in Figs. 8a
and 12. The feed was designed to produce beam waists approximately
at planes u-u and v-v of Fig. 11 and a beam of the proper diameter and
phase curvature at the subreflector position w-w to provide a focussed
wave reflected from the subreflector toward the main reflector (not
shown) of the Cassegrainian antenna. Performance for both vertical
and horizontal polarization was measured by rotating the launching
horn (No. 8 of Fig. 11) around its axis (azimuth axis). Measurements
were made at 10.36, 11.06, and 11.76 GHz for both horn polarizations.
The phase and amplitude of the copolarized signal at the subreflector
position was measured along the intersection line of plane w-w and the
beam-bending plane (the plane of the paper in Fig. 11), and the eross-
polarized signal (at plane v-v) along a line in the beam-bending plane
and also along a line perpendicular to the beam-bending plane. The
cross-polarized signal along the line in the beam-bending plane always
remained below —40 dB relative to the on-axis copolarized signal.

To compare these measurements with theory, the launching horn is
assumed to radiate negligible eross-polarized signal and, since measure-
ments of the beam dimensions throughout the reflector system are not
available, the beam measurements at the subreflector position (plane
w-w) will be used to reconstruct the beam dimensions throughout the
beam waveguide as shown in the following equations. The theoretical
cross polarization will then be computed at plane »-v and compared
with measurements.

Since the horn did not produce a perfectly symmetrical gaussian
beam, the average (over both horn polarizations) of the measurements
at planes w-w and v-v are used in the gaussian beam analysis. From the
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Fig. 12—Unfolded beam waveguide.

measurements at plane w-w, the gaussian beam radius ¢, and phase
front radius of curvature R, at the subreflector position are given in
Table I.

Using the beam transformation formulas of Ref. 8, the beam radius,
£y, at the beam waist b and the distance from the subreflector to the
beam waist z,; are

b= — (65)
V1 + (k&2/Ra)?
Table | — Measured gaussian beam parameters at the
subreflector position
. Phase Front Radius of
Frequency (GHz) Beam Rad;us (meters) Curvature (meters)
10.36 0.355 4177
11.06 0.328 4.623
11.76 0.338 5.027
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and
R,

b = T F (Ro/kE)?’

where k = 2x/A is the free-space propagation constant.
Going from beam waist b in Fig. 12 to reflector 9b at ¢, the trans-
formation formulas give the beam parameters on the output side of the

reflector,
2
t = &,/1+(-,%) (67)

Rew, = 25 [1 n (’“—‘5%)2] , (68)

Zbe

(66)

and

where z;. is the distance from beam waist b to reflector ¢ in Fig. 12,

2y, = 5.797 — 2., meters. (69)

The radius of curvature of the beam phase front on the input side of
reflector ¢ is given by the thin lens formula®

1 1 7
R, = [m - m] meters, (70)

where 1.828 is the focal length of the ellipsoidal reflectors.
The beam radius & at the beam waist d and the distance from
reflector ¢ to the beam waist 2.4 are

£
N | S— 71
“ M+ /R @
and

Re, (72)

2d =TT+ (Ron/kED™]

The beam radius at reflector e (9a) is

_ Zde 2
where the distance from beam waist d to reflector e is
24 = 3.656 — 2.4 meters. (74)

From Section 5.1, the maximum cross-polarized signal at plane v-v
occurs perpendicular to the beam-bending plane at a distance £, from
the axis, where £, is the beam radius at plane v-v

2
£#=Ebo\’1+(:;?%) ’ (75)

and the distance from the beam waist b to plane v-v is
Zbe = Zap — 3.969 meters. (76)
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Fig. 13—Comparison of theoretical and measured cross-polarization signal at
plane V-V.

From eq. (41), the maximum cross-polarized signal amplitude relative
to the on-axis copolarized signal is

— Ye + 6,1'&@ e
Crax = _lTl ) (77)
where the mode coupling coefficient at reflector ¢ is
Ye = 2busosin by, = - 5 (78)

1.828°

because the incidence angle ;. = 45 degrees and the curvature is
ki = (a/b%) cos 6, (a and b are the major and minor axes of the el-
lipsoid, respectively). Similarly,

_ &

Yo = 7898 (79)
A® is the relative phase shift of the higher-order mode relative to the
fundamental mode over the longitudinal propagation length between
reflectors ¢ and e; from eq. (38),

_ |2ca ) ( | 24, | )
AD = arctan( hEE -+ arctan %E (80)

From eq. (18), to find the cross-polarized field at any other radius p
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instead of pey.. = £», one multiplies by the factor:

C(p) = Cex | 2 exp [(1 — p?/£)/2] | - (81)

v

Using eqs. (65) through (81) and the values given in Table I, the
curves shown in Fig. 13 were computed for the cross-polarized signal
power (relative to on-axis copolarized signal) as a function of distance
from the axis at plane v-v in a direction perpendicular to the beam-
bending plane for the three frequencies 10.36, 11.06, and 11.76 GHz.
Also shown are the measured values from Ref. 10. The theory is in
approximate agreement with the measurements, showing the shape of
the curve of cross-polarized signal versus off-axis distance and approxi-
mating the absolute level of the maximum cross-polarized signal. The
frequency dependence of the theoretical cross-polarized signal is also
in the same direction as the measured values.

Theoretically, the cross polarization in the beam-bending plane is
negligible, which also is in agreement with the measurements.
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