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Classical tone detectors use narrow bandpass filters to isolate tones.
A comparison of a filter's output power against the total tnput signal power
determines whether or not a particular tone is present. This paper con-
siders an alternate method for tone detection. It is based on estimating the
first three moments of the signal’s band-limited power spectrum. These
three moments (zeroth, first, and second) measure the power, power mean
frequency, and RMS power bandwidth, respectively, of the signal. If these
three moments are available, it is easy to deduce whether or not a tone
18 present. Since the estimators have a simple digital implementation, this
approach should have economic advaniages tn many applications.

I. INTRODUCTION

The use of tones is proliferating with the growth of the direct-
distance-dialing (ppp) network. Tones are used for multifrequency
signaling, Touch-Tone® signaling, etc.; for milliwatt tone testing,
testing in carrier transmission maintenance,! etc.; and as audible ring
indicators, reorder indicators, etc.

The ppp network is now evolving toward an integrated system of
digital transmission and digital switching. Continued use of analog
tone detectors in this digital environment is impractical because of the
expense of interfacing analog and digital systems. Classical tone
detectors do not lend themselves to efficient digital implementation.
Therefore, new approaches to tone detection are necessary.
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Several methods are currently under investigation including classical
digital filters,? the discrete Fourier transform,** and the use of counting
techniques.® This paper details another approach to tone detection
which is amenable to digital implementation: spectral moment
estimation.

Il. TONE DETECTION
2.1 Classical tone detectors

The classical approach to tone detection uses a narrow bandpass
filter, centered at the expected tone frequency, to isolate the tone. A
comparison of the power passed by this filter against the power that is
input to the filter (and some absolute level requirements) determines
the presence or absence of the tone.

This classical decision algorithm is based on the fact that a simple
tone has a narrow bandwidth. A tone can, therefore, readily pass
through a narrow filter with little loss in power. Several assumptions
are implicit. First, a tone’s spectrum is narrow only if the tone is
present for a long time. If the detection must be made quickly, the
filter’s bandwidth must be increased to pass all the tone’s power. The
second assumption concerns: the tone’s spectral purity. Rapid vari-
ations in frequency and amplitude will also effectively widen the
bandwidth.

The 'decision algorithm can be restated in terms of three signal
parameters: power, mean frequency, and bandwidth. Thresholds are
set by the filter characteristic for the signal’s mean frequency and
bandwidth (these thresholds are interrelated). Additional limits are
placed on signal power. All these criteria must be met if the signal is
to be recognized as a tone.

2.2 Spectral moments as tone indicators

A heuristic argument that is similar to that described above can be
used to derive an alternate approach to tone detection. Devices can
be built to measure the signal’s first three spectral moments:* power
(P), power mean frequency (f.), and mean square bandwidth (b?).
These spectral moments are defined in terms of the signal’s power
spectrum, S(f), as

P = [ 8(nds,
fo= 3 [ 181,

* Practical schemes for measuring spectral moments exist. One is described in
later sections of this paper.
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and

8 = [ (7= £S(Da,

where the region of integration is limited to the range of interest.

Then, for any given tone, thresholds can be set: the power must lie
within a required range, the mean frequency must be within tolerances
of the expected frequency, and the bandwidth must be less than a
specified amount. If these requirements are all satisfied, then the
expected tone is declared to be present.

Detection of an unknown tone within a given range of frequencies is
also possible. Whenever a tone is present, the bandwidth indication
alone can detect it. The other moments can then be used as measure-
ment tools. This demonstrates the power of the spectral moment
estimator algorithm. \

IIl. SPECTRAL MOMENT ESTIMATION
3.1 The classical approach

In the past, spectral moments have been estimated by first estimat-
ing the spectrum S(f) itself and then substituting this estimate into
the definitions of the desired parameters. This classical approach is
well documented in the literature.®

There are two approaches to the estimation of S(f) from a time-
limited segment of the input signal. In one method, it is assumed that
the signal is periodic outside the known interval, while in the other,
the signal is assumed zero outside that interval. An assumption of
periodicity leads to a complex exponential Fourier series that is equal
to the input over the known interval. This spectral estimate is discrete
in frequency. It consists of weighted impulses at each frequency; the
weighting factor for an impulse is the magnitude squared of the corre-
sponding coefficient in the series. Each integral defining the spectral
moments becomes a sum.

Either spectral estimate may be used in practice. For long measure-
ment intervals (large 7, they give identical results. The remainder of
this paper is based on the continuous spectral estimate that assumes
zero input outside the measurement interval. This choice does not
affect the final form of the digital estimators.

3.2 Direct estimation
3.2.1 Motivation

The classical methods for estimating spectral moments require a
spectrum analyzer. This expensive apparatus can take various forms
including a filter bank, a Fast Fourier Transform (Frr) processor, ete.
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However, since many applications require real-time spectrum analysis,
the classical methods are often impractical.

Complete information about spectral shape is not required in
tone detection. So why take the expensive step of calculating this
detailed information? A system that calculates the desired parameters
directly from the input data should be more efficient and, therefore,
less costly.

Direct spectral parameter estimators exist in the literature. They
have been used in applications including communication channel meas-
urement,” radar meteorology,® ' and frequency-modulation detection.™

3.2.2 Signal representation

The received signal s(t) described in Section II is a narrow-band
signal. It can be represented by its complex envelope,

z(t) = a(t) + jB(), (1)
as
8(t) = a(t) cos (2w fof) — B(f) sin (2 fol), (2

where fo, the reference frequency, lies near the center of the sig-
nal’s spectrum. This representation is also well documented in the
literature.2 '

Since it is easy* to determine «(f) and 8(), the signal’s quadrature
components, from s(t) and fo is determined at the receiver, the signal’s
spectral moments can be determined from its complex envelope, z(f).

3.2.3 Estimation algorithms

If an estimate, S(f), of the signal’s power spectrum is based on
z(t), the three spectral moment estimates are, classically,

P = [ 3(nas 3)
f=3 [ 18 @
and :
2= L — f2
b= [ L7 = 12S(as, (®)

where the integrals are only computed over frequencies of interest.

* The method of extracting the signal’s quadrature components is discussed in
Section IV,

1 f. is shifted from f, by the known quantity f, since 8(f) is an estimate of the
power spectral density of z(f) instead of s(t).
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Earlier work™ has shown that direct calculation of these three quan-
tities from z(f) is possible. The algorithms are

p=7 [(t=20+eol ®)
fo= 5o [ Ta0BO) — BT, ™

and
z=aﬁﬁﬁﬁ@m}+mmﬂﬂ—LM% (8)

where the dot over a quantity indicates the derivative with respect to
time.

3.3 Estimate error analysis

Since the direct estimators were derived from the classical estimators,
their performance will be equal. Therefore, an analysis of the statistical
behavior of the classical estimators can be applied to the direct
estimators.

Miller and Rochwarger'* have done such an analysis. They assume
that the error in each measurement is small enough so that a power
series expansion converges rapidly. Their results, however, are difficult
to apply in practice and do not address the time-limited nature of the
measurement. A similar analysis, which takes into account the time-
limited nature of the measurement, was done by the author.® It also
assumes convergence of the power series. In that analysis, the input is
a complex sample function from a gaussian random process with total
power P, a power spectral density S(f), power mean frequency fo,
and mean square bandwidth b%. The results are given below.

Estimator bias and variance are of interest for each of the three
spectral moments. For the power estimator, the results agree with those
found in textbooks.!s Its expected value is

E[P]=P. 9

It is therefore unbiased and yields, on the average, the total received
power. The power estimator’s variance is given by

mﬂﬂ=%£$mﬁ (10)

The expected value of the power mean frequency estimator is

ECf) = (e = 1 = gag [ S+ 1ds. )
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It is therefore biased in the general case. An unbiased estimate occurs
when the power spectral density is symmetrical about its mean. A
similar equation gives the variance of fa:

var [£.] = gag [, P + 14, (12)
It is clear from

E[8] = b+ por f (B — 28 (f + fo)df (13)
that 5% is also biased. Its variance is given by
var (8] = g [ (P = 0SS + f)d5. (14)

Note that all the biases and variances are independent of the actual
mean frequency. They are functions of the measurement interval,
spectral width (b?), and shape. All of them decrease to zero as the
measurement interval increases or as b? decreases.

3.4 Computer simulation

The equations in Section 3.3 provide simple theoretlcal expressions
for the bias and variance of the power mean frequency and mean
square bandwidth estimators. These expressions are valid for reason-
ably long time measurements. Since the equations for f, and b* are
new, a computer simulation was conducted to substantiate the validity
of these expressions. A sequence of independent, complex, gaussian
processes was generated. These complex, independent time samples
were then transformed by an FrT to yield a flat, or white noise, spec-
trum on the average. The flat spectrum was then shaped by a gaussian
frequency response function. This yielded a set of random spectral
coefficients with a gaussian shape in the mean. These frequency co-
efficients were then used to generate independent estimates of f., and
b2 from each member of the sequence, where fa, and bj are the mean
frequency and variance of the chosen gaussian shape.

Fifty pairs of estimates, fap and B2, were obtained from 50 inde-
pendent spectral estimates. Each spectral estimate was derived from
512 complex time samples, thus yielding 512 line resolution. The results
of the simulation are shown in Table I where the bar over the quan-
tities of interest indicates the average over the 50 estimates. The
mean square error of the quantity of interest, ¢( ), was also obtained
by an average over the 50 estimates, i.e., €( fa) is given by

f(fn) h (.fa - fu)2~ (15)
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Table | — Computer simulation

fag =0 fag = 128 Theoretical
b} = 400 b = 400 Values
fus —-0.07 127.8 0, 128
€(fa0) 4.05 2.56 2.8
2 414 395.4 400, 400
e(b,) 1.51 1.48 1.06, 1.06*

* This row is adjusted to be in Hz? using

6 = .

Specifically, the gaussian spectral shape is given by

So(f + £ = ‘[_bexp[—%%]; < <t  (16)

Evaluating the equations in Section 3.3 for this example yields

Blf.] = fa, (17)
var [f,] = 4\/_’1‘ (18)
E[b7] = bi, - (19)
var[5] = ¢ WT' (20)

Note that both estimates are unbiased in this example.

Two cases were simulated. The first had a mean frequency of zero
and an rRMs bandwidth of 20 Hz. The second case also had a band-
width of 20 Hz; however, it was centered at 128 Hz. Both estimates
were accurate on the average. Their mean square error was predicted
with 50 percent accuracy by the equations in Section 3.3.

IV. A DIGITAL TONE DETECTOR
4.1 The application

As noted in Section I, the evolution of the voiceband ppp network
toward an integrated system of digital switching and digital trans-
mission makes the use of digital service circuits attractive. In this
environment, several assumptions can be made about the form of
the input signal. These assumptions are: the sampling rate of the
input signal is that of the T-carrier systems (8 kHz), the approximate
frequency of the tone is known, and (although the digital encoding is
logarithmically compressed in practice) the code is linear. The second
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assumption allows the tone detector to search for the tone in a narrow
band of frequencies and makes the techniques of Sections II and
IIT applicable.

4.2 Quadrature detection
4.2.1 Analysis

In Section III, a narrow-band signal was expressed in terms of its
complex envelope as

s8(t) = a(t) cos (2rfot) — B(2) sin (27 fof). (2)

Multiplying s(¢) by a locally generated cosine wave with a peak ampli-
tude of 2 and a frequency of fo yields

2 cos (2w fof) -5(t) = a(t)[1 + cos (4= fot)] — B(t) sin 4= fot. (21)

If this result is passed through a low-pass filter to remove the
components near 2fo, «(f) is the output. Similarly, if the input is
multiplied by another locally generated signal, 90 degrees out of
phase from the first reference,

—2sin (2x fot) -8(t) = —e(t) sin (4rfot) + B()[1 — cos (2rfut)], (22)

the result can be filtered to produce B(z).

Figure 1 shows a block diagram of the quadrature detection process.
The low-pass filters, in addition to eliminating the undesired terms
due to mixing, perform an effective bandpass filtering operation on
the input. If f, is the highest frequency passed by the filters, only

LOW—PASS
FILTER a (t)
f<fm
2C08(2xf,t) d .
Y = (t)
sl t) ——
2SIN@rfyt)
LOW-PASS
FILTER [ (t)
f<fm
d .
at Bt)

Fig. 1—Quadrature detection.

150 THE BELL SYSTEM TECHNICAL JOURNAL, FEBRUARY 1976



§ H (2T

! i

f 1/24

c fﬂ'l

Fig. 2—Typical low-pass filter response.

frequencies in the range

fo—fm =S fot fm (23)

have any effect on the resulting measurements. Differentiation required
for the remaining calculations is also shown in Fig. 1. It is not really
part of the quadrature detection process and is discussed in Section 4.3.

4.2.2 Low-pass filter requirements

Two parameters of the filters used in quadrature detection are
important. They are the cutoff frequency f, and the maximum fre-
quency fn. Figure 2 shows a typical low-pass filter frequency charac-
teristic defining its two parameters f, and f..

The parameter f. sets the frequency limits on the measurement.
It should be high enough to allow for any possible allowed frequency
offset plus some margin since the tone’s bandwidth is spread by the
time-limited measurement (on the order of 100 Hz for a 10-ms in-
terval). f. has an upper limit which is determined by several factors.
First, it cannot crowd f,. This would raise the complexity of the filter
and make this approach impractical. It also should not be so high as
to allow an unnecessary amount of the background noise to disturb
the measurement. An f, between 200 and 350 Hz will be the usual
compromise.

The maximum frequency f, determines the immunity of the
detector to interfering signals. If it is low enough, it also allows the
use of resampling which results in considerable savings in the processing
after detection. Considerations of immunity usually set an upper limit
on fn of 1 kHz*, while the likelihood of resampling reduces this to
500 Hz. If an f,, of 500 Hz or less is used, the output sample rate can

* One possible application, translating the output of a Touch-Tone phone, requires
an f,, of 350 Hz for the lower group tone detector. f. for this detector is at least 175 Ha.
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be reduced to once every millisecond. This alone reduces the remaining
processing by a factor of 8. It also allows a simple implementation of
the required differentiators.

If these requirements are specified, some noncritical apphcatlons
could use a simple, second-order, digital, low-pass filter. But since this
would only give marginal performance, a fourth-order filter is sug-
gested for most applications. Note that two of these filters are required
for each tone to be processed.

4.3 Digital differentiation

An ideal differentiator for thls apphcatlon has a frequency response
which is proportional to frequency for all frequencies below f; and rolls
off rapidly above f.. It also has a phase shift of 90 degrees for all
frequencies below f..

The simplest form for a digital differentiator is the difference
between two input samples. This approximates the input’s derivative
at-a time midway between the sample times. More complex differ-
entiator structures are possible; they are usually unnecessary.1®

In this application, it is necessary to get the derivative at the sample
time. Therefore, the differentiator should calculate

Ye = Ti—1 — Tip1, (24)

where 3 is the approximate derivative at the time input sample z:
appeared. Note that if only every eighth sample of the input is going
to be used in the subsequent processing, the computation of a deriva-
tive every millisecond uses two of the other seven samples during
that interval.

The accuracy of this approximation can be easily calculated. Taking
the z transform of (24), restricting z to the unit circle, and simplifying
result in

H(e?*/7) = j2gin (2w f7), (25)

where 7 is the time between samples and f is the frequency input to
the differentiator.

In most voiceband tone-detection applications, r is 125 us and f
is less than 500 Hz.* Therefore, the transfer function ecan be approxi-
mated by the first term of its power series

H(e2™/7) = jAx fr. (26)
For the numbers stated, this is only a 3-percent error in the worst

case. Therefore, the simple differentiator usually suffices.

*The frequency input to the differentiator is the difference between the signal’s
frequency and f,, the reference frequency.
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4.4 Calculation of the spectral moment estimates

Quadrature detection, as developed in Section 4.2, yields samples
of the input signal’s quadrature components «(f) and 8(¢) each milli-
second. The differentiators discussed in Section 4.3 give corresponding
samples of &(t) and B(f) each millisecond. Calculation of the three
estimates from this sequence of four samples each  millisecond is
straightforward.

The power estimate is given by (6) as:

=7 [0 + 03 ()

Since «(f) and B(t) are only available as samples each millisecond,
the integral reduces to an equivalent summation,

1 N-—1
P=5 % [+ i, @7
£=0
where T, the measurement interval, is given by
T=Nr. (28)

Similarly, the estimate of the power times the power mean frequency
can be obtained from (7).

Pl = 5op [, L) — a0 1at. (20)
The equivalent sum is
ﬁ}: = ﬁié{: Lar(Br-1 — Bir1) — Brloe—r — arrr) ). (30)

Finally, the estimate giving bandwidth information is derived from
8):
K\ 1 T . .
@+ = o [ 60T+ BOPIE @D

The corresponding equivalent sum is
PO+ 1) = gy & Lo — aw? + 1 32
D) = foang &, [l — ) + (Bis = Brr)]:

Algorithms for the three spectral parameters of interest are now
available. P is given by (27). Dividing (27) into (30) yields

jo= 2k (33)
Similarly, b? is obtained using (27), (30), and (32):
oo PEEL gy (34)
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4.5 Tone detection

The system developed in Sections 4.1 through 4.4 gives estimates of
the three spectral parameters P, f,, and b* over a time interval of T
seconds. Thresholds must now be set, as discussed in Section II, to
determine the presence or absence of a valid tone during that interval.
Values for these thresholds are dependent on the particular application
and, therefore, are not calculated here. It is suggested, however, that
they be determined experimentally rather than through the use of the
analysis of Section III. This experimental determination can be made
either through simulation or by breadboarding the design. It will give
a more reliable result because the approximations needed for the
statistical analysis are eliminated.

One final point needs discussion. Many applications have require-
ments on the measurement interval which are near theoretical limits.!”
Meeting these specifications will require tone detection during over-
lapping time intervals. This increases the storage requirements of
the system.

An approximation can be made which eliminates this increase in
storage. Recall that a low-pass filter performs the weighted integral
given by

y(t) = f_ ; s(VR(E — Ndh, (35)

where A(t), the filter’s impulse response, is controlled by the filter
structure. Therefore, a filter can be used to do the averaging necessary
for tone detection. Although this approximation can be made as ac-
curate as desired, the filter's complexity increases rapidly. A simple
“lossy integrator’ suffices for many applications.

V. CONCLUSIONS

Spectral moment estimators have been used to develop a viable
alternative structure for a digital tone detector. The resulting digital
system is flexible and can adapt to any tone detection application in
which a single tone lies somewhere in a fixed bandwidth. It is easily
programmable to cover multiple uses. This system has one additional
feature that is not present in most other detector structures: the in-
coming tone frequency need not be known a priori.
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