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We present an approximate theory of loss coefficients for modes of step-
index fibers with various types of distortions and for fibers with lossy
claddings. The fiber irregularities are assumed to be sinusoidal and random
variations of the core-cladding interface. Formulas for the loss coefficients
are presented and plotted for different values of the compound mode number
M. For fiber lasers, we plot the loss coefficients as functions of the mirror
tilt angles.

We consider as an example a Nd-Y A fiber laser with refractive index
ny = 1.8 and a core radius of a = 40 pym operating at a wavelength of
N = 1.06 um. For this example, we find that radiation losses are caused
by Fourier components of fiber irregularities in the spatial wavelength
range between 0.4 and 1.3 um. Inirinsic losses may be as low as 2a = 1073
em~1, It is thus desirable to limit scattering losses to values below 1073
em=L, This requirement imposes tolerance restrictions of 0.01 um on the
permissible core radius fluctuations. For core radius fluctuations of this
order of magnitude, mirror tilts should not exceed approximately & degrees.
Cladding losses are not critical, but their influence on laser losses depends
on the refractive index ratio of the core and cladding materials. Tolerable
cladding losses may range from 10 to 300 cm™.

I. INTRODUCTION

A cavity laser consists of an active medium that provides the re-
quired gain and a (usually open) external cavity furnishing the feed-
back for laser operation. A fiber laser also has gain and feedback, but
instead of using the resonant modes of an open cavity it employs an
optical fiber for guiding the radiation back and forth between the
set of mirrors forming the cavity."? A fiber laser thus might be much
narrower than a ecavity laser sinee it need not allow space for the
diffraction-limited beam to spread out in transverse direction. The
width of the fiber laser is limited only by the loss of the fiber waveguide,
which increases with decreasing fiber diameter.
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In this paper we calculate the mode losses of step-index fibers and
use them to estimate the losses of fiber lasers. The losses are caused
by scattering from the rough fiber wall and by the presence of a lossy
cladding. Figure 1 shows a schematic of the fiber laser. We assume
that plane mirrors are placed at the end of the fiber that also contains
the gain mechanism for the laser. Figure la shows a fiber laser with
plane mirrors positioned exactly perpendicular to the fiber axis,
whereas Fig. 1b shows a laser with slightly tilted mirrors so that the
wave inside the fiber, indicated schematically by a light ray, interacts
more strongly with the fiber wall. For simplicity, we assume that the
mirrors and the medium inside the fiber do not cause scattering and
that only the fiber walls are slightly rough. We also assume that the
fiber is surrounded by a lossy cladding that causes power loss via the
evanescent field tail of the guided wave penetrating into the cladding.
However, we consider these various loss mechanisms separately, one
at a time.

It is important to realize that wall roughness or other geometrical
imperfections of the fiber geometry or inhomogeneities in the fiber
material do not necessarily cause resonator losses. The electromagnetic
field inside the cavity adjusts itself to any geometry and forms a
normal mode. This normal mode of the cavity can be described as a
superposition of coupled modes of the perfect waveguide. Henceforth,
we shall refer to modes of the perfect structure as ideal modes or as
perfect modes. The fiber imperfections provide the mechanism that

CLADDING n2
2a
MIRROR - : L MIRROR
| n
w CORE
e —— —— — — — — — — — — - L= 3
n
fa) 2
-~ ‘-‘-8
CLADDING ny
2] ]
MIRROR MIRROR
n
CORE

ib) "2

TFig. 1—Schematic of the fiber laser with (a) perpendicular mirrors and (b) tilted
mirrors,
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couples the perfect modes together. Coupling among the guided modes
does not introduce losses by itself. However, the perfect modes of the
fiber suffer losses individually (in the absence of coupling). These
losses are either caused by dissipative mechanisms in the fiber core or
in its cladding, or they may be caused by fiber imperfections on a scale
different from those that couple the guided modes. We may assume
that imperfections with Fourier components of high spatial frequencies
couple each ideal fiber mode to the radiation field outside the fiber
and act as a loss mechanism. In addition, there will probably be im-
perfections with large amplitudes but with low spatial frequencies
that couple the ideal modes to each other.

In a companion paper® we discuss the influence of mode coupling
on the losses of the normal modes of the fiber cavity. We found that
coupling among these modes increases the cavity losses compared to
the losses of the lowest-order ideal fiber mode because neighboring
modes with higher losses take part in the superposition field that
forms the cavity mode. We also found that strongly coupled modes
result in a normal mode of the cavity whose loss is an average of the
losses of the participating coupled modes. However, not all the ideal
modes of the fiber take part in forming the normal mode of the fiber
cavity. Modes whose individual losses (radiation losses as well as
dissipation losses) are relatively higher than the coupling strength to
neighboring guided modes do not take part in the loss-averaging
process. Since the losses of the ideal fiber modes tend to increase
in proportion to the square of their (compound) mode number, modes
of high order are, of necessity, much lossier than modes of low order.
On the other hand, it is expected that the coupling strength of neigh-
boring guided modes decreases with mode number. Consequently,
only modes with relatively low mode numbers participate in forming
the normal modes of the cavity.

This theoretical expectation is confirmed by observation of laser
radiation.? In fibers supporting a very large number of guided modes,
only the modes of low order are excited as laser modes. Laser modes
are identical with the normal modes of the resonant fiber cavity. It
is thus clear that the loss of the normal mode of the laser (or fiber
cavity) is an average value of the losses of the ideal modes that take
part in forming the normal mode of the cavity. If only a very few
fiber modes are taking part in forming the lasing mode, the loss (in
the absence of pumping) of this cavity mode is simply the average
loss of the few fiber modes that are effectively coupled to each other.
In the presence of coupling among the guided modes, the loss of the
resulting laser mode is thus somewhat higher than the loss coefficient
of the fiber mode of lowest order, but mode coupling, even if strong
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for the lowest-order fiber mode and its neighbor, does not increase the
loss of the laser mode dramatically. The example studied in Ref. 3
suggests that the loss of the laser mode may be at most an order of
magnitude higher than the loss of the fiber mode of lowest order. We
found, furthermore, that two modes with propagation constants f,
and B, can couple effectively only if the relation g, — B2 = 2nw/L
holds to an accuracy on the order of |a; — a|, where a indicates the
loss coefficient, n is an integer, and L/2 is the resonator length.

So far, we have assumed that the mirrors at the end of the fiber
resonator are perfectly perpendicular to the fiber axis. Mirror tilt
can be taken into account in the following way. Consider a light ray
that propagates parallel to the fiber axis and strikes the tilted mirror
of the resonator. After reflection, the ray impinges on the fiber wall
at an angle that is twice the angle of the mirror tilt. Because scattering
losses are proportional to the square of the angle between the incident
ray and the fiber wall, it is clear that this ray, which originally traveled
parallel to the fiber axis, suffers relatively high scattering loss. On the
other hand, a ray that strikes the tilted mirror at normal incidence
will strike the fiber wall at the mirror tilt angle shown in Fig. 1b.
Such a ray suffers less scattering loss. In fact, it would appear that
the mirror tilt angle is the minimum angle at which rays passing back
and forth through the cavity may strike the fiber wall. It is not
obvious that there should be a ray path that closes on itself and still
impinges at the tilted mirror at normal incidence. But the normal
mode of a resonator has the tendency to minimize its losses. It will
thus be composed of rays that make the lowest possible angle with
the rough fiber walls. Consequently, we shall assume that the field
in the resonator strikes the fiber wall at the mirror tilt angle. Instead
of computing mode losses, we use the scattering losses of waves im-
pinging on the rough dielectric interface at the mirror tilt angle to cal-
culate the loss of a cavity with tilted mirrors. If both mirrors are tilted
differently, the larger of the two angles should be used.

We limit our discussion to fibers whose diameter is much larger
than the wavelength of the radiation inside the fiber core. This assump-
tion permits us to use a pseudo-plane-wave analysis. For simplicity,
it is furthermore assumed that the refractive index difference between
core and cladding material is so slight that reflectivity differences
caused by polarization can be ignored; TE and T™ modes thus have
the same losses. When we violate this assumption in some of our ex-
amples, it should be remembered that our loss values apply to TE
polarization.

Several types of wall roughness will be considered. The simplest
imperfection is a sinusoidal variation of the fiber radius. A more com-
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plicated wall distortion preserves the circular shape of the fiber but
allows the diameter to vary randomly as a function of the longitudinal
2 coordinate. Finally, we consider a type of wall roughness that assumes
that the Fourier spectrum of the wall distortion function is constant
over all spatial frequencies of interest and that variations occur in
both dimensions on the fiber surface with certain short correlation
lengths. Scattering losses are expressed as functions of the amplitudes
of the sinusoidal distortion or the variance and correlation lengths of
the random distortion functions. Mode losses in the fiber and losses
in the fiber cavity with tilted mirrors are considered for the case of
scattering losses and the case of losses introduced by the lossy cladding.

We find that cladding losses do not have a large influence on the
wave loss in the fiber core, but scattering losses can be very serious if
the amplitude of the wall roughness approaches the wavelength of
the radiation.

Spherically curved mirrors could reduce the losses of fiber lasers
with larger diameter if they reduce the field intensity at the fiber wall.
However, this loss reduction would work only for perfectly straight
fibers with perpendicular mirrors and very large radii. Our estimates
of fiber losses associated with tilted plane mirrors are equally valid
for fiber cavities with tilted curved mirrors if the tilt angle is large
enough. For straight fibers with perpendicular but curved mirrors,
our loss results can be regarded as an upper limit. It should also be
clear that mirror tilt can be translated into an abrupt tilt of the fiber
axis.

The analysis presented in this paper was performed to provide
insight into the tolerance requirements of Nd-YAG fiber lasers.? Our
numerical examples are thus geared to the parameters of this laser.
The intrinsic losses of the fiber laser are on the order of 10~* em™ so
that additional losses caused by fiber irregularities or a lossy cladding
should remain below this value.

Exact loss formulas may be expressed in terms of Bessel functions
so that their numerical evaluation becomes tedious. For this reason,
we are here deriving simplified formulas that allow reasonable order-
of-magnitude estimates to be readily calculated with the help of a
simple pocket calculator. Such handy approximations are often more
useful than the formidable exact formulas and serve the purpose of
providing insight into the relevant variables of the problem. All our
loss formulas are immediately applicable to optical fibers that support
many modes. Their application to the fiber laser is straightforward if
we can be sure that there is no additional fiber irregularity with low
spatial frequency coupling the guided modes among each other.
However, even if mode coupling exists, it is known from theoretical®

MULTIMODE OPTICAL FIBERS 1467



and experimental® evidence that only modes of very low order par-
ticipate in the lasing process. This information allows us to use the
fiber loss results for the laser if we keep in mind that the loss predie-
tion of the fiber mode of lowest order may somewhat underestimate
the laser losses. For this reason, we base our discussion of laser losses
on the mode with compound mode number M = 5. This loss estimate
for the laser may, in fact, be pessimistic, but it provides the correct
order of magnitude of the loss coefficient that may be used to derive
tolerance requirements for the fiber laser.

Il. PLANE WAVE SCATTERING AT A PLANE INTERFACE

We base our loss analysis on the results of plane wave scattering at
the rough planar interface between two dielectric media, as sketched
in Fig. 2. Our analysis uses the theory of coupled modes. In this anal-
ysis, the incident plane wave is coupled to the continuum of modes of
a medium that is divided into two half-spaces with a plane interface.
The coupled mode theory is described in Ref. 4.

To first-order perturbation theory, the scattered power is com-
puted as follows. First, we determine the amplitudes c;(s,, o,) of the
continuum modes that are excited by the incident plane wave inter-
acting with the rough interface

Lyl2 L
clon ) = [ dy [ Kinf(w 9, M

where the continuous variables ¢, and ¢, label the continuum modes,
K. is the coupling coefficient between incident wave and continuum
modes, and 8; and 8, are the propagation constants (z components of
the propagation vectors) of incident and scattered (continuum) waves.
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Fig. 2—Plane wave scattering at a plane, rough interface between two dielectric
media with refractive indices n, and ns. The y axis is directed perpendicular to the
plane of the figure.
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It is assumed that the rough surface with distortion function f(y, 2)
extends only over an area L,L. in the y and z directions while the
remainder of the infinite interface is perfectly flat. The coupling co-
efficient is defined as?

Kjoi = gip (nf — n9)[&l,0 Bdemo (2)
In this formula, w designates the angular frequency of the light waves,
€0 is the dielectric permittivity, E; is the electric vector of the incident
and specularly reflected and transmitted waves of the perfect interface,
while &.,,4,; indicates the electric field vector of the continuum mode.
Label j designates the different types of continuum modes whose field
expressions are given in the appendix and P in (2) is a power nor-
malizing factor. The scattered power can now be calculated with the
help of the formula*

Pu=PX / f le;(02 o4)|2do 2oy 3)

The summation extends over the different types of continuum modes,
while the integration over the area S in the space o, o, extends only
over propagating continuum modes.

With the help of the mode fields listed in the appendix, we derive
the following expressions for the scattered power. For a sinusoidal
corrugation of the surface

f(y: Z) = b sin 0z, (4)
we find
B2Su?h (n] — ndL.L,
Bi(ny sin ¢1 + ne sin @)

Here b is the amplitude of the sinusoidal deflection, S. is the z com-
ponent of the Poynting vector of the incident plane wave, and «
and B8; are, respectively, the z and z components of the propagation
vector of the incident plane wave in the medium with index n, whose
magnitude is n.k. For sinusoidal corrugation, the scattered plane
waves are emitted in definite directions whose angles are defined by*

P, = (5)

cosgy = =9 (6)

in medium 1 and by

Bi—Q )

COS ¢p2 =

in medium 2.
Next we list the scattering formula for scattering from a random
corrugation. There is no variation of the surface in the y direction,
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but the variation in the z direction with variance &* is random with a
correlation length D, that is much shorter than the wavelength of
light. The total amount of scattered power from an area L,L. is

Puc= 21,1800k — )6 (), ®)
n1 N
with
Vnd/md) — 1 — ’_; + (ni/n3) arcsin (nz/n1)
@ (;;) = al (n3/n3) — 1]
R 0.7162 (na/n1) — 0.6830(na/n1)? + 0.4312(na/na)’. (9

N

The polynomial was obtained as an empirical approximation of this
function. Each component of the Fourier decomposition of the rough
surface gives rise to two plane waves, one emitted into medium 1 and
the other into medium 2. The directions of the two waves are related
by Snell’s law. If the angle (measured with respect to the surface) of
the wave in medium 1, with the larger refractive index n,, becomes so
small that the angle of the wave in medium 2 becomes imaginary, no
wave can escape into medium 2; but there is still a wave emitted into
medium 1. Equation (8) contains the large-angle contributions from
waves emitted into both media. However, at small scattering angles
where the wave in medium 2 disappears, the scattered wave in medium
1 corresponds to a guided mode in a situation where medium 1 is the
core of a fiber. Power scattered into guided mode directions is not lost,
but becomes part of the “new’” normal mode that establishes itself
in the distorted fiber and is not included in (8).

Finally, we list the expression for the total scattered power when
the interface is rough in y and z dimensions. The correlation length
(much shorter than the wavelength) of the distortion in y direction
is D,

P,. = %L,,L,DyDgc‘rzS,x’k’(?ﬁ — n3)Gy (% ) (10)
2

In the previous two cases, radiation was escaping only in the z, z plane.
In the case of a truly random surface distortion, radiation escapes
isotropieally in all directions. When we apply our present results to
the case of fiber scattering, we want to distinguish between two types
of radiation. Any ray direction not associated with a guided mode
belongs to either a refracting or a tunneling leaky wave. Refracting
leaky waves leave the fiber core because they impinge on the fiber
boundary at an angle that cannot be contained inside the fiber by
total internal reflection. Tunneling leaky waves consist of rays that
should be trapped inside the fiber core by means of total internal
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reflection.’® However, tunneling leaky waves lose power by a mech-
anism that causes energy to tunnel through an evanescent wave
region outside the fiber core to an external caustic from which they
can escape. Refracting leaky rays are very lossy and can be considered
radiative power. Tunneling leaky rays may have very low losses in
fibers with large core diameters and may well be part of the “new”
normal mode of the fiber cavity. It is thus desirable to be able to dis-
tinguish between power scattering into these two types of leaky rays,
This distinetion is made in the factor Ga(n,/ns) appearing in (10). We
write

G2 = Gg,- + ng. (11)
(12, incorporates only loss to refracting leaky rays, that is, rays scat-
tered in those directions that, in a fiber, correspond to refracting leaky
waves. G2, incorporates the contribution from those scattering direc-
tions that, in a fiber, would correspond to tunneling leaky rays. Both
expressions could be represented in closed form but, since the closed
form formulas would be too unwieldy, we prefer to list them in the
form of integrals:

. (Y _ (! v(1 — v%) + 2032 — [1 — (n3/n})]
¢ ( ) B f iz (n3/ndv + V2 — [1 — (n3/n3)] d
2 0.2666 (n2/n,) — 0.05359(ns/n1)* + 0.3990(ny/n1)*  (12)

372 L3
VI — (/) — 50— )]

! V1 — v
x/ ~ M TV oy 41— 3(ni/nd)]dv (13a)
(nz;’m]!v\[U - (?L%/?lf)l: ( / 1)]

G2 =2 0.1364 (n2/ny) + 0.7926 (na/n1)? — 0.2592(n2/n1).* (13b)
The polynomials are again empirical approximations. The functions
G4, Gy, and Gy = (g, + G are plotted in Fig. 3. As a matter of
curiosity, we note that, disregarding the differences between functions
G4 and G, (8) and (10) become identical if we set the correlations
length in the y direction equal to

=T _ M
Dy - nlk 2’n1 (14)

Of course, this is a purely formal relationship, since (10) does not
apply for a correlation length on the order of the wavelength.

Ill. LOSS DUE TO POWER DISSIPATION IN MEDIUM 2

In preparation for computing the fiber losses caused by a lossy jacket,
we consider the plane wave reflection problem shown in Fig. 2 when
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Fig. 3—The functions Gy, G3, and G defined by (9) and (11) through (13) plotted
Versus ni/na.
ny is lossless and the interface is perfectly plane, but medium 2 is lossy.
The reflection coefficient for total internal reflection from the plane
interface is expressed by the formula’

Kk + 2y
TS =ty (15)
with
« = Vil — & (16)
and
v = V7 — nik™ (17)
Using
Ny = Nar — My (18)

and the amplitude loss coefficient for plane wave propagation in

medium 2,
g = nz,-k, (19)

we obtain from (15), (17), and (18)

4(!2?12,-!{
f = 0

We have assumed that n,; < ns, and used y2 = (n} — nZ,)k? an ap-
proximation that holds for incident waves whose angle (with respect

R=|r?~1-—
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to the interface) is far below the critical angle. When we apply our
results to optical fibers, this assumption means that we limit ourselves
to modes far from cutoff. The amount of dissipated power in an area
L,L, is now

Pd = LyLzSz(l - R) (21)
S, is the z component of the Poynting vector. We use the relation
8. = (k/B:)S: and obtain, from (20) and (21),

P, = Q(QQQ)RQLHLZSSKE.
4T T — nd)

The real part of the refractive index has again been replaced by the
symbol ns, and we used the approximation 8; = nik.

(22)

IV. APPLICATION TO MULTIMODE FIBERS
The guided-mode field in optical fibers can be approximated as*

E, = AJ,(kr) cos vepe =, (23)

The power density flowing in the z direction is thus given by

— 1 P 2

S: = 5 gt ©08 v, (24)
where P is the total power carried by the guided mode. Since the
fiber radius is @, we obtain the power density P/(wa?). The factor §
appearing in (24) accounts for the fact that half the total power is
carried by a wave traveling toward the core boundary while the other
half travels away from the boundary after reflection. The factor
cos? v¢ follows in an obvious manner from (23). Averaging over the
entire circumference of the fiber, we obtain
5 1P

S =1

The mode losses are now obtained from the plane wave formulas of
the last two sections by identifying L, = 2ra, replacing S. with
S. of (25) and using the formula (for heat losses, P,, is replaced by Pa)

_ P...
- L.P
We can thus immediately compile the following list of power-loss

coefficients for the various fiber loss mechanisms.
Sinusoidal radius variation of amplitude b:

py o bRGE—n)
“= 2an,(n, sin ¢; + no sin ¢s)

The angles ¢, and ¢, are defined by (6) and (7).

(25)

2c

(26)

(27)
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Random radius variation with correlation length D, and variance #%:
2 . fn
2a = na D.a%k(n? — n3)G, (n—;) (28)

Random surface variation with correlation length D, (formerly
called D,) in the ¢ direction and D, in the z direction and variance 5%:

2
20 = ra DD 3%k (n] — n3)Gs (z—;) 0

Functions G4, Gs, and (3, are plotted in Fig. 3. Whether G5 or G,
is to be used depends on the length and size of the fiber. If tunneling
leaky modes are only slightly attenuated in the length of fiber under
consideration and can be regarded as guided modes, we must use
Gy, ; if tunneling leaky waves are very lossy, (G2 must be used ; in inter-
mediate cases, an average value may be appropriate. For a discussion
of the losses of tunneling leaky waves, see Refs. 5 and 6. Finally, we
list the power loss coefficient for a multimode fiber with lossy cladding
(but lossless core) with cladding power-loss coefficients 2as,:

(2a0) nor? (30)

Py = — X2
“ T na (n3 — n3)i?

Tt remains to specify the values of x that must be inserted into formulas
(27) through (30). In fibers supporting only one or very few guided
modes, ¥k would have to be obtained as the solution of the eigenvalue
equation. However, our formulas hold only for large fibers supporting
many modes that are mostly far from cutoff. In this case, it is possible
to approximate « as**

k= % (M — 3. (31)

The compound mode number M is a combination of the azimuthal
mode number » and the radial mode number g,

M=v+2u=223,4,- --. (32)

If we are interested in the losses of a fiber cavity with tilted mirrors,

Fig. 1b suggests that we use the expression
k = mqk sin 6. (33)
In this case, the field impinges on the fiber wall not at the natural

mode angle applicable for perfectly straight fibers but at a larger angle
¢ that is imposed by the gross deformation of the fiber or mirror

* Eq. (31) holds for small values of ». For large », we must replace (xa)? — U? — »*
[see Ref. 4, p. 90, eq. (2.5-6)] and obtain U as the solution of J,(U) = 0.
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geometry. For fiber lasers, it seems reasonable to associate 8 with the
mirror tilt angle. For fibers with abrupt tilts, § would be the fiber tilt
angle.

Our derivation of formulas for the fiber loss coefficients was based
on the properties of plane wave interaction with a plane interface.
It is thus clear that our equations are only approximately valid. In
particular, they do not incorporate interference effects between
directly scattered rays and rays that leave the fiber after repeated
reflections inside the fiber core. Such effects are particularly pro-
nounced for scattering from purely sinusoidal core radius variations
because, in this case, the radiation leaves at a definite angle and may
be enhanced or reduced by interference effects.® Our equations give
an average over the maxima and minima of the loss fluctuations as a
function of scattering angle. The formulas for scattering from random
surface effects or heat losses in the cladding are more reliable because
diffuse scattering causes radiation to escape in all directions and inter-
ference effects tend to cancel out and are unimportant in the case of
power dissipation in the cladding. The formulas derived here are handy
order-of-magnitude approximations of the precise expressions con-
taining Bessel functions.*®

V. DISCUSSION AND NUMERICAL RESULTS

In this section, we present loss coefficients in graphic form. We
begin with a fiber with sinusoidal core radius variations of amplitude b
and spatial frequency Q. Scattering losses oceur only if the radiation
can escape into the cladding. The spatial frequency range that results
in scattering losses is thus obtained from (7) as

(ny — na)k < < (n1 + na)k, (34)

where we have assumed that 8; & nik. If we introduce the length of
the spatial period as A = 27/Q, we obtain from (34) and k = 2w/ No

Ao Ao -

ny — Ne > A> i+ ne (35)

These formulas apply, of course, also to the spatial frequency range
that contributes to random scattering, discussed below.

Figure 4 shows curves plotted from (27). On the horizontal axis, we
have plotted the normalized spatial frequency @/n:k and also the
scattering angle ®; at which the radiation escapes into medium 2.
Beyond @/nk = 1, the curves form the mirror image of the section
shown in the figure and were consequently omitted. Figure 4 was
computed for YAG with n; = 1.8 and n, = 1. The parameter of the
curves in Fig. 4 is the compound mode number M defined by (32).
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Fig. 4—Normalized scattering loss coefficient for a cavity with perpendicular
mirrors (relative to the fiber axis) and sinuscidal core radius variation of amplitude
b and sgﬂ.tia.l frequency Q. M is the compound mode number. For this set of curves,
ny = 1, y N2 = 1.0.

To obtain a feeling for the magnitude of the normalized loss coefficient
and for the tolerance requirements, we assume that the fiber reso-
nator has an inherent loss of 2a = 1073 em™' and a core radius of
a = 40 um. Scattering loss begins to be of concern if its magnitude
equals the already existing cavity losses. Allowing for the possibility
that a few fiber modes of low order are tightly coupled by some fiber
deformation of large amplitude but with a spatial frequency below
range (34), we use an average value of 2aa3/b* = 10. If we are willing
to tolerate a loss of 2o = 10~® em™! for ¢ = 40 um, we find as the
maximum permissible ripple amplitude the value b = 2.5 X 10~ ym.

Figure 5 shows curves that are similar to Fig. 4 except that we have
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assumed that the YAG fiber now carries a cladding with refractive
index n, = 1.5. It is apparent that the cladding causes a reduction of
the scattering loss by roughly a factor of 2 so that we can now tolerate
a ripple amplitude that is larger by V2.

Figure 6 still describes a cavity with a fiber with sinusoidal core
radius variation, but in this case we have assumed that the mirrors
are tilted by an angle 6. The tilt of the mirrors causes the field inside
the cavity to impinge on the fiber wall at an angle that is roughly equal
to the tilt angle. It is interesting to consider the intrinsic mode angle
to obtain a feeling for the severity of tilt angles introduced externally.

| 20a(2)?
ua[bl
102— M=20
B 15
10
8
10—
~ 6
| 4
3
1004—
= 2
=18 ny=15
111 | | | 1 1 1
0 20° 30° 40° 50° 60° 70° 80° 90°
LY
L 1 | | 1 i |
0.2 0.4 0.6 0.8
Q/nqk

Fig. 5—Same as Fig. 4 but with ny = 1.5.
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Fig. 6—Normalized scattering loss coefficient for a cavity with tilted mirrors, tilt
angle 6, and sinusoidal core radius variation of amplitude b and spatial frequency £
(n, = 1.8 and &, = 45 degrees).

By equating (31) and (33), we find for the mode angle

_ (M -3\
0y = arcsin ( m—) (36)

For a = 40 ym, Ao = 1.06 pym, and n; = 1.8, we find 6 = 0.32
degree for the fiber mode of lowest order, with M = 2 and 6y = 2
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degrees for M = 10. We have assumed that mirror tilt can be con-
trolled fairly accurately and extended our curves only to 8 =7
degrees. It is now more natural to normalize the loss coefficient as
2aa(No/b)2 At a tilt angle of 8 = 5 degrees, we may expect for n,/n.
= 1.8 the normalized loss 2aa(io/b)* = 0.25 according to Fig. 6.
With 2¢ = 103 em™, @ = 40 um and Ay = 1.06 pm, we find the ripple
amplitude b = 4.2 X 10~ um, which is a more stringent tolerance
requirement than the value found for straight mirrors.

Next we consider a cavity with a fiber with randomly varying core
radius. The case of a eavity with perpendicular mirrors is plotted from
(28) and (9) in Fig. 7. It is assumed that the rms amplitude of the
random core radius variation is ¢ and that the correlation length D.
is much shorter than the wavelength of light. If the cavity loss is an
average value of fiber mode losses corresponding to M = 5 in Fig. 7,
we have 2aa®\y/D.* = 200. With ¢ = 40 yum and 2« = 10~* em™,
we obtain D,s? = 3.4 X 10~ um3. For want of more information, we
assume that & = D,, so that we have D, = ¢ = 3.2 X 1072 um. This

102

10! ] | ] 1 1 |
2 4 6 8 10 12 14 16

Fig. 7—Normalized scattering loss coefficient for a cavity with perpendicular
mirrors and random core radius variations with variance * and correlation length
D,. M is the compound mode number, n, = 1.8.
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Fig. 8—Normalized scattering loss coefficient for a_cavity with tilted mirrors,
tilt angle #, and random core radius variation for n, = 1.8

value is quite comparable to the value b = 2.5 um that we found in the
case of a sinusoidal core radius variation.

Figure 8 gives the normalized scattering loss for a cavity with
random core radius variation for the case of tilted mirrors. For ng = 1
and 6 = 5 degrees, we find from Fig. 8 2aa)Nj/Ds* = 4. With a = 40
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pm, we obtain a loss of 2a = 10~% em™ for D.¢* = 1.2 X 10~% um? or
D,=¢=11X10"% ym.

Figures 9 and 10 pertain to fibers with random core-cladding interface
perturbations. Figure 9 describes a fiber cavity with perpendicular
mirrors. At M = 5 we find, from Fig. 9, 2aa®3/D4D.5* = 600. With
the usual values for loss, core radius, and light wavelength, we have
DgD.g? =12 X 1075 um* or Dg =D, =¢6=59 X 10 ym. If
we let the two correlation lengths equal the rms variation of the inter-
face, we find that the tolerance requirements are a little less stringent
for a totally random surface compared to a surface that maintains its
circular cross section and only allows the radius to vary along z.

Figure 10 shows the normalized loss coefficient for random core-
cladding interface perturbations (in two dimensions) for a cavity
with tilted mirrors. For a mirror tilt of 8§ = 5 degrees, we obtain from
Fig. 10 approximately 2aa)\$/DsD.5* = 12. With a = 40 um, a loss
of 2a = 10~* em~! is obtained for DsD;? = 4.2 X 1007 um*or De = D,
=g =25 X10"% pm.

2
- a?\g -
2aa 2
— DgD, 3’

10?

ETTTT

i

102

LELILILAS!

Fig. 9—Normalized scattering loss coefficient for a cavity with perpendicular
mirrors and random core-cladding interface perturbations with correlation length
D, in azimuthal direction, D, in z direction, and variance . The solid lines apply to a
fiber whose tunneling leaky waves may be regarded as lossless guided waves; the
dotted lines belong to the case in which tunneling leaky waves are so lossy that they
cannot be regarded as guided waves. M is the compound mode number, n; = 1.8.
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The remaining figures, 11 and 12, describe the normalized loss
coefficient for a geometrically perfect fiber core surrounded by a
lossy cladding. The power loss coefficient of a plane wave traveling
in the material of the cladding is 2a». Figure 11 gives the mode losses
of the fiber as a function of the normalized frequency parameter

27a

V=" (ni— ndh. (37)
No

T TTTTT]

1077

| | | | i 1
1° 2° 3° 4° 5° . 6° 7°
[}

Fig. 10—Similar to Fig. 9 except that the cavity in this case has tilted mirrors with
tilt angle 6.

1482 THE BELL SYSTEM TECHNICAL JOURNAL, DECEMBER 1976



105

FTTTT]

T

1077

TTTTT]

1078
0 200 200 500 800 1000 1200
A\

Fig. 11—Absorption loss coefficient of a fiber with lossy cla.ddin%l (cladding loss
coefficient as). This set of curves applies to the case of a cavity with perpendicular
mirrors. The normalized frequency V is defined by (37).

For Ao = 1.06 um, a = 40 um, n; = 1.8, and n, = 1, we obtain
V = 355 from (37). For M = 5, we obtain from Fig. 11 approxi-
mately nia/nsas = 1075, The mode losses are thus much less than
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the cladding losses. For 2a¢ = 103 ¢cm™ and n,/ns = 1.8, we could
tolerate a cladding loss of 2as = 1.8 X 10° em™. If we use ny = 1.5,
we have V = 236 leading to mia/nsas = 4 X 10~% at M = 5. With
ny/ne = 1.2, we can now tolerate 2az = 300 em™.

Figure 12 applies to a cavity with tilted mirrors and lossy jacket.

B 1 a hg
= nqny az a2 vV =40
60
107 6p—
o 80
| 100
07— 150
| 200
1078
600
L L - l ke
1 2 ¥ 4 5° B 7°

Fi%. 12—Absorption loss coefficient of a fiber with lossy cladding (loss coefficient
as). These curves apply to the case of a cavity with tilted mirrors, tilt angle 6.
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Table |—Results of numerical evaluations of cladding losses.
The cladding loss, 2., gives rise to a mode loss
of 2« =10 cm™

20y
|4 n1/na
M=5 6=0 ’ # = 5°
3556 1.8 1.8 X 10° em™! 56 ecm™!
236 1.2 300 10.4

For 6 = 5 degrees and V = 355, we find aAj(ninaasa?) = 7 X 107,
With n; = 1.8, ne = 1, @ = 40 gm, and 2« = 10~* em™!, we can tol-
erate 205 = 56 ecm~L If V = 236 and ns = 1.5, we can tolerate 2as
= 10.4 em™. These results are summarized in Table I.

VI. CONCLUSIONS

We have studied the losses of fibers and fiber resonators that are
caused by perturbations of the core-cladding interface and by absorp-
tion losses of the cladding material. Formulas for the loss coefficient
were derived by using plane wave techniques, and representative ex-
amples were displayed in the form of normalized curves. The theory
presented here is not precise, and its application to practical cases is
hampered by lack of knowledge of coupling among the guided modes.
We have seen in a previous paper? that mode coupling tends to increase
the cavity losses above the minimum value of the fiber mode of lowest
order. However, the loss inerease due to mode coupling results only
in an average loss of a few of the lower-order modes that are coupled
particularly tightly. We have thus concentrated on an average loss
corresponding to mode M = 5 when we considered explicit loss values.
Our results are useful to gain insight into the order of magnitude of
fiber tolerances that must be maintained and into the amount of
cladding losses that ean be tolerated. We found that the tolerances of
core-cladding interface perturbations are on the order of 0.01 pm,
while cladding losses can be allowed to be as high as 10 cm™ in the
worst case of a cavity with mirrors tilted by 5 degrees, or as high as
300 ecm™! in the case of a cavity with perfectly perpendicular mirrors.
Mirror losses were lumped in with the “background losses” of the
cavity, which were assumed to be 2¢ = 102 cm~! in all the numerical
examples we have considered. All curves independent of mirror tilt
can be used to obtain the losses of optical fibers because they show
plots of fiber mode losses without being tied to an application to fiber
resonators.
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APPENDIX

For the calculation of scattering losses of a plane wave impinging
on an irregular dielectric interface, we need to know the radiation
modes of a space consisting of two dielectric media with refractive
indices n, and n, separated by a plane interface. There are several
types of such radiation modes. In each case, we list only the E, and
H, components of their electric and magnetic fields, since all other
field components follow from these longitudinal components by differ-
entiation.® The time dependence of the modes is understood to be of
the form

e, (38)

We place our coordinate system so that the interface between the
media with n; and n. lies in the y-z plane. We assume that n, > n.
and let the medium with index n: be in the half space 2 > 0.

There are radiation modes whose fields decay exponentially in
positive z direction for z > 0. These modes can be grouped further
into modes with B, = 0 and H, = 0.

(i) Evanescent modes with E. = 0:

gz Ale—-ﬁze—i(cyy-l-ﬁz)

3, =1 pa A g8z~ (oyythe) for zz0 (39)

WO

LA .
& =A, (cos gz — 1 — sin cr,x) g ¥loyuthz)
Oz

for z < 0. (40)

. Bo . A .
=1 Bos A, [sm gL — — COS a',,:E:I g—i(oyytbs)
Wi T y 0z

The parameters entering these equations are related by

nikt = o2 + o + B (41)
and
ngk? = —A? + of + B (42)

The fields are normalized with respect to a delta function,
: [ [ (625 — eschdsdy = Paten — ooy — o) (43)

so that we obtain for the amplitude coefficient

2a*wuoaioiP (44)

2
A= avE + )
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with V defined by (37) and u, indicating the magnetic permeability
of vacuum.
(77) Evanescent modes with H. = 0:

gz = Aze—ﬂze—s'(vylﬂ-ﬂz)
= nik® v 0y —Azp—i(ayytfz) forz =2 0 (45)
¥, =1—F+ woaBA Aqe8%¢~ oy
2
8, = A (cos 0.X -|- A * sin crz:v) e—iloyutBz)
nikto 2 A for x = 0. (46)
= 2Y I —1i(ayy+B2)
ac. w#oBA A (cos a.T i sin a,x) e
Equations (41) and (42) still apply, and the amplitude coefficient is
2 2
A2 = wionio2A2BP (47)

k2 (nieZ + njAD) (B + o3)

These first two types of modes are valid only in a limited range of
o- and ¢, that is determined by the requirement that A, defined by
(42), must be a positive real quantity.

(737) Full standing wave modes with E; = 0:

8. = Asj(cos p.x + R;sin p,x)eilovv+he)

. Bpz

g, = i forz = 0 (48)

Aa,‘(sin pal — R,' cos pzx)e—i(ﬂ'yb‘+ﬂ=)
WHOTy

8, = As; (cos oz + P2 R; sin a,x) g—iloyutpz)
z

for z = 0. (49)

o
3, =1 Bo As; (sm 0T — —R cos a',x) g—iloyyths)
WHOTy [

Equation (41) applies in this case, too, but (42) is replaced by
n3k? = p; + o3 + B~ (50)

The coefficient R is arbitrary, but it is convenient to choose two values
R, and R, so that the two resulting modes become mutually orthogonal.
We choose for convenience
and

Ry = oo. (52)

The corresponding amplitude coefficients are

" 20 ;02wpoP
Aal 7’23(‘7: + PZ) (-82 + Uv) (53)

and
2030 50u0P

= e F ) BT D) (54)
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(4v) Full standing wave modes with H, = 0:
8, = Au;(cos p.x + S;sin poz)e i evvthe)

2

. W €O y T . .

¥, = —1 w:_;z Ayj(sin px — S; cos pyz)eilevvthe)
x|

for x = 0. (55)

8, = A (cos osz + 22 8, sin a,:c) e (eyuthz)
Tz

2 2
. W €Ty . nj o .
3, = —1 ——22 Ay (sm 0T — —— S, cos cr_.,a:) e~ (eyy+Be)
0':18 N1 Pz

for z=<0. (56)

Equations (41) and (50) determine the relations among the compo-
nents of the propagation constant. The ranges of ¢ and ¢, are limited
to the regions where p, is real and positive. This remark applies also
to case (7i1).
Two sets of mutually orthogonal modes result if we choose
and
Sy =0, (58)

The amplitude coefficients are

P 29:50'-.2-' V“U/éﬂﬁp (59)

T Pk (ndo. + nies) (8 + 07)

and
2nioapzVio/ e8P . (60)
gk (3o, + nies) (B* + ob)

€o is the permittivity of vacuum.

8341 =
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