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Under equilibrium conditions, the load carried by a service system 1s
defined as the average amount of traffic handled per unit of time. An
unbiased estimate of this parameter is provided by the switch-count load,
which is obtained by recording the number of busy servers at regular time
intervals and then taking the arithmetic mean of these observations.

Formulas for the variance of this measurement (which are applicable
to delay-and-loss systems with either finite- or infinite-source itnputs and
arbitrary defection rates) were derived in a previous paper'; a program
for their computation is now available and has been used to explore effects
of parameter changes on the switch-count load variance. The purpose of
the present paper is to describe results of this investigation and, in par-
ticular, to draw attention to two properties which may be unexpected: (z)
the variance of the switch-count load does not always decrease when waiting
posilions are added, and (i1) the variance of the carried-load estimate
obtained from continuous observation over a given time interval is not a
lower bound for the variance of load estimates calculated from a finite
sequence of recording of the number of busy servers.

I. INTRODUCTION

When statistical equilibrium prevails, the load carried by a group
of servers is defined as the average amount of traffic handled per unit
of time. In telephony, this parameter is often evaluated by “switch-
counting.”’?3 According to this method, the number of servers in use
is recorded at regular time intervals; these numbers are then added
together and their sum, divided by the number of observations (scans),
is an unbiased estimate of the carried load. This measurement is
called hereafter the switch-count load to distinguish it from estimates
based on continuous observation. The latter are obtained by dividing
the aggregated usage of the servers by the length of the measurement
interval and can be viewed as limits of switch-count load measure-
ments in which the number of scans tends to infinity while the length
of the observation period is kept unchanged.



The problem of finding the variance of the switch-count load in loss
systems with exponential service times has attracted a good deal of
attention. Description of some earlier contributions to this subject can
be found in Ref. 1.

In a recent paper,! formulas for the variance of the switch-count
load were derived for delay-and-loss systems with state-dependent
input rates and exponential service times. (As is customary, the state
of the system at some instant, ¢, is defined as the number of customers
who are either being served or are waiting at that time.) More pre-
cisely, the assumptions made here are as follows:

(7) Calls originate at rate A, (>0) whenever the system is in state
n. We consider here only the two cases where the A,’s are either
independent of n (Poisson input) or are proportional to the
number of idle sources (finite-source input).

(%) Requests which originate when no free server is available are
either delayed or lost; they are delayed if a waiting position
is available and lost otherwise. While waiting, the requests are
allowed to defect from the system at the same constant indi-
vidual rate, j.

(¢45) The service times are exponentially distributed ; they are also
independent of each other and of the state of the system. The
average service time is taken throughout as the unit of time.

As in Ref. 1, we make the assumption that the number of servers
and the number of waiting positions are finite. In the computations,
however, we have to be more restrictive since numerical as well as
storage problems may limit their ranges. But this, as it turns out, does
not preclude investigations of rather large systems, and even of queues
with Poisson input and infinite waiting room, so long as they can be
approximated by systems that are computationally manageable. From
a practical point of view, this treatment of the delay systems with
unboundable queues has been found to be satisfactory even when they
are nearly saturated.

A program for the computation of the formulas derived in Ref. 1
has been written and has been used to investigate the effects of param-
eter changes on the variance of the switch-count load—special atten-
tion being paid to the influence of delays on the variability of this
measurement. The purpose of this expository paper, which serves as a
complement to Ref. 1, is to describe the numerical results obtained
thus far; these, in turn, suggest some general qualitative character-
istics of the switch-count load variance that may be unexpected at
times. These properties are “read off”’ the graphs and tables; they are
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stated and explained informally in the following discussions. Their
proofs will be presented in a subsequent paper.

The original goal of the computations was to determine the scope
of the approach developed in Ref. 1 and, principally, to determine its
limits of accuracy as the number of servers and/or waiting positions
become large. Some conclusions in this regard appear in Ref. 1. We
mention here only that a thorough examination of the numerical
stability of the computations was carried out for systems with as
many as 400 devices and that, from a practical point of view, no sig-
nificant loss in accuracy could be detected over this range. (By device,
we mean here either a server or a waiting position.)

II. NOTATION AND DEFINITIONS

Following is a list of symbols and definitions used throughout :
¢ = number of servers,
d = number of devices (=number of servers + number of
waiting positions), .
8 = number of sources (s is considered to be infinite whenever
the input is Poissonian),
a = offered load in erlangs (this symbol is used only when the
input is Poissonian),
A = demand rate of an idle source—i.e., of a source that is
neither being served nor waiting for service,
A = s-\ (this symbol as well as A are used only in the case of
finite-source inputs),
h.t. = average service-time (used throughout as the unit of time),
j = individual defection rate of the waiting requests (j is
Palm’s j-factor; it is equal to zero whenever waiting
requests do not defect and to infinity when waiting is
not allowed),
T = length of the observation period (in multiples of h.t.),
n = number of recordings (scans) made during the observation
period,
T = interval between consecutive recordings of the number of
busy servers in multiples of h.t.,
N () = number of busy servers at time ¢ (0 < N.(f) < ¢),
L. (T) = switch-count load based on n scans spaced = (= T/n) apart
over an interval of length 7.

Clearly, the n observations which enter in the computation of L, (T)
can be made in many ways. If we take the beginning of the observation
period as the time origin, then for any 6 such that 0 < 8 < 7, the
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instants 6, 6 + r, 6 + 27, ---, 8 + (n — 1)7, constitute a possible
scanning sequence. Under equilibrium conditions, the statistical
properties of L.(T) are independent of 8 and, for the sake of definite-
ness, we shall set it equal to  so that

La(T) = %[N,(f) +N.@7) + -+ + No(nr)], nr=T.

When the switch-count load is measured as described above, we
shall say, whenever emphasis is needed (and only then), that the mea-
surement is of type I. Sections III through VI as well as VIII per-
tain only to these measurements. Type II measurements are intro-
duced and dealt with in Section VII, while pertinent numerical
examples are presented in Tables I through IV.

lll. QUEUING EFFECT

Superficially, it would seem that, as time elapses, the number of busy
servers is less volatile when waiting is allowed than when it is not.
The reason sometimes advanced to support this view is that a com-
parison of a loss system with a delay system having the same number
of servers would reveal that, for a given offered load, the mean number
of busy servers tends to be smaller for the loss system than for the
delay system, and that the “holes” in the carried-load process (see
Fig. 1) of a loss system would be shortened and partially filled if the
blocked calls were allowed to wait. If this were the case, the traffic
fluctuations would be dampened and the conclusion could then be
drawn that the variance of the switch-count load must decrease as
the number of waiting positions increases. (Throughout this and the
next three sections, the scanning rate is assumed to be fixed.) Ac-

Nz(t)
)

|-———- “HOLE" ————»{ |¢-——"H0LE"-——-)-|

1y ty t

Fig. 1—Carried-load process in a loss system with three servers.
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cordingly, for a given offered load, the variance of the switch-count
load would be largest for loss systems and could therefore serve as an
upper bound for the switch-count load variance in delay-and-loss
systems.

Under the present conditions, the preceding argument is readily
seen to be fallacious. Indeed, let ¢, be an instant at which an interval
of full server occupancy terminates and let {, be the instant when, for
the first time after ¢, all the servers are again occupied (see Fig. 1).
Because of the assumptions made here regarding the input and the
disposition of the requests, the behavior of the carried-load process
over (f1, £2) is unaffected by what took place prior to f;; hence, there
cannot be any tendency for the ‘“holes” to be filled since the distribu-
tion of their lengths remains the same and the evolution of the process
over such “‘holes” is unchanged by the occurrence of delays. The only
thing that happens is that the intervals of full uninterrupted occupancy
tend to be of longer duration when queuing is permitted; the “holes”
themselves are merely shifted.

The question of whether or not the variance of the switch-count
load always decreases as the number of waiting positions increases
has a clear-cut answer: it is “no,” since the behavior of the switch-
count load regarded as a function of the number of devices depends
essentially on the offered load. We state next a few general properties.

So long as the offered load is light, the variance of the switch-count
load increases monotonically as the number of waiting positions in-
creases (see Fig. 2a). At higher loads, which, however, still fall below ¢,
the variance first increases and then decreases monotonically toward a
positive value as the number of waiting positions increases (see Fig.
2b). A similar behavior can be observed when a = ¢ and at “moderate”
loads in excess of ¢, but with one difference, namely that the variance
now tends to zero as the number of waiting positions tends to infinity
(see Fig. 2c). Finally, when @ > ¢ and is sufficiently high, the variance
decreases monotonically and tends to 0 as the number of waiting
positions increases (see Fig. 2d). It can be shown that the variance of
the switch-count load always behaves in this manner and that, regard-
less of the number of servers, the lengths of the observation period,
and the number of scans, each of the four patterns sketched in Fig. 2
does occur for some values of the offered load. Figure 3 depicts this
rather intricate behavior of the switch-count load variance in the
case of a four-server system with Poisson input and no defection from
the queue.

For all values of T, the variance of L,(T) is equal to the variance,
ozay of the equilibrium distribution of the number of busy servers.
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Fig. 2—Variance of switch-count load vs number of devices.

The latter, therefore, also display the characteristic behavior of the
switch-count load variance. We can of course proceed in the opposite
direction: we can first determine the behavior of o7 and, hence, of
Var L;(T), and then anticipate some of the properties of the variance
of L,(T). This is done next.

Let P..4(n) be the equilibrium probability of n servers busy in a
system with ¢ servers and d devices. Let ®.,a = {P¢,a(0), Pca(1), - -,
P.a(c)}, ®, = @, and U, be the distribution whose total probability
mass is concentrated at ¢. Under the present conditions, the state
probabilities are governed by the familiar birth-and-death equations
and these imply that the ratios between the probabilities P,.a(n),
n=20,1, .-+, ¢ — 1, are independent of d. Hence,

@ = qa®. + (1 — qa)U,, 0=q@=1l,

where (1 — ga) is the probability that at least one waiting position is
occupied (g. = 1).

Let m. be the mean of ®, and ¢ = ¢%, its variance. Simple cal-
culations show that

ota = qaos + ga(l — ga)(c — mo)™
Now, regarded as a function of ¢ only,

Ve(g) = qo% + q(1 — q) (e — me)?
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Fig. 3—Variance of the switch-count load (Poisson input).

is increasing whenever

_or 4 (c — m.)?

= T3 —m)t >q (20),

and decreasing when ¢* < g.

As the load tends to = (c being kept fixed), ¢* remains bounded
away from 0 while g4 and ga;. tend to 0. Hence, for sufficiently large
values of a the probabilities gs and ga;1 are both smaller than ¢* and,
since gar1 < ¢q for all d’s, we have

Teatrrr — Ooatr = Ve(@aprrr) — Velgasr) <0, k=0,1,2 ...

Conversely, as the load tends to 0, ¢* tends to } while g, and gy,
tend to 1. Hence, for sufficiently small loads, ¢* < qiy1 < qa and the
preceding inequality is reversed.
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These considerations explain how the behavior of ¢7s = Var Ly(T),
as d varies, is governed by two simple facts, namely that (¢) transfers
of “sufficiently small” probability masses to the sample value that is
farthest from the mean lead to distributions with greater variances,
and that (i7) an increased concentration of the probability mass in
the vicinity of the mean is accompanied by a decrease of the variance.
As we have just seen, such changes of the probability distribution of
the number of busy servers can be induced by changing the number
of waiting positions. Thus, so long as the offered load, a, does not exceed
a certain bound (a, in the example of Fig. 4), Var Ly(T) increases
monotonically as d increases. Conversely, whenever a is larger than a
specific value (a, in Fig. 4), Var L,(T) decreases monotonically as d
increases. However, because of the discreteness of d, this monotonic
decrease may occur over a wider range (for a = as in Fig. 4; as, in
this instance, falls just short of 4). Finally, there is an intermediate
range (a1 < a < a; in Fig. 4) where Var Ly (T) first increases and then
decreases monotonically as d increases from ¢ to «.

We now turn our attention to Var L.(T), n > 1. The behavior of
this variance is more difficult to elucidate because L.(T) is now the
arithmetic mean of n correlated random variables. The informal
argument used in the preceding paragraphs may nevertheless be
modified so as to cover this new situation. For given a, ¢, and d (>¢),
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Fig. 4—Parameters gs, ¢., and g* as functions of the offered load.
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consider the aggregate (ensemble) of all possible switch-count load
measurements over a given time interval of length 7. This finite
aggregate may be split into two disjoint classes: Class 1 includes all
the measurements for which the number of busy devices does not
exceed ¢ at any of the scanning instants =, 27, 37, .-, nr; Class 2
comprises all the other measurements. [ The possible values of Class 1
measurements are 0, 1/n, 2/n, ---, c(=cn/n), and those of Class 2
are ¢/n, (c + 1)/n, ---, ¢.] Given that a measurement is of Class 1,
let ® be its conditional distribution. Similarly, let ®& be the con-
ditional distribution of the Class 2 measurements.

Under the present assumptions, ®{" is identical to the distribution
of L,(T) for d = ¢ and is thus independent of d. The roles played by
®, and U, above are now taken over by ®{" and ®&, respectively, and
the distribution, 9.4, of L.(T) is therefore given by

Dea = PP + (1 — qa)PP),

where gq is the probability that a measurement is of Class 1.

By assumption, the system is in equilibrium at time 0 and the prob-
ability that at least one waiting position is occupied at any given
scanning instant increases with d. Thus, as d becomes larger, the
proportion of Class 2 measurements increases. It also stands to rea-
son, however, that the values of these measurements tend to be larger
than those of Class 1 and that their magnitudes also increase with d.
Thus, we may expect a greater proportion of relatively high load mea-
surements as d increases. As before, and so long as the offered load is
sufficiently small, the appearance of these “more extreme’’ values pro-
duce a scattering of the probability masses and this will tend to mag-
nify the variance of L.(T). But when the offered load exceeds a cer-
tain level, the Class 1 measurements are, on the average, just about
as large as those of Class 2 and increases of d make “relatively small”
carried-load measurements less likely. This leads to a concentration of
the probability masses about the mean of L.(T) and brings down its
variance. These effects are clearly visible in Figs. 3, 5, and 6.

IV. EFFECT OF DEFECTIONS

In the preceding section we have attempted to explain how changes
in the number of waiting positions affect the variance of the switch-
count load. The arguments advanced depend on the fact that “more
queuing” tends to increase the probability of full server-occupancy
(the all-server-busy state) at the expense of the probabilities of the
states 0, 1, 2, ---, ¢ — 1, while leaving the ratios between the latter
unchanged. For fixed values of ¢ and d, similar transfers of probability
masses—with analogous consequences for Var L, (T)—can be induced
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Fig. 5—Standard deviation of the switch-count load (Poisson input).

by varying the rates at which requests may defect from the waiting
line.

If we assume, for example, that the requests defect at a constant
individual probability rate, j, then the probability of full occupancy
increases monotonically as j decreases. (Note that when j = 0, all
delayed calls wait until served, and that whenever j = =, no waiting
ever occurs and all the blocked calls are “lost.”’” The familiar ‘‘blocked-
calls-held” assumption corresponds to a j value of 1.) We may there-
fore expect that, for a given offered load, the variance of L.(T) will,
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as j varies, display a similar behavior to that observed when the
number of waiting positions changes. That this is indeed the case can
be seen in Fig. 7. Hence, we may state the following: For given a, c,
and d, and decreasing values of j, the variance of the switch-count
load increases for sufficiently small values of the offered load and de-
creases whenever a is large enough. Also, there are values of the
offered load for which intermediate defection rates do not imply inter-
mediate values of Var L.(T).

V. FINITE-SOURCE EFFECT

A similar situation obtains—and admits of a similar explanation—
when the input is generated by a finite number of sources (see Fig. 8).
In this case, as the number of sources increases, so does the probability
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Fig. 7—Effect of defection rate on variance of the switch-count load, delay-and-
loss system (Poisson input).

of waiting and Var L, (T), as a function of @, behaves as above. How-
ever, in these systems, the (overall) offered load is somewhat elusive
as it depends not only on A and the number of sources, s, but also on
the structural parameters ¢ and d and on the defection rate. Thus, the
dependence of Var L.(T) on the number of sources is shown in Fig. 8
for prescribed values of A = s-A.

Since

?\n=(s—-n))\=A(1—7—;), n=201-:--,d—1,
the rate A,, for any given n, therefore increases with s. This in turn
implies that, for fixed A, the offered load increases with s. Hence, if

the abscissa in Fig. 8 had been the offered load (instead of A), the
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plotted points, with the exception of the origin and of those on the
s = » curve, would have been moved to the right. It is apparent,
however, that such a change of abscissa would not have destroyed the
overall incidence pattern depicted in Fig. 8.

VI. ANOTHER VIEW

We have studied thus far the effects of various parameter changes
on Var L,(T) for known values of the (individual or overall) demand
rates. This approach is particularly convenient since it gives us a
direct handle on the state probabilities and, as we have seen, the
behavior of Var L,(T) was then readily predictable in these terms.
However, no general monotonicity property emerged within this frame-
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work. But if, instead of the offered load, we use the carried load as
primary variable, we obtain a very different and far less intricate pic-
ture which, in turn, leads to a simple general rule.

From Figs. 9 to 12, we may infer that:

(s) For a given number of servers and a given value of the carried
load, Var L.(f) decreases monotonically as the number of
waiting positions decreases (see Fig. 9).

(#5) For given ¢ and d, and a prescribed value of the carried load,
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Fig, 9—Standard deviation of the switch-count load (Poisson input).
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Fig. 10—Variance of the switch-count load, delay-and-loss system (Poisson and
finite-source inputs).

Var L.(T) decreases monotonically as the number of traffic
sources decreases (see Figs. 10 and 11).

(#77) For given ¢ and d, and a fixed value of the carried load,
Var L.(T) decreases monotonically as the defection rate, j,
increases (see Fig. 12).

We note that these decreases of Var L.(T) are accompanied, in all
cases, by increases in the number of calls that must be offered to main-
tain the carried load at a prescribed level. This brings us back to a
“hole-filling” argument (cf. Section III) with a new twist, the pre-

~ scription of the carried load that makes it operative. And now we
see that, at a given occupancy, the “holes” are filled by allowing less
rather than more queuing! Indeed, with less queuing, the average
length of the busy periods is shortened and it is, therefore, necessary
to fill the “holes’ partially so as to maintain the carried load at its
designated level. And with such compensatory fillings, the variance of
the switech-count load can be expected to—and actually does—go
down. These arguments provide us with an intuitive justification of
inferences (7) through (#7) since, for a constant carried load, either
decreasing the number of waiting positions or the number of sources or,
alternatively, increasing the defection rate tends to reduce queuing.
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The preceding considerations remain valid if one prescribes the
blocking probability instead of the carried load. This is borne out by
the data presented in Fig. 13.
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VIl. EFFECT OF THE SCANNING RATE

We start with the statements of two properties. (In the sequel, c,
d, s, and j are assumed fixed.)

(7) For a given value of the offered load and a given length of the
observation period, the variance of the switch-count load de-
creases monotonically as the number of scans increases.

(#) For a given offered load and a given number of scans, the vari-
ance of the switch-count load decreases monotonically as the
length of the observation period increases.

All that is needed to prove the last assertion is a straightforward
application of the familiar formula for the variance of a sum of corre-
lated random variables (Ref. 4, pp. 229 ff) and use of the fact that the
covariance, R(f), between two observations of the number of busy
servers made ¢ apart decreases as ¢ increases.

For given T and n, we have always assumed thus far that the n
scans were made r = T/n apart. Under this circumstance, it can be
proved that (i) above is satisfied. But, as we shall see, (i) may fail
to hold if the n scanning instants are chosen in a different way. We
shall make use of this unexpected fact to show that the carried-load
measurement obtained by continuous observation is never a minimum-
variance estimate of the carried load.

For given T and n, the switch-count load was defined by the relation

Lo(T) = %[N,(T) + N.@27) + -+ 4+ No(ar)], nr=T.

In the following discussion, this measurement is said to be of type I
and, accordingly, we shall designate it by Li(T) instead of L.(T).
The switch-count load measurements of type II are defined as follows:

LI(T) = 2 (N(0) + M) + - + N = DT},

where 7/ = T/(n — 1). As defined here, measurements of type II
differ from those of type I in that a recording is made at each end of
the observation period (see Fig. 14). To avoid minor qualifications,
we also define L(T) by setting it equal to Li(T).

Figure 14 shows that each measurement of type I may also be
regarded as a measurement of type II, and conversely. Thus,
for r = T/n, the two random variables Li(T) and L3'(T — r) are
equidistributed for all n. In the present context, however, it is useful
to make a distinction between type I and type II measurements
because, as shown next, their respective variances do not behave in
the same manner as the number of scans increases.
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The load measurements Li(7T) and LI (T) are sums of n correlated,
but identically distributed, random variables, and their respective
variances are, therefore, given by (see Ref. 4, p. 229):

Var LA(T) = % (RR(0) + 2(n — DR(r) + 2(n — 2)R(27)
+ - +2R[('ﬂ,— 1)7:”: T = T/ﬂ')

and

Var LX(T) = T% (nR(0) + 2(n — DR(+') + 2(n — 2)R(27")
4o +2R[(n— DY), o = T/(n— 1),

where R(0) = o2,

For given T and =, the spacing between successive scans is greater
for type II than for type I measurements (' > 7). Hence, since R
decreases monotonically as its argument increases, we have R(kr')
< R(kr) for all k. It is then readily seen from the two preceding vari-
ances formulas that

Var Li(T) > Var LI(T), n=23- -
Furthermore, it is easy to prove that

Var L.(T) = lim Var LI(T) = lim Var LI(T),

where L, (T) is the observed carried load obtained by continuous mea-
surement over (0, 7'). But whereas, according to statement (i), above,
Var Li(T) decreases monotonically towards Var L,(T) as n tends to
infinity, Var LY(T') first decreases to a value that lies below Var L.(T)
and then increases monotonically towards Var Lo(T) (see Fig. 15 and
Tables I through IV, where all entries for which Var LI(T)
< Var L,(T) are italicized).

0 T 27 3r 4r 5r
I X T T T ) TYPEI
/ | n=5
/ |
4 I
/ I
FIRST SCAN LAST SCAN
/ |
/ |
/ I
// | TYPET
¥ | 1 ] y n=%
] T 27’ 3r’ 4ar’

Fig. 14—Type I vs type II measurements.
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Fig. 15—Variance of type I and type II measurements.
Table | — Variance of the switch-count load for various
offered loads
Poisson input; loss system, c =d =4; T = 15.36 h.t.
a = 0.25 erlang a = 0.5 erlang a = 1 erlang
No. of
Scans
TypeI  Typell TypeI  Type Il Typel Typell
13 0.034332 0.032435 0.067979 0.064228 0.124918 0.118142
17 0.032724 0.031185 0.064770  0.061727 0.118634 0.113110
21 0.031931 0.030650 0.063187 0.060653 0.115531 0.110921
25 0.031484 0.030391* 0.062294 0.060132 0.113778 0.109840
33 0.031025 0.030184 0.061377 0.069713 0.111976 0.108942
49 0.030685 0.030112 0.060698 0.069566 0.110642 0.108674
65 0.030562 0.030129 0.060454 0.0695697 0.110162 0.108597
@ 0.030401 0.030401 0.060133 0.060133 0.109529  0.109529
a = 1.5 erlangs a = 2 erlangs a = 2.5 erlangs
No. of
Scans
TypeI  Typell TypeI Typell Typel Typell
13 0.156473 0.148318 0.163109 0.155147 0.154579  0.147698
17 0.147517  0.140800 0.152063 0.145398 0.142050 0.136159
21 0.143076 0.137442 0.146553 0.140916 0.135747 0.130709
25 0.140563 0.135736 0.143421 0.138570 0.132147 0.127783
33 0.137974 0.134244 0.140186 0.136419 0.128411  0.125000
49 0.136053 0.133606 0.137778 0.135195 0.125619 0.123268
65 0.135362 0.133431 0.136909 0.134950 0.124609 0.122822
%0 0.134449 0.134449 0.135761  0.135761 0.123270 0.123270
a = 3 erlangs a = 3.5 erlangs a = 4 erlangs
No. of
Scans
TypeI  Typell Typel Typell Typel  Typell
21 0.119526  0.115301 0.102950 0.099532 0.088157 0.085446
25 0.115590 0.111901 0.098788 0.095772 0.083855 0.081434
33 0.111485 0.108576 0.094420 0.092017 0.079310 0.077355
49 0.108399 0.106382 0.091116 0.089435 0.075847  0.074466
65 0.107279 0.105741 0.089910 0.088626 0.074577 0.073517
129 0.106169 0.105386 0.088713 0.088057 0.073311 0.072768
257 0.105885 0.105491 0.088406 0.088076 0.072986 0.072712
o 0.105790 0.105790 0.088303 0.088303 0.072876 0.072876

78

*All entries for which Var L, (T') < Varw (T) appear in italics.
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Table Il — Variance of the switch-count load for various
offered loads

Poisson input; delay-and-loss system,c = 4, d = 80; T = 15.36 h.t.

a = 0.25 erlang a = 0.5 erlang a =1 erlang
No. of

Scans

TypeI  TypeII Typel  Typell TypeI  Typell

13 0.034364  0.032464 0.068701  0.064901 0.136799  0.129203
17 0.032756  0.031215 0.065492  0.062411 0.130537 0.124388
21 0.031963 0.030680 0.063910 0.061345 0.127445  0.122331
25 0.031515  0.030421 0.063017 0.060829 0.125698 0.121338
33 0.031066  0.030214 0.062100 0.060417 0.123902 0.120649
49 0.030716  0.030143 0.061421  0.060275 0.122572  0.120290
65 0.030594 0.030160 0.061177 0.060310 0.122093 0.120367
o 0.030432 0.030432 0.060855 0.060855 0.121463 0.121463

‘= 1.5 erlangs a = 2 erlangs a = 2.5 erlangs

TypeI  Typell TypeI  Typell TypeI  Typell

13 0.202358 0.191037 0.261618  0.246937 0.306471 0.289678
17 0.193599  0.184477 0.251394  0.239647 0.296204  0.282872
21 0.189262 0.181690 0.246311  0.236590 0.291074 0.280080
25 0.186807 0.180358 0.243426 0.235159 0.288151 0.278822
33 0.184278 0.179324 0.240445 0.234105 0.285122 0.277981
49 0.182401 0.179031 0.238225 0.233917 0.282856 0.275012
65 0.181725 0.179175 0.237423 0.234165 0.282035 0.278374
o 0.180831 0.180831 0.236361 0.236361 0.280944 0.280944

a = 3 erlangs e = 3.5 erlangs a = 3.75 erlangs

Type I Type 11 Type I Type IT Type 1 Type II

13 0.316095  0.300266 0.242082  0.232099 0.149011  0.143657
17 0.307459  0.294979 0.236873  0.229033 0.146173  0.141970
21 0.303119 0.292863 0.234234  0.227809 0.144733 0.141286
25 0.300638 0.291949 0.232727 0.227285 0.143905 0.140988
33 0.298056  0.291418 0.231147  0.226994 0.143037 0.140812
49 0.296116  0.291620 0.229954  0.227144 0.142380 0.140874
65 0.295410 0.292014 0.229518 0.227396 0.142140 0.141003
L 0.294469  0.294469 0.228934 0.228934 0.141817 0.141817

An immediate consequence of this phenomenon is that L. (T) is
not a minimum variance estimate of the load carried over intervals of
length T'.

To shed some light on how this behavior of Var LY(T) comes about,
we consider the following simple examples.

Let X1, X5, and X; be identically distributed random variables with
variances o?, and assume that Cov (X, X») = Cov (X, X3) = o%
and that Cov (X, X3) = o2, where 0 < ¢ < 1. (It is readily shown
that this particular choice of the covariances is legitimate.)
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Table Ill — Variance of the switch-count load for various
lengths of observation period

Poisson input, a = 2 erlangs; loss system, c =d =4

T =048 T =0.96 T =1.92
No. of
Scans
TypeI  Typell TypeI  Type II TypeI  Typell
1 1.392290 1.392290 1.392290 1.392290 1.392290 1.392290
2 1.207470 1.073203 1.073203 0.902186 0.902186 0.758072
3 1.172790 1.086189 1.011540 0.890833 0.799280 0.674767
5 1.154976 1.106250 0.979610 0.908808 0.744683 0.664710
9 1.148037 1.122470 0.967124 0.929260 0.723066 0.678623
17 1.145806 1.132783 0.963103 0.943647 0.716056 0.692850
33 1.145168 1.138609 0.961952 0.952112 0.714048 0.702227
49 1.145042 1.140660 0.961725 0.966143 0.713652 0.705726
65 1.144997 1.141707 0.961644 0.956700 0.713510 0.707650
= 1.144938 1.144938 0.961537 0.961537 0.713323 0.713323
T =3.84 T =17.68 T = 15.36
No. of
Scans
Typel Typell TypeI  Typell TypelI Typell
1 1.392290 1.392290 1.392290 1.392290 1.392290 1.392290
2 0.758072 0.701766 0.701766 0.696191 0.696191 0.696145
3 0.599079 0.521641 0.489334 0.469113 0.465107 0.464138
5 0.508964 0.446917 0.390314  0.320960 0.288003 0.282078
9 0.471908 0.434391 0.287193  0.264847 0.190330 0.181270
17 0.459714  0.439503 0.265409 0.252440 0.152063 0.145398
33 0.456197 0.4456779 0.259008 0.252168 0.140186 0.136419
49 0.4556501  0.448493 0.257734 0.263109 0.137778 0.1351956
65 0.455252  0.449974 0.257277 0.263786 0.136909 0.134950
%0 0.454923 0.454923 0.256674 0.256674 0.135761 0.135761

Under these conditions, we have

Var X+ X,
2
and
yar Kot Kot Xy
Hence,
Var Xt Xat X jgz + X >

0.2
=2 2+ 29

02
=56+ +

Xl + XS
pal T 43

Va 2

22).

7

whenever 3 — 80 + 56* < 0 or, equivalently, when 3/5 <8 < 1.
Thus, the preceding inequality holds so long as the correlation, 8,
between X, and either X; or X; is sufficiently large to wipe out the
accuracy gains that usually accrue by increasing the sample sizes.

The preceding model applies without alteration to single-server loss

systems with Poisson input. If, in this instance, we take X,
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Table IV — Variance of the switch-count load for various

lengths of observation period

Poisson input, a = 2 erlangs; delay-and-loss system, ¢ = 4, d = 80

T =0.48 T = 0.96 T =192
No. of
Scans
Type I Type 11 TypeI  Typell TypeI  Typell
1 1.652174 1.652174 1.652174  1.652174 1.652174 1.652174
2 1.481714  1.3524567 1.352457 1.173156 1.173156 0.987875
3 1.449704  1.367446 1.294822 1.172862 1.075209 0.931136
5 1.433250 1.387236 1.264970 1.1945638 1.023479 0.934834
9 1.426839 1.402759 1.253287 1.215878 1.002992 0.9546756
17 1.424778 1.412527 1.249524 1.230361 0.99635¢ 0.971246
33 1.424188 1.418022 1.248446 1.238769 0.994449 0.981700
49 1.424071 1.4199563 1.248234  1.241764 0.994073 0.985563/
65 1.424030 1.420938 1.248158 1.243298 0.993938 0.987519
0 1.423975 1.423975 1.248057 1.248057 0.993760 0.993760
T =384 T =17.68 T = 15.36
No. of
Scans
Typel  Typell Typel  Typell Typel Typell
1 1.652174 1.652174 1.652174 1.652174 1.652174 1.652174
2 0.987875 0.869191 0.869191 0.831006 0.831006 0.826225
3 0.832771 0.713694 0.649697 0.591226 0.568974 0.555158
5 0.746706 0.663085 0.514116 0.459861 0.382168 0.360649
9 0.711598 0.663341 0.454556  0.419120 0.287082 0.268209
17 0.700048 0.674474 0.434212  0.414679 0.251394 0.239647
33 0.696712 0.683611 0.428232 0.418021 0.240445 0.234106
49 0.696051 0.687254 0.427040 0.420157 0.238225 0.233917
65 0.695814 0.68919/ 0.426612 0.424232 0.237423 0.234166
w0 0.695502  0.695502 0.426047 0.426047 0.236361 0.236361

X3 = Ni(T/2), X3 = N:(T), then 6 = exp[— (1 + a)(T/2)] and

Var LI(T) > Var LI(T),

Since, however,

Var L.(T) = lim Var LI(T)

provided T 1is small enough. Hence,
Var L;'(T) does not necessarily decrease as n increases. This simple
system is used next to construct examples in which Var LI(T) is
smaller than Var L, (T).

For ¢ = d = 1 and Poisson input, it can be shown that

R(t) = g 0+a),

n —w

0.2 T
- ﬁﬁ (T — )-R()dt,

= lim Var L7(T)

Iim?—:i {nR(0) 4+ 2(n — 1)R(7) + 2(n — 2)R(27)

+ - 4+ 2R[(n — D]}
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a simple calculation shows that

252 [ 1 = (+a)T ]
-1 .

Var Lo(T) = TFaT +a+ TTa

Consequently,
Var LI (T) < Var L,(T)

whenever
4t —1+ed) > +et), =(1+aT.
The preceding inequality is satisfied so long as
0<t=010+aT <2,

and, for any given a (>0), Var L. (T) therefore exceeds Var Li'(T)
provided 0 < T < 2/(1 + a). (It is easy to find examples of multi-
server systems for which Var LI (T") < Var L, (T). Illustrations of this
type can be found in Tables I to IV).

The preceding results admit of the following generalization: For
any given n (=2) and a, the inequality Var L;(T) < Var L.(T) holds
provided 7 is small enough (see Tables III and IV).

We note next that the behavior of Var L (7T) as a function of n is
an immediate consequence of the following three properties: For any
given ¢ and T,

(i) There is an n such that Var Ly(T) < Var L. (T).
(5) If Var L(T) < Var L2 (T) for some n, then Var Ly4x(T)
< Var LI 441 (7) for all &'s.

(#2) lim Var L (T) = Var Lo(T).

Only the last of these three properties, which, of course, also holds for
type I measurements, can be regarded as evident. The other two do
not admit of a simple explanation since they reflect numerical at-
tributes of the covariance function whose impact is hard to anticipate.
Hence, the fact that (7) is valid for type II but not for type I mea-
surements appears to be essentially fortuitous. That Var Li(T) dis-
plays, as n varies, a simpler and probably more frequently observed
behavior than Var LI(T) does not invalidate the preceding remarks
since the monotonicity of Var LX(T'), as n varies, does not follow in an
obvious way from general principles.

When all the parameters but n are prescribed, the ratios and, hence,
the inequalities between the variances of either type I and/or type 1I
measurements are independent of ¢2. These inequalities can then be
expressed in terms of the correlation function p(-) = R(-)/s* and it
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turns out that, for any n and all k = 0,
Var L4 (T) < Var L,(T),

provided p(r) is large enough. Some properties of Var LY(T), regarded
as a function of n, are expressed next in terms of p.

Except for the offered load, a, which is allowed to vary, let all
parameters be prescribed and let p(f) be the correlation between two
observations made ¢ apart. As sketched in Fig. 16, p(¢) has the follow-
ing properties valid for all #'s (see also Figs. 17 and 18 for closely related
results) :

(7) In loss systems, p(f) decreases monotonically as @ increases and
tends to O as a tends to infinity.

(77) In delay systems, p(f) increases monotonically as a increases
and tends to 1 as a tends to the critical load .

Let n be the smallest n for which LJ(T) < L. (T). As stated above,
this inequality is satisfied whenever p(7) is large enough. Hence, by
means of (¢) and (¢7), we may conclude that

(1) In loss systems, n cannot increase as a increases (see Table I).
(2) Indelay systems, n cannot decrease as a increases (see Table IT).

Furthermore, since for all systems considered here, p(t) decreases
monotonically as ¢ increases we have

(3) In delay-and-loss systems with arbitrary defection rates, n
cannot decrease as the length of the observation period increases
(all other parameters being kept fixed). This is illustrated in
Tables IIT and IV.

As the number of waiting positions increases, so does p(t) and we
therefore also have
(4) In delay-and-loss systems with fixed a, ¢, and 7, n cannot in-
crease as d increases. (This assertion can be partially checked
by comparing the data of Table I with those of Table II.)

Ykl L,ult)

LOSS SYSTEM

DELAY SYSTEM

|

a

0 OFFERED LOAD 0 OFFERED LOAD c

Fig. 16—Correlation between two observations made ¢ apart vs the offered load.
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[Note that for the values assigned to the parameters, the delay-and-
loss system of Table II actually behaves like a (pure) delay system
and, practically speaking, this table pertains to such a system. In the
title of this table, however, the term ‘‘delay-and-loss” and the state-
ment that d = 80 are retained so as not to obscure the conditions
under which the computations were made. ]

As can be seen from Tables I to IV, the difference between
Var LEX(T) and Var L,(T) is quite small and is certainly negligible
in practical situations. The phenomenon studied in this section is of
interest, however, because it contradicts a well-rooted feeling that a
greater amount of information cannot entail a loss of accuracy; more
important, however, is its implication that the common notion that
the variance of the switch-count load can be regarded as the sum of the
variances of the “source load’” and of the switch-count error? is not
unconditionally valid.

VIll. THE AUTOCOVARIANCE FUNCTION FOR SEQUENCES OF
LOAD MEASUREMENTS

For the purpose of forecasting and/or controlling traffic volumes
on trunk groups and switching devices, carried-load measurements
are frequently performed over successive (nonoverlapping) intervals.
The statistical analysis of such sequences of observations depends
essentially on a knowledge of the autocovariance function (defined
below). We shall therefore show how it can be computed by means of
the variance formula derived in Ref. 1 and then describe some prop-
erties of the corresponding autocorrelation function.

From here on, we assume that all measurements are of type I and
designate by L.(t, T) the switch-count load over (¢, ¢ + T] [L.(0, T)
= L,(T)]. Then the autocovariance function, ®Rax(T), for a sequence
of observations performed over the nonoverlapping intervals (0, T,
(T, 2T], (2T, 3T], -+, is defined by

Rax(T) = Cov {L.(0, T), L.[kT, (k + 1)T1]}, k=01, -,
For given n and T, this covariance is easily calculated for any value
of k as soon as Var L. (mT) isknown form = 1,2, ..., k + 1. Indeed,
for k = 1 we have (by the formula for the variance of sums of corre-
lated variables)

4 Var L, (2T) = 2 Var L,(T) + 2 Cov [L.(0, T), L.(T, 2T)],
so that
®ni(T) = Cov [La(0, T), L.(T, 2T)] = 2 Var Ly (2T) — Var La(T).
Similarly, for k = 2, we have

9 Var Lsn(3T) = 3 Var L.(T) + 4 Cov [L.(0, T),La(T, 27)]
+ 2 Cov [L.(0, T), L. (2T, 3T)],
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so that
®Raa(T) = $ Var L1, (3T) — 2 Var L.(T) — 2®R,.(T).

Hence, by a simple inductive process, we obtain the following
expression :

Roe(T) = gVa.r Lun (kT) — g Lo(T) — (k — 2)®.a(T)
— (k= 3)Ras(T) — -+ — 2®Rn1—1(T).

By means of these formulas the (auto)correlation function, I'(k)
= R, (T)/0? was computed for some loss, delay, and delay-and-loss
systems. These results, which are presented in Figs. 17 and 18, suggest
the following properties. In loss systems, the coefficient of correlation
I'(k) for fixed k(=1) increases monotonically as the load decreases and
satisfies the following inequalities:

0 =T(k) = To(k) <1,

where
To(k) = lim I'(k).
a—+0

Furthermore,
(k) = lim T'(k) = 0.

a -»00

In (pure) delay systems, the behavior of I'(k) is quite different. In
this case, I'(k), for fixed k¥ = 1, increases monotonically as a increases
and

To(k) =T(k) = Tu(k) = 1,
where I'y(k) and T, (k) are defined as above. (Note that I'y(k) is inde-
pendent of the number of waiting positions.)

The dependence of I'(k) on a is somewhat more complicated in
delay-and-loss systems. In this last instance, T'(k), for fixed k(=1),
first increases as @ increases, reaches a maximum I'(k), and then de-
creases monotonically as a further increases. I'(k) now satisfies the
following inequalities:

I.(k) =0 = T(k) < k),

where
I'(k) = max IT'(x) > To(k).

It is easy to show that ®., = ¢°I'(k) is asymptotically exponential
for large values of k. But, as can be inferred from the behavior of I'(k)
(see Figs. 17 and 18), deviation from exponentiality is rather pro-
nounced for small k’s. Hence, the assumption sometimes made in
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practice that ®.:, regarded as a function of k, is exponential requires
further investigation. In this connection, it seems that, at the very
least, any fitting covariance function, ®, should not be subjected to
the requirement that ®p,(T) = Var L.(T).

D.DB#—

0.06

CORRELATION COEFFICIENT

0.04

c=10

18 SCANS PER
OBSERVATION
INTERVAL

0.01 | 1

LAG k

Fig. 17—Correlation between load measurements made over nonoverlapping
intervals of unit length (Poisson input).
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Fig. 18—Correlation between load measurements made over nonoverlapping
intervals of unit length (Poisson input, delay-and-loss system).
IX. CONCLUSIONS

In this paper, we have presented numerical examples that shed con-
siderable light on the behavior of the variance of the switch-count load.
In particular, they show that, for relatively low offered loads, the
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variance in question increases as more waiting is allowed by the system
while the converse holds at sufficiently high offered loads. But when
the same variance is studied in terms of the carried load, a much simpler
picture emerges : for a fixed value of this parameter the variance of the
switch-count load always increases when either the number of waiting
positions and/or the number of sources increase. And a decrease in the
defection rates has a similar effect on the variance of the switch-count
load as an increase in the number of waiting positions. As we have
shown, these properties can be explained by a combination of simple
probability and traffic considerations.

But the results of this paper are not exclusively qualitative. On the
contrary, the charts illustrate that waiting, in general, affects the
magnitude of the switch-count load variance to a degree that cannot
be ignored in practice.

The reasonings by which we have explained the qualitative behavior
of the switch-count load variance can be expected to hold for more
general inputs and service-time distributions. The basis for this state-
ment is that the “hole-filling” argument of Section VI remains mean-
ingful since, to maintain the carried load at a given level, more calls
must be offered when fewer of them are allowed to wait, and this fact,
of course, is not affected by the shapes of the interarrival and holding-
time distributions.

An unexpected result of our investigation is that the continuous
load measurements are not minimum variance estimates of the carried
load and that (discrete) scanning does not necessarily entail a loss
of accuracy.

Finally, as we have shown, the variance formulas derived in Ref. 1
make it possible to compute exactly the autocovariance function for
sequences of switch-count load measurements which are thus brought
within the purview of time-series analysis. This, in turn, should help
evaluate the performance of traffic-control methods based on load
measurements.
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