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This paper analyzes the start-up performance of automatic transversal
equalizers when maxtmum-length pseudo-random sequences of short
periods are selecled as the training signals for fast start-up purposes.
Single-sideband Nyquist systems are considered because they represent
the limiting case of vestigial-sideband systems with small excess band-
width. It is shown that the equalizer is capable of fast start-up except
in some rare situations which can be avoided by using proper timing,
phase, and equalizer initial settings. The results also show that the equal-
1zer tap convergence rate s independent of the phase characteristic of the
communication channel and of the choice of the pseudo-random sequences
which have the same period.

The equalizer is set up in the training period by minimizing the mean-
square error between the equalizer output and the iransmitted pseudo-
random sequence, which is different from the mean-square error for random
data. Surprisingly, we have found that, even for pseudo-random sequences
of very short periods, this start-up algorithm resulls in only a slight deg-
radation in system performance. Accordingly, good system performance
can be erpected immediately after the system swilches from the training
mode to the data mode.

I. INTRODUCTION

Pseudo-random sequences have been used in the past as training
signals for setting up automatic transversal equalizers during start-up
periods.? For fast start-up, it is desirable to know how the equalizer
settling time depends on the choice of the pseudo-random sequence,
the channel characteristics, and the initial receiver conditions. These
problems are examined in the first part of this paper for single-sideband
Nyquist systems. We present basic theories from which the reader
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can work out numerical examples of special interest. The results are
compared with those obtained previously® for a different class of training
signals (isolated test pulses). An important difference between these
two cases is pointed out.

When pseudo-random sequences are used, it is most convenient
to adjust the equalizer tap gains to minimize the mean-square error
between the equalizer output and the transmitted pseudo-random
sequence. It is not immediately clear how closely this simple algorithm
optimizes the data set performance for transmission of random data
(because an equalizer setting optimum for pseudo-random sequence
transmission is not necessarily optimum for random data transmission,
particularly when pseudo-random sequences with very short periods
are used for fast start-up purpose). This problem is examined in Section
IV and the analysis is illustrated by examples.

Section V summarizes the results of this paper. The reader mainly
interested in the conclusions and their implications may read Seetion
V next.

II. MATHEMATICAL MODEL AND FUNDAMENTALS

An amplitude modulation data communication system with a con-
ventional tapped delay line transversal equalizer is depicted in Fig. 1.
During data transmission, the transmitter transmits the information
digits, {d.}, sequentially at time instants { = ---, ¢, — T, t,, _
{, + T, - - . The equalizer output is sampled sequentially at the symbol
rate to recover the information digits. Let the ith equalizer output

(d;) P TRANSMISSION RECEIVING
| PASSBAND FILTER MEE}lfIIJM FIFLT;ER —————
Fy 0 2 4lf

LOW x(t) T
FILTER L

cos [Zfrfct + H] ¢, c,

Fig. 1—Block diagram of an amplitude-modulation data communication system.
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sample be y; . We adopt the familiar mean-square error (MSE) criterion
and adjust the gain controls of the equalizer to minimize the MSE
between ¥y, and d;, . We assume [d;} is an ergodic process, hence the
mean-square error can be written as

Jim * > (e — dy)’
i=1

v V

((y: — di)2> (1)
where (z) denotes the time average of z.
It can be seen from Fig. 1 that

v = 3 Cualt — (& — 1), ()

Il

&

and

) = 3 dib(t — iT), (2b)
where A(t) is the overall system (without equalizer) impulse response.
For the sake of simplicity, we shall shift the time origin and use the
abbreviations y, = y(&T), z; = z(@T), and kh, = A(ET). Thus (1) can
be written as

& = C'AC — 2C'V + (3), (3)
where
C,
C
C=|7"7, 4)
Cy
a;; @2 - Oy
e R (5)
Ayy QGyxz " °  Qww
a;; = (1'—.'+1Jf—,'+:)

]
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7:=1s2|"'|Ns j=112!"'!N| (6)
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Vi

v=| "], ™

V.
and
Vi = <$i—k+1 d.‘)
= > (d: d)hicisr-m, k=1,2,--- N. ®)
Let 08/0C; be the partial derivative of & with respect to C; ,7 = 1

to N, and let 3&/9C represent an N X 1 column vector the 7th element
of which is 9§/9C; . From (3), we obtain

08
C = 2AC — 2V. 9)
The optimum value of C that minimizes the MSE & is denoted C,,, .

It is clear from (9) that

Cope = AT'V. (10)
Thus, the minimum value of § when C = C,,, is
Emin = (d}) — VATV, (11)
Let e denote the difference between C and C,,, ; i.e.,
e=C— AV (12)

Now consider the adjustment of the equalizer. As is well known,
the equalizer can be adjusted in the training period by transmitting
either a succession of isolated test pulses or a special class of pseudo-
random sequence (pseudo-noise sequence®). The case of sending isolated
test pulses during the training period has been considered by Chang.*
In this paper, we examine the case of sending pseudo-noise sequences.!

In the training period, a binary pseudo-noise sequence is applied
to the transmitter input. Since an adjustment is made at the end of
each training sequence period and since we wish to make the largest
number of adjustments during a fixed training time, we consider the
shortest’ possible pseudo-random sequence period (i.e., the case where

t The best known sequences of this type are the m-sequences (also known as
maximal-length linear recurring sequences or maximum-length pseudo-random
se?uences).

When the period of pseudo-random sequence is shorter than the length of the
transversed equalizer, the analysis is difficult because A1 may not exist.
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the period of the pseudo-noise sequence is equal to the length of the
transversal equalizer).

Let the pseudo-noise sequence be denoted by 8,8:8; * - - By B1B28s - - -
B , where 8;. is the last bit. From (2b), the input to the equalizer
can be written as

.
2(t) = kZ Bih(t — kT). (2b)
=1
Practically speaking, we may assume that h(f) is time limited. Then
it can be shown that for ¢ larger than a certain value, say &, , z(f) will
be a periodic function of period NT; i.e.,

z(t) = x(t + NT), t, <t and t+ NT = k'T. (13)

In the training period, the values of a;; , V. , & C,,. , A, and V are
denoted by aX , V* , &% CX, , A* and V¥ respectively. From (6),
we obtain

af;

I

3 3 (BuBudhiiromhiiron
Z Z h—f+l—mh—j+1—m+kN

k

Il

N-1

1 ..
- ﬁ E Z heivimmPjoromerner a1l 2, 4. (6)
k

=1 m

From (R)
Vi

Zm: (BuBVhi—ks1-m

N-1
E hoiriiv — Al]' Z E hprrsives k=12 ---,N
i i 0=l

Il

j = integers. (8)
The partial derivative a6*/0C; , 7 = 1 to N, can be computed from
each block of N samples of z(), and the gain control C; is adjusted
by an amount proportional to d&*/dC; at the end of each block. For
example, 36*/4C; is computed from z;., to z;,y and C; is adjusted
after x;,5 . Then d8*/8C; is computed from z;,y., t0 z;,2v and C; is
adjusted after x;,,y . The optimum tap setting that minimizes the
MSE, &* is

Ch = ANV

We now proceed to examine the convergence of &*.
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IIT. SINGLE-SIDEBAND NYQUIST SYSTEMS

In this section, we consider single-sideband data communication
systems which transmit at the Nyquist rate with sin z/z pulses (here-
after referred to as single-sideband Nyquist system). Such systems
are considered because they represent the limiting case of sharp rolloff
vestigial-sideband systems.

The transfer functions of the transmitting filter, transmission medium,
and receiving filter (see Fig. 1) are F,(f), F.(f) and F;(f), respectively.
The F;(f) are of the following form

F(f) = |F:(f)| ™", i=1,2,3 (14)

where J is used to denote the imaginary number v/ —1.
In a single-sideband Nyquist system, | ', (f) | and | F,(f) | are specified
by

|F1(f)|=1 flélfléfz
0 otherwise, (15)

and
|Fs() =1 L =|fISh

=0 otherwise. (16)

In general, with lower single-sideband transmission, the carrier fre-
quency, f. , is set equal to f, . Let H(f) denote the Fourier transform
of A(f), which is the overall system impulse response at the equalizer
input. It can be shown that

H{f) = § [ Ff — 1o |

_BJ[Bx(f—f:)+.3:U'—f:)+ﬂ:\'f—f:)—21'(.’-f:1h+3l’ 0 g f é ]tz _ f]
=3|F(f+ 1) |

_e-”ﬁlU-{-.fr)+ﬂ=(f+l=)+ﬂ':([+f:)—2r(f+l:]l;-ﬂ]’ _02 — fl) é f é 0
=0 otherwise, (17

where 6 represents demodulating carrier phase. The signaling interval is
] A (18)

2(f: — f1)
Since the time samples h(zT), 7 = --- 0, 1, 2, --- are taken at the
Nyquist rate, we obtain from the sampling theorem, Parseval’s theorem,
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and (17)

=

Z h—i-{vlﬁmh"fé‘l—m

9@ — j)

s — 1) f: It — i + T)h(t — §T + T) dt

fa=/S1
= — 1) f [cos 2nfGi — DT Falf — 1) [* df. (19)

Substituting (19) into (6), we obtain
N-1

at = X gl —j+kN) — % 5 2 g6 — i+ kN + D) all i,j. (20)
k k I=1

It is clear from (19) and (20) that a.* is independent of the demodulating
carrier phase 6, the system timing ¢, , and the phase characteristics
B:(f) of the system. We also note that for a fixed N, a* is independent
of the choice of the pseudo-noise sequence. [The pseudo-noise sequence
B, Bz, - -+ does not appear in (19) or (20).] Using the method in Ref. 4,
it is concluded that the equalizer tap convergence rate is independent
of the demodulating carrier phase 6, the system timing ¢, , the phase
characteristics of the system, and the choice of the pseudo-noise se-
quence for fixed N.

Note from (19) and (20) that a* depends on the amplitude char-
acteristic | Fo(f) | of the transmission medium. Since amplitude dis-
tortion is not severe in private line systems, in the following discussion
we assume that

|[F.() =1, L =1 (21)

Substituting (21) into (19), and neglecting a normalizing constant
(fz - fl)z, we obtain

g - =1, 1=7]

=0, D (22)
Substituting (22) into (20) gives
a¥ =1, =7
e T (23)

Therefore, the eigenvalues of A* are
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M=l4L, k=1,2--,N—1
1
)N=ﬁ' (24)

The eigenvector uy corresponding to Ay is an N X 1 vector whose
elements are all unity. Since all but the last eigenvalue are equal,
the equalizer can settle rapidly except in the case where the initial &*
contains a large component (ejuy)*\y , where e, is the initial tap setting
error vector®. Since Ay is small and since (efuy)® cannot be exceptionally
large with proper timing, phase, and initial equalizer settings', it is
very unlikely that &* would contain a large component (efuy)’Ay .
Therefore, the equalizer can settle rapidly in the training period.

IV. FURTHER ANALYSIS OF SYSTEM PERFORMANCE

At the end of the training period, the equalizer taps are set very
nearly to C¥%, . The data set is then switched to the data transmission
mode. Since statistics of the true data differ from those of the training
pseudo-random sequence, the optimum tap settings, C¥, , obtained
for a training sequence cannot also be the optimum one for the true
data. Thus, system performance degradation during the early stage
of data transmission is expected, even if the data set is equipped with
an adaptive equalizer. We now proceed to determine this degradation.

We assume zero-mean independent information digits (binary or
multilevel). The signal level is normalized such that

{d2) = 1. (25)
The mean-square error, &, can be obtained from (3),
& = (CL)'A(CS) — 2(CL)'V + 1, (26)

where A and V are given by (5) and (7), respectively. From (6), (8),
(19), and (25), we obtain

a; = g — J), (27)
and
V& = h—k+l . (28)
The aX* and V* can be rewritten as
at;, = a;; + A;(N), (29)

t For example, one may use the method described in Ref. 1.
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and

Vi = Vi + (), (30)

where

N-1

BulN) = Tgli— i+ kN) — 5 X gl — i+ EN +D, G

k#0 =1

and

1 N-1
'Yr:(N) = Z h—k+1+§N - N E Z h—k+l+jN+l . (32)
im0 G 1=1

From (26), we have
& = CJ,AC,,, — 2C,,.V + 1 + (8C)’A(5C)
= &min 1 (8C)’A(3C), (33)

where C,,. is the optimum tap setting for the true data and 8C is the
difference between C*, and C,,, ,

oC = C:‘nt - Cnpt . (34)

The last term in (33) represents the system performance degradation
and is non-negative.

The mean-square error during the early stage of data transmission
can now be determined from (33) and (34). As the period of the training
PN sequence approaches infinity, limy_, A;;(N) — 0, limy_, y<(N) — 0,
and limy., 8 — 0. Hence, C%, approaches C,,, asymptotically as
N increases.

We now assume some specific channel characteristics and apply
these formulas to determine the initial performance degradation.
Ezample 1: A baseband channel with a flat amplitude characteristic
and a typical quadratic delay characteristic’ is assumed. The delay
at the Nyquist frequency is taken to be §8,.T seconds. The phase char-
acteristic is of the form

Ba(f) = SmB.T°f/3. (35)

The system impulse response, 2(t), can be calculated from
1/2T
ht) = 2 f cos (2rft + B(f) df. (36)
0

In this example, we consider a typical value 8,, = 2. One hundred one
samples of h(¢) (from ¢, — 507 to ¢, + 50T) are taken with T = 1 and
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to, = 0.67. For a 7-tap equalizer, the minimum mean-square error
attainable is 0.03347. The mean-square error obtained from (33) is
0.0393. The results for a 15-tap equalizer are 0.01484 and 0.01785,
respectively. It is clear from these numbers that the performance
degradation caused by using a PN sequence in the training period is
negligible. This can be further illustrated by sketching the vector 5C
in (34). Since the amplitude characteristic is constant, we have

A=1 (37a)
and
A¥ =1 — A, (37b)
where
[0 L L 1]
N N N
1 1 1
¥y Ouw N
1 1 1
A= NN 0 ﬁ (37¢)
1 1 1
N NN 0]
The inverse of A* is found to be
N2
(A*)__I+N+1I+N+1 (38)
From (10), (34), (37a), and (38), we have
N — 2N N?
C = N+1V+N+IT+N+1[AV+A7}. (39)

Substituting (28), (32), and (37¢) into (39), we obtain
Z Riv-11/21 410+ inN

i#=0
iC = : : (40)
E h*[(Nfl)ﬂlaniN

i#0

In Fig. 2, the time samples #, , k = — « to =, of h(f)} are sketched.
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Fig. 2—Illustration of the elements of 8C

For N = 7 (7-tap equalizer), the first element of §C is the sum of the
infinite sequence -+ , i1, h_y, fiy, -+ ; the second element of 3C
is the sum of the infinite sequence --- |, h_yp, iz, hy, --- ; ete. It
can be seen that the large time samples fi_3 to hs are not included in
these sums. This explains why &C should have small elements. By
repeating the above for N = 15, one can easily see that the performance
degradation due to the use of PN training sequence is small and that

this degradation approaches zero as N inereases.
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Ezxample 2: We continue example 1 but change 8, to its minimum
value zero. The infinite sum Z,—,gg h_rie.+iy can now be evaluated
in closed form. By using the sampling theorem or the formulas for
Psi (Digamma) functions,” it is obtained after some manipulations

k+n 81D 8in miy

Zh—k+!u+:1\’ = ( 1)_ N

N 7ty — k) (o — k)
'{to—k 2(0‘ oN T W T gy )} (41)

where 0 < {, < 0.5T is assumed. The performance degradation can
now be determined in closed form

W2 gin® i,
(8C)’AGC) = X T3

k=—[N-11/2 T N

'{toli kT2 (Ct e k))} (42)

8nia and (8C)Y'A(BC) are plotted in Fig. 3 for N = 7, 15, and 31 and
i, = 0.05, 0.1, 0.15, 0.2 and 0.25. It can be seen that the value
of (8C)’A(5C) is approximately an order of magnitude less than that
of &nin . Also note that (3C)’A(5C) reduces almost by half when N is
doubled. These results again show that the performance degradation
caused by using PN training sequence is negligible.

V. CONCLUSIONS AND DISCUSSIONS

We have analyzed the start-up performance of a transversal equalizer
for the case where a maximum-length pseudo-random sequence is
used as the training signal to adjust the equalizer in the training period.
The equalizer taps are adjusted by the gradient method to minimize
the mean-square error, §*, between the equalizer output and the trans-
mitted pseudo-random sequence. The pseudo-random sequence has
been denoted 8, , B2, -+, By, B, Bz, -+ , where N is the period of
the sequence. We have considered the case where N is equal to the
number of taps of the equalizer. The following results are obtained:

(#) For a fixed N, the initial value of the mean-square error &%
the convergence rate of &% and the minimum value of &* are
all independent of the specific values of the 8,’s. Therefore, the
same performance is obtained with any of the many pseudo-
random sequences available. For example, a maximum-length
pseudo-random sequence can be cyclic shifted to produce N
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Fig. 3—Computational results of Example 2.

pseudo-random sequences. Any one of these N sequences can
be used in the training period with the same result.

The initial value of &* depends on the phase characteristic of
the communication channel, and the timing and phase settings
at the receiver. However, the convergence rate of &* is inde-
pendent of all these parameters. This result is similar to the
one obtained previously* for the case where isolated test pulses
are used as the training signal.

Unlike the isolated test pulse case, the eigenvalues of the cor-
relation matrix here are not close together. For example, when
the channel has a flat amplitude characteristic, the first N — 1
eigenvalues A, to Ay—, are equal to 1 4+ 1/N, while the Nth
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eigenvalue Ay is equal to 1/N. The mean-square error can be
decomposed into N components, each associated with one of
the N eigenvalues. The tap gain adjustment reduces rapidly
the N — 1 components associated with A, to Ay_, , but the
component associated with Ay decreases very slowly. Therefore,
as discussed at the end of Section III, care must be exercised
in setting the timing, phase, and equalizer taps at the beginning
of the training period so that the component associated with Ay
has a small initial value. Note that this precaution is not re-
quired when isolated test pulses are used, because in that case
the eigenvalues are all close together and the components of
the mean-square error all decrease rapidly.*

The analysis shows that the tap settings obtained with
maximum-length pseudo-random sequences with very short
periods are nearly optimum for random data transmission.
More specifically, the equalizer taps are adjusted in the training
period to minimize the mean-square error &* between the
equalizer output and the transmitted pseudo-random sequence.
When such tap settings are used for actual data transmission,
the mean-square error between the equalizer output and the
transmitted random data can be written as

E:"=8min—i"£

where &, is the minimum attainable value of &, and e is non-
negative, because tap settings obtained with pseudo-random
sequence do not necessarily minimize & Formulas for computing
e were developed in Section IV and illustrated by numerical
examples. It can be seen from these formulas and Figs. 2 and 3
that e decreases rapidly as N increases (N is the period of the
pseudo-random sequence and also the number of equalizer
taps). The computations show that e decreases approximately
by the factor 1/N (for example, e reduces approximately by
half when N is doubled). The computations also show that e
is about an order of magnitude less than &, . (This is so for
N as small as seven.) Therefore, tap settings obtained with
pseudo-random sequences are nearly optimum for actual data
transmission.

As can be seen from the computations in Section IV, &, is
rather large when N is small. For example, for a system with
typical channel delay distortion (see example 1) and S/N =
30 dB, §&,.:. can be 15 dB above the thermal noise level when
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N = 7, and 12 dB above the thermal noise level when N = 15.
These large mean-square errors are due to the fact that for
single-sideband Nycuist systems the overall system impulse
response decays very slowly with time. Thus, for very sharp
rolloff VSB systems (such as 4-percent rolloff), it is necessary
to use a large number of equalizer taps (such as 31 or more).
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