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A variational model 1s used to calculate the static stability limits and
equilibrium properties of ‘‘half-bubbles,”” magnetic domains residing on
one surface of a magnetic bubble material platelet. Stability is achieved
through the presence of gradients in the domain wall energy density and/or
saturation magnetic moment. The model evidences two distinct types of
instability behavior separated by a critical value of the wall energy density
gradient. Unlike the standard cylindrical domain, the half-bubble has a
minimum stable value of the ratio of domain diameter to height.

The half-bubble is shown to possess a number of properties which make
it potentially useful for device applications. It is self-biased by ils closure
wall and in some cases 1s stable in zero external bias. Bias margins are of
the same order as those for the standard cylindrical domain. It stabilizes
on only one platelet surface, and ils properties are independent of both
matertal thickness and of minor irregularities on the second surface. In
addition, its structure may be advantageous in avoiding the undesirable
properties of hard bubbles.

I. INTRODUCTION

The current interest in eylindrical magnetic domains and their device
applications has stimulated the search for such domains in a wide
variety of materials produced by a number of growth techniques. In
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some samples, Bobeck' has observed domains of reversed magnetization
which apparently do not penetrate through the entire thickness of the
sample (Fig. 1). These domains, referred to as “half-bubbles,” have
four features which make them potentially attractive for device applica-
tions. First, they contact only one surface of the platelet in which they
reside so that their properties should not be as critically dependent on
surface preparation as those of the usual cylindrical domains. Second,
as shown in this paper, their properties are independent of platelet
thickness. Third, this article also shows that their top closure wall
produces a self-biasing effect which makes external biasing unnecessary
in some cases. Finally, Bobeck et al.? have observed in two-layer films
that domains having a closure wall do not exhibit the undesirable
properties of hard bubbles, and it is a reasonable presumption that this
property also pertains to half-bubbles.

Bobeck' has suggested that half-bubbles may be stabilized by the
presence of gradients normal to the material surface in one or more
of the material characteristics (e.g., domain wall energy density o,
and/or saturation magnetic moment M,). In this paper we use a varia-
tional model to analyze the static stability of half-bubbles in materials
having such gradients. Our model for the half-bubble and its instability
modes is introduced in Section IT. In Section III, we examine the stabil-
ity of the model when the gradient in M, is zero. While no stability
occurs in this simple case, the calculation of Section III is a useful
preliminary to the more general calculation of Section IV, where the
gradient in J, is assumed to be non-zero. The results of the stability
calculations and their interpretation are discussed in Section V.

L
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Fig. 1—Half-bubble magnetic domain configuration.
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II. HALF-BUBBLE MODEL

In constructing our model we idealize the half-bubble in two ways.
First, since the details of the shape of the half-bubble are not known,
we approximate the actual shape of the domain by a right circular
cylinder of radius 7, and height & (h assumed to be less than the platelet
thickness), as shown in Fig. 2. This approximation gives the model
domain a form identical to that of the standard cylindrical domain, the
stability of which has been calculated by Thiele.® We shall exploit
this identity in caleulating the half-bubble energy and its derivatives.
Second, we defer all consideration of the microscopic structure of the
domain wall of the half-bubble and assume that the wall energy density
0. varies linearly with distance through the platelet.

The magnetostatic energy of our half-bubble model possesses an
important invariance property. As we show in Appendix A for the
case in which the M, gradient is zero, the magnetostatic energy of a
cylindrical domain of fixed size located on the bottom surface of a
platelet is independent of the position of the top surface of the platelet.
This invariance is equally valid if M, is a function of #, or if the domain
assumes a more general shape. Thus, if we conceptually move the upper
platelet surface down to the top of the model half-bubble in Fig. 2,
we see that the magnetostatic energy of the half-bubble is equal to
that of a standard cylindrical domain of the same size.

This invariance property has two important consequences. First, in
the limit where the M, gradient is zero, it allows us to obtain the
magnetostatic energy of our model half-bubble from the results of
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Fig. 2—Model for the half-bubble magnetic domain.
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Thiele® and Thiele et al.* for the standard cylindrical domain. Second,
it indicates that the platelet thickness is not a fundamental length of
the half-bubble as it is for the standard cylindrical domain.

A convenient alternative standard of length, easily defined in terms
of material characteristics, is provided by the material length at the
bottom surface of the platelet (z = 0):

1 = 0.,(0)/4xM2(0). 1)

In defining the ¢, and 3, gradient parameters v, and vy, , we then
scale the variations in wall energy density and saturation magnetic
moment to this material length:

n@) = o1 +%), (20

1.6 - w1 +22). (%)

Experimental observation' indicates that there are three modes of
instability which are of importance for the half-bubble: collapse,
run-out, and “run-through”. The general character of the collapse and
run-out modes is already familiar from Thiele’s stability ealculation®
for the standard cylindrical domain; the half-bubble collapse is not
purely radial, however, but involves axial collapse as well. The term
“run-through’ is used to describe the transition from a half-bubble to
a standard cylindrical domain which contacts both surfaces of the
platelet.

As indicated in Fig. 2, the size of our model half-bubble is specified
by the radius r, and the height A. In considering stability against run-out,
we include an elliptic distortion r, and specify the radial boundary of
the domain by

m(0) = 1, + 75 cos 2. 3)

The model will be in equilibrium if the first derivatives of the total
energy vanish. In the absence of in-plane anisotropy, dE,/dr, = 0 at
r. = 0 by symmetry (ef. Appendix B). The equilibrium conditions
are then

OBx
ar,

alip
ah

= 0, = 0. (4a;b)

The stability of the resultant equilibrium is determined from the second
derivatives, stability occurring when
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'E ’E IE.\?
(67‘2T) (a}fr) - (ar ;h) >0, ®)
'E
( GTZT) >0, (6)
and
9°’E
(arir) > 0. @

If the inequality in eq. (5) is replaced by the corresponding equality,
then the half-bubble is on the verge of either collapse or run-through.
If (8E;/dr3).q. = 0, then the model is about to undergo run-out.

IIT. HALF-BUBBLE STABILITY WITH CONSTANT ]‘4—a

We begin the actual calculation of the stability limits for the half-
bubble by considering the limiting case of constant M,. This case
lacks practical interest since we show that it leads to no region of
stability for half-bubbles. In this limit, however, the problem loses much
of the analytic complexity which characterizes the general case in which
the gradient parameter vy, 7 0. Our method of solution-treating the
second derivatives of the energy as polynomials in &/l with coefficients
depending only on 2r,/h-thus becomes clearly visible here.

As noted in the preceding section, our half-bubble model is markedly
gimilar in form to the model used by Thiele® and Thiele et al.* to treat
the standard eylindrical domain. For this reason, in the present calcula-
tion we adopt the notation of these papers wherever practical.

The total energy of the half-bubble, measured relative to that of
the uniformly-magnetized platelet, is

Ey = E, + AE; + AE,, (8)

where E, is the wall energy, (including the energy of the top closure
wall), AE} is the energy of interaction with the externally applied bias
field, and AE, is the magnetostatic energy. Since the half-bubble is
independent of the magnetic material above it, we can describe our
model in terms of the unit step function u as

M = 1.[1 — 2u(ry(e) — Nu@uh — 2) 9)

where 7,(¢) is as defined in eq. (3).
The wall energy, consisting of integrals of o, (z) over the side and top
surfaces of the half-bubble, assumes the form
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h 27 \ or, 2)4 2r 'r:(qo)
£ [ aea [ {ro+ ()T s+ oo [a. a0
0 0 @, 0
From eq. (10) it is clear that different wall energy densities for side and
top walls could easily be included in our model. While such a distinction
has intuitive appeal, experimental evidence on this point is lacking.
We thus omit this added degree of freedom in the present calculation.
The energy of interaction with the external bias field H# = 1,H,
relative to that for the uniformly magnetized plate, is

2x
AE, = —zf HAV = M.th ) de. 1)
h.-=b. 0

If the elliptical distortion r, is set equal to zero, E, and AEjy become

E, = 2w,haw(0)(1 + Yo ) + m’,,cr‘.,(())(l 4 Y= ) (128)
= 2mr.hoo(h/2) + wrie,(h), (12b)
AE, = 2e*hM H. (13)

It should be noted that the interaction energy AEj is proportional to
the domain volume wr?h. This characteristic is shared by the gradient
term in the energy of the top wall [eq. (12)], leading us to view this
term as arising from an effective bias field. The non-gradient part of
the top wall energy lacks any h-dependence, being proportional to =} .
It may be thought of as coming from an h-dependent bias field analogous
to that introduced by Liu® in connection with sputtered thin films which
are exchange-coupled to a magnetic bubble material.

The relative magnetostatic energy is obtained from the general
expression

def dV’(v—M)(vrﬂl (]_4)
in the form

L] 2x L]
By = [Crar [ o [ ar
1} 0 [1]

fu t de'lkk’ — 11" — (0" + )™ (15)
where

k(r, o(e)) = 1 — 2u(r(e) — 1), (16)
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ot =1 41" — 2rr' cos (¢ — ¢). (17)
This integral is given in closed form by Thiele et al.” for the case r, = 0:
AE, = —2rxh®-2eM3I(z), (18)

I(z)

S (e o -l ) -

where z = 2r,/h and K, E are complete elliptic integrals.

It is now a straightforward matter to differentiate E, with respect
to r,, h, and r, . Using the definitions for the normalized bias field A
and Thiele’s® wall-force function F

K

(19)

H = H/4=M, , (20)
o= 202 [ e Z) -] e

we may conveniently write the equilibrium conditions dE,/dr, = 0,
dE;/0h = 0 in normalized form as

l ”L_wh) li( M) g _
h(1+21 sap (1458 + o - F@) =0,  (220)

wht

% (1 + TT) + toy. + 3off — %I(x) + F@ =0.  (22b)

To show the biasing effect of the top wall we write eq. (22a) as
LUL x[ﬁ + %%] —F@) =0 (23)

where [(h/2) ard I(h) are the material lengths as measured at the middle
and at the top of the domain, respectively, and are defined by the
obvious generalization of eq. (1). Equation (23) should be compared
with the force equation for the standard cylindrical domain [Ref. 2,
eq. (69)]

% + 2 — F(@) = 0. (24)

Equations (22a) and (22b) may also be used to obtain expressions for
the values of v, and H required to obtain an equilibrium state charac-
terized by specified values of I/h and z:

Yy = _3% (1 - g) + %I(:c) — 2F(z) (25a)
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~ 11 1 1 2
= _53( +1 4 ) ( + F)I(x) + (1 + E)F(m). (25b)
The stability or instability of a given equilibrium point is determined
by examining the second derivatives of the energy. Calculating these
derivatives and removing a factor of 7' = 4xh-4rM? we find

»3662?; §%+2w+H—%§f), (26a)
(e R e L
8 "’;f? = tove — S 1@ + aF(2) — z— d‘;f) , (26¢)

oo =i+ )+%( )
+ 18- 510 + 2R - 1@ o5
Operations with these second derivatives are simplified if we define
6@ = —I6) + 2F@) — 5 L@, @)

Using the relation®

210) - F@) = 18.@) + 38,() (28)

we may write G(z) in terms of the stability functions S,(z) and S,(z)
of Ref. 3:

G(x) = 3x(8,(x) — S:(x)). (29)

After consulting plots® of S,(x) and S,(z), it is easily seen that G(z) = 0
forz =z 0.

If we use eqs. (25a, b) to eliminate v, , A from eqs. (26a-d), we
obtain expressions for the second derivatives of E, at equilibrium in
terms of I/h and x only

BﬁEr) _ 11 (g 1) 2

ﬁ( o). - 3n\z T2t G(x), (30a)
azEr 11 1

5(311 afn),,q = g5 1+ o — G, (30b)

&2ET 11 T 1
B( ahn’ ) = —er o\l T -) + 5 G@), (30c)
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SE) L1y 1)1
'6( o Jeg. h\4 + T + x* G(2). (30d)

The derivatives are now in a form suitable for comparison with the
stability conditions, eqs. (5-7). Inspection of eq. (30d) shows that
B(3*E1/dr2),. > 0 for all positive values of I/h so that eq. (7) is satisfied
for this system. Equation (6) is satisfied if

L .8 (2 l)_l
h<x2G(x):c+2 . (31)
Finally, we require
,[(a“E,) (a’ET) B (a*ET )2 :I
Fl\ar ea. VOB /oq. or, 0h/eq.
L ((=a—9) -
“12\a )
which may be factored” into I/h > 0 and

( + 3)0(1,)(1 - ;—) 33)

L (i + i)G‘(x) >0 (32

;‘Il"-'

However, it is easy to show that egs. (31), (33) and the condition I/h > 0
cannot be simultaneously satisfied. Thus, if v = 0, the half-bubble
model has no stability against collapse and/or run-through.

While its result is negative, this stability calculation illustrates the
method used in this paper for separating the I/h- and d/h-dependence
of the half-bubble model and for finding its stability region. We first
use the equilibrium conditions to remove y,, and A from the expressions
for the second derivatives of E;. The resultant expressions are essen-
tially polynomials in I/ with coefficients depending only upon x = d/h
[ef. the right-hand sides of eqs. (30a—~d) and (32)]. For fixed z, the roots
of these polynomials provide us with the limits of the stability region
(if one exists). In the next section, we generalize this method to include
the effects of non-zero v, .

IV. HALF-BUBBLE STABILITY WITH v, # 0

We now generalize the equations of Section IIT to calculate the
stability of the half-bubble model in the presence of a gradient in the
saturation moment M, . The wall energy E, is unchanged from the
expression given in eq. (10) and the interaction energy AEjy only gains
a new factor to become
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Yuh " 2
AE; = M,\1 + o1 Hh 73() dep. (34)
o
The expressions for the magnetostatic energy, however, become sub-

stantially more complex than those given in egs. (15) through (19).
The magnetization distribution of eq. (9) is now replaced by

i1 = 101 + 2N = ) — At — . (9

The corresponding magnetostatic charge density is
—V-M = —=M,0)1 — 2u(n(p) — )]

X {a(z) — e — by + 2P [—a(z — )+ e — z)]}- (36)

The first two é-functions in this expression are the familiar platelet
surface charge terms which occur in the stability theory of the standard
cylindrical domain [Ref. 3, eq. (19)]. The third §-function gives the
correction to the charge on the upper surface, while the product of
step-functions deseribes the uniform volume charge resulting from the
gradient v, .

The magnetostatic energy integral of eq. (14) has a quadratic de-
pendence on the charge density —V .M. As a result, we have terms in
AE , up to second order in v, . For convenience, we write

M = E_";.?l + 'YMEJ(I-}) + 'Y:d" J‘:) (37)
where E is identical to the magnetostatic energy of the preceding
section. The quantity v ,E}’ has two parts. The first arises from the
interaction of the v, = 0 charge distribution with the uniform volume
charge and is zero by symmetry. The second, representing the inter-
action of the v, = 0 charge distribution with the excess charge on the
upper surface, is easily evaluated. We find

ruBS = VR, 39)

(2)

The final term 5 E';
2 o0 2x 0 2
AE® = 1 (‘f——*’h) w) [rar [ap [ rrar [ g — 1)
2\ 1 0 o ) 0

% {p — o f delp® + (2 — B

may be written as

ot [ [ a4 - z')’]*}- (39)

The p~' term in the curly brackets corresponds to the self-energy of the
excess charge on the upper platelet surface; the z-integral following it
arises from the interaction of this excess charge with the uniform volume
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charge, and the double-z-integral corresponds to the self-energy of the
volume charge. After evaluating the z-integrals, we obtain the following
integral expression for the second-order energy:

PED = (’%)2114‘:(0) [ Crar [ T dp [ra | T de kR — 1)

_ (.2 2%
X {zp-l P (ph2+ ) } (40)

Setting r, = 0, we find

2
g = i (4F) oo

{j% 4@ — 6 — xZ)I(x)}- (41)

The derivatives of the total energy E, are now used to find the range
of stability of the half-bubble model. Experimentally, this stable range
would be mapped out by selecting materials characterized by given
values of v, and v, and then varying A to find the stable region in the
variables d/l and h/l. The analytic form of our equations, however,
precludes following such a physical approach in the present calculation.
Instead, we use an extension of the method followed in Section III.
We use the equilibrium conditions eqs. (4a, b) to eliminate v, and &
from the second derivatives and then treat the second derivatives as
polynomials in y = h/l, the coefficients of the polynomials being func-
tions of z = d/h and v, . This manifestly unphysical approach gives
the desired stable regions with a minimum of algebraic and numerical
complexity.

The equilibrium conditions corresponding to eqs. (4a, b) are con-
veniently written in the following normalized forms:

i T | Ve 7 M)_ m)
h(1+2)+2(1+$)+1H(1+2l (1—!— I F(x)

1 (M

+ 3\ )QI:_:_—2 — (1 4+ 2)F(zx) + a:I(:c):I =0, (42a)

l K 1 wh 3
Ly n(1+2) + Lan(1 428 4 poy - 21

+ [F(I) - %I(l‘)} - (T%h) li@) = 0. @)

These equations may be solved to find the appropriate values of v,
and H for an equilibrium state characterized by given values of v , z,
and y = h/l. For brevity we write F(z) and I(z) as F and I respectively,
and define a denominator D by
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D=yb+wo—aﬂ‘ (43)

Yo = D"{(x — 2) + (ymx — 6F 4+ 1227 ' D)y + yu(—10F + 2227 'I)y°

We then find

£ 2alZaror+ (B o]y
2a[faror s Crapl), o
PRI
e -G B

2

= m[% (é + 1)(“5— — (1 +29F + :cI) +20+ m)I]y“}- (44b)
x o z

The denominator D in both of these expressions is always greater than

zero and finite in the region of interest, and thus contributes no sin-

gularities or zeros to the calculation.

The second derivatives of E are developed in much the same fashion
as in Section ITI. They are cast in dimensionless form by extracting a
factor of 87! = 4wh-4xM?(0), and v, and H are then eliminated using
eqs. (44a, b). The resultant expressions assume the form of polynomials
in y after being multiplied by D. Because of the length of the expressions,
we give only the final polynomial forms:

FEr\ _ _(2,1), (6 _m)
DB( )Bq__ (a:+2)+(a:2G z /Y

ol (1-3) 5 - G- g+ v

(x 14 n:)F _ (% + 1)1];,‘ (458)
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), - -boea- oo
DB(&TD dh/ eq. (1 +a) - T ¢+ 2 1+ 2/ |¥
x dF 9 4 3 2
+ W[% (4 )dL (5 - m)F + (‘ - é)f]y

+"“f|: 53\l 3) &

'Ly __E(_E) [3 _M(_E a)
Dﬁ(ahz)eq_" o\l =3/ Tle¢—y \l—3T3)

3 4 4 3
+ 7x [—;—T + (B.r — 2+ ;—)F —~ (9 — 3 -I—%)I]y‘

(45¢)
I\ _(3,.3), [3 o 3w
DB( ars ).,.,, - ('c + 4) + [.’52 G+ 2z ]y

7 5 7\, s

+ (1077:_ a ™t )F +( +_ 10)I:|y
1 z o 2\ dF
6(1 2+ Z)da:

il ei i@ e )

+ 73:[(16 +72) oo —
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The problem of finding the ranges of parameters yielding stability
of the half-bubble model now becomes one of numerical analysis. For
given values of x and v, we find the zeros of the three polynomials

BE) (a*‘ET) (aﬂET ) ]
DB[(ar AT R CTRE VY S

2
oa(75),,» ma 2o(5E).

A stable region corresponds to a range of y beginning and ending with
one of these zeros and having the property that all three of the poly-
nomials are positive for values of y on the interior of the interval.

The results of this procedure are shown for v, = —0.025, —0.05,
and —0.1 in Figs. 3-5. The stable regions are plotted in the z, 1/y plane;
1/y = l/h was used as a coordinate in order to facilitate comparison
with the results of Thiele for the standard cylindrical domain (cf. Ref. 3,
Fig. 3). In the interior of the stable region we have provided two families
of curves which describe the behavior of a stable half-bubble. The
families y, = constant and H = constant are obtained from the poly-
nomials of egs. (44a, b) after the boundaries of the stability region have
been found. Since A is not fixed in the half-bubble, the domains do not
follow lines of I/h = constant as H is varied. Rather, they follow the
curves v, = constant which characterize the given material.

V. DISCUSSION

We have explored the static stability of the half-bubble magnetic
domain using a variational model. In spite of the simplicity of our
model, the generality of some of the principles underlying our calcula-
tion lead us to expect that our results have at least semi-quantitative
validity (cf. Appendices A and B).

Typical results of our stability calculation are shown in Figs. 3-5.
The boundaries of each of the half-bubble stability regions shown in the
figures roughly resemble two connected parabolic line segments, both
parabolas opening to the right. The lower segment is determined by the
zeros of the polynomial DB(3°E r/dr2).,. and corresponds to the run-out
instability mode. The upper segment arises from the zeros of

D [( 28 ) (af ) (6?'E;h) ]

This part of the boundary gives the limits of stability against run-
through and collapse. Thus, the lines v, = constant on the right side
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of the figure go from run-out at the low-H end of the line to collapse
on the high-A end. Values of v,, which are algebraically small enough
to correspond to lines on the left end of the stable region follow a different
pattern, going from collapse to run-through as H is decreased. Our
stability charts then indicate two fundamentally different types of
behavior as # is decreased: the half-bubbles may undergo run-through
to assume the shape of a standard cylindrical domain (and then pre-
sumably run out as I is decreased further),® or the half-bubble may run
out first (presumably to undergo run-through as H is further lowered
and give the usual demagnetized stripe pattern). These two types of
behavior are separated by a critical wall energy gradient v,. which is
a function of v, , being approximately —0.027 and —0.04 for vy, =
—0.025 and —0.050, respectively. (For v, = —0.1, the problem is
more complicated and will be discussed below.)

Comparison of the half-bubble stability regions with those of the
standard cylindrical domain (Ref. 3, Fig. 3) reveals one marked dif-
ference between the two systems. In the half-bubble case, there is a
minimum stable value of d/h for given v, . For vy, = —0.025, —0.050,
and —0.100, these minimum values are d/h = 0.39, 0.64, and 1.14,
respectively. Long, narrow bubbles are then not attainable in the half-
bubble system.

It should be noted that all three of the stability charts correspond
to yar < 0. While a general proof of the instability of half-bubbles with
positive v 5 has not been formulated, numerical investigations show no
regions of stability for v, > 0. As was shown to be the case fory, = 0,
eqs. (5) and (6) could not be satisfied simultaneously for v, > 0. This
property of gradient-stabilized half-bubbles is actually an advantage
for device work as it implies a useful type of stability. A half-bubble
originating on the lower surface of a platelet, after being allowed to
undergo run-through, cannot be squeezed down to a half-bubble residing
on the upper surface as f is increased again. The domain is thus forced
to return to its original state, the half-bubble state on the opposite
surface being unstable.

In addition to the stability limits imposed by the derivatives of the
energy function £, , we place a lower limit on I/h by requiring ¢, (h) > 0
and M,(k) > 0. While the motivation for the restriction o, (h) > 0 is
physically obvious, the reason for the requirement A ,(h) > 0 stems
more from the limitations of our model than from physical considerations.
Magnetic materials may be compensated so that M,(z) goes linearly
with z from positive to negative values. In the presence of a bias field,
however, the magnetization in such a material would be aligned so that
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its variation could no longer be described in terms of a linear variation
with z. Such a compensated material would then not be susceptible to
the present analysis and would presumably give rise to domains with
different characteristics than those considered here. Taken together,
the conditions ¢, (k) > 0 and M,(h) > 0 yield the restriction

I/h > max (—v. , —7var)- (46)

In practice, it may be necessary to require that //h be even greater than
the lower limit implied by eq. (46) since ¢,,(2) > 0 must be satisfied not
only at the top of the half-bubble (2 = k), but throughout the region
of the platelet above the half-bubble (z > h). (By a simple extension
of Appendix A, we need not require M,(z) > 0 in the region above the
half-bubble.) These restrictions indicate that our calculation is not valid
for part of the lower end of the stability region obtained for vy, =
—0.100 (cf. Fig. 5). As a consequence, the critical wall energy gradient
7. discussed above cannot be defined in this case.

The normalized bias fields H required to stabilize half-bubbles are
somewhat smaller than those needed for standard cylindrical domains
as a result of the self-biasing effect provided by the upper closure wall
(cf. Section IIT). Without going to unreasonably large values of v, ,
cases are found which are stable with H = 0 or even H < 0 (H parallel
to the magnetization inside the domain). In addition, bias margins for
the half-bubble are of the order of those for the standard cylindrical
domain, typically falling in the range 0.04 = AH Z 0.08. Thus if
47 M (o) is 200 gauss, bias field margins will be of the order 8 to 16 gauss.

To demonstrate the use of the stability charts in obtaining numerical
information, we consider the case vy, = —0.100 and v,, = 40.025, for
which a half-bubble is stable in zero bias field. The variations in o,
and M, between the bottom and the top of the half-bubble are easily
computed after obtaining a value of I/h from the stability chart. In the
present case, [/h = 0.152 corresponds to zero bias. Evaluating vy.h/l
and v ,h/l, we find that ¢, increases by 16.4 percent and M, decreases
by 65.8 percent between the bottom and the top of the half-bubble.

The collapse and run-out fields for v, = —0.100 and v, = 0.025 are
found by interpolating between the H = constant curves in Fig. 5.
We find A,.,,. = 0.017 and H,,,. = —0.023 giving a bias margin of
AH = 0.040. The size variations of the half-bubble over its stable range
are best measured in terms of the z = 0 material length defined by
eq. (1). For any operating point in the stable range, h/l = (I/h)™" can
be found from the vertical coordinate of the point while d/I = (d/h)(I/h) ™"
can be found as the ratio of the horizontal and vertical coordinates. For



1952 THE BELL SYSTEM TECHNICAL JOURNAL, NOVEMEBER 1972

vx = —0.100 and v, = +0.025 we find (A/1)e1:. = 5.38, (d/Deors. =
10.85, (h/Dww. = 7.27, and (d/0);m. = 30.91. Thus, while d increases
by a factor of three between collapse and run-out, % increases by only
35 percent over this same range. Since the curves H = constant and
v, = constant are nearly parallel at the collapse end of the stable range,
much of this change in A occurs with a very-small change in H near
collapse. Thus, the relative variation in A may be decreased considerably
by sacrificing a small fraction of the bias margin. The relative smallness
of this variation in A is particularly important if half-bubbles on the
lower platelet surface are to be propagated by permalloy circuits at the
upper surface, as it is to be expected that there is an optimum circuit-
domain separation for half-bubbles much as there is for standard
cylindrical domains.”

In conclusion, we have shown that the half-bubble has a number of
properties which are attractive for device applications. Its stability in
the absence of external biasing represents a considerable advantage over
the externally biased standard cylindrical domain. While some com-
plexity is added by the requirement of gradient materials, the materials
problem is simplified on another front by the fact that material thickness
is unimportant for half-bubbles. Indeed, the half-bubble stabilizes on
only one surface; if propagated from the same surface, irregularities in
the second surface are of no consequence. These attractive properties
of the half-bubble and its possible utility in avoiding the undesirable
properties of hard-bubbles may more than compensate for the added
difficulty in growing half-bubble materials.
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APPENDIX A

Magnetostatic Energy Invariance

Demagnetization fields equivalent to those of the standard cylindrical
domain may be conceptually created through the use of two neutral
subsystems of charges. The first consists of two parallel planes with
magnetostatic charge density +M, and the second consists of two
disks with charge density F2M, placed on a common axis just inside
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Fig. 6—Source-charge distribution for the demagnetization field of: (a) The stand-
ard cylindrical domain. (b) The half-bubble model.

the first subsystem (Fig. 6a). The distances between the upper plane
and the upper disk, and between the lower plane and the lower disk
are allowed to approach zero. The demagnetization field of the cylin-
drical domain is the superposition of the fields of the two isolated
subsystems:

FI& = ﬁdl + Edz . (47)

The magnetostatic energy of the domain (including the energy of the
uniformly magnetized platelet) is the sum of the self-energies of sub-
systems 1 and 2 and their mutual interaction energy:

1
Ey = gﬂ_—fHﬁdV (48a)

1 1 R
- ng:I av +§fﬂzz av + EfHdl-Hdde. (48b)

The transition from the magnetostatic field configuration of the
standard cylindrical domain to that of the half-bubble model is achieved
by moving the upper plane of charge upward (Fig. 6b). The field strength
of subsystem one is unaltered by this change, while the self-energy of the
subsystem increases linearly with the distance moved. The self-energy
of subsystem two is, of course, unchanged, but remarkably the mutual
interaction energy of the two subsystems is unchanged also. The latter
invariance follows from the invariance of the field strength of subsystem
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one and of the charge-neutrality of subsystem two (so that all field
lines originating in the isolated subsystem two also terminate there).
From these two properties it is easily seen that any lines of H,, extending
above the upper disk give a zero contribution to the mutual interaction
energy of the two subsystems. If we now observe that the magnetostatic
energy of introducing a domain into a uniformly magnetized platelet
is just the sum of the self-energy of subsystem two and the mutual
interaction energy, we see that this differential magnetostatic energy is
independent of the position of the upper surface of the platelet (provided
only that the domain remains inside of the platelet).

It is easily seen that this proof may be generalized to the cases in
which M, is a function of z or in which the domain assumes a more
general form.

APPENDIX B

Energy of Half-Bubble Under Elliptical Distortions

The condition (8 /dr,).,-o = 0 in the absence of in-plane anisotropy
is satisfied not only by our simple half-bubble model but by any convex
domain having radial symmetry at equilibrium. For example, consider
the generalized half-bubble shape

(e, 2) = 1,(2) + ra2(2) cos 2¢ (49)
where 7,(z) < 7,(2) and 7,(k) = 0 (i.e., the half-bubble is closed at the
top).

If there is no in-plane anisotropy, then
Ep(rs) = Er(—r3) (50)

since the shape function r,(¢, 2) = r,(z2) — r2(2) cos 2¢ transforms into
that of eq. (49) under rotation. From eq. (50) it follows that

Consequently, cross-derivatives such as (8°E,/dr, dh),,., are also
zero for the general domain shape given in eq. (49).
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