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We examine a data-rate synchronization system capable of operating
in two modes: (1) in master-to-slave mode when the data stalions are con-
nected by digital transmission facilities, and (it) in slave-to-slave mode
when the data stations are connected by analog transmission facilities.
The first part of this paper determines the steady-state behavior and the
transient response in the master-lo-slave mode. The results show that the
system 1s well behaved in the transient stage, and that the steady-state
behavior is satisfactory. From the transient analysts, the buffer size require-
ments of the system and the counter size requirements of the rate-locked
loops are determined. Formulas are developed from which the start-up
time of the system can be estimated.

The second part of this paper examines the behavior of the system in
the slave-to-slave mode. It is shown that the data stations can settle to the
same steady-state signaling rate, and this signaling rate is determined.
The dependence of this signaling rate on other system parameters is ex-
amined. It is shown that the system can be easily designed such that the
steady-state signaling rate will lie within desired limits. (This s so regard-
less of the starting sequence, the initial system condilions, and time delays
in the communication channels.)

I. INTRODUCTION

When data stations are connected by wholly digital transmission
facilities, it is most efficient to slave the clocks at the data stations
to a master clock. To perform this operation, hereafter referred to as
master-to-slave operation, an interface unit at the data station extracts
timing pulses from the incoming data stream. These timing pulses
are passed through a phase-locked loop to eliminate noise and jitter.
The output of the phase-locked loop controls the signaling rate of the
data station.
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Unfortunately, a technical problem arises when data stations are
synchronized in the above manner. Before digital systems evolve into
a well-connected network, data stations are also often connected by
wholly analog transmission facilities. When two data stations equipped
to operate in the master-to-slave mode are connected by analog facilities,
each station will regard the clock at the other station as the master
clock, and the two stations will attempt to mutually synchronize each
other. This mode of synchronization can be called ‘slave-to-slave.”
Conventional phase-locked loops' which perform well in the master-
to-slave mode may not perform well in the slave-to-slave situation,
being unusually sensitive to path-length delays and other system
parameters. This technical problem can be solved by avoiding the
slave-to-slave situation in the following manner:

(s) Informing the data stations when analog transmission facilities
are used. This will permit the stations to break up the slaving
paths in the data sets and use their own clocks as the timing
source.

() Providing a looped connection within the analog system con-
taining appropriate buffers, and a clock of sufficient accuracy
to serve as the master for the data stations.

Unfortunately, these schemes reduce the economic attractiveness
of the system. Consequently, there is a need for a synchronization
scheme capable of operating in both the master-to-slave and the
slave-to-slave modes.

We analyze a synchronization system which employs digital rate-
locked loops to determine if it can operate successfully in both modes.
The phase detector in the rate-locked loop is a multistage counter that
counts the difference between the number of zero crossings of the input
signals. Because of this nonlinear counting process, the operation of
the synchronization system is determined by nonlinear differential-
integral equations. Such equations do not appear in earlier synchroniza-
tion studies® * which considered different phase detectors. As will be
shown, a digital rate-locked loop locks to neither the phase nor the
frequency of the timing signal, but to the zero-crossing intervals. This
difference complicates the analysis. We have examined the problem
without making linear approximations."® In a previous paper,’ we
analyzed, in a rigorous fashion, the steady-state behavior of the system
in the master-to-slave mode and proved that, in the absence of filtering
in the rate-locked loop, the slave oscillator will lock to the master
oscillator exactly. In this paper, it is proved rigorously that if the
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filter in the loop satisfies a simple condition, the system will reach
equilibrium (that is, data stations cannot add or delete bits from a
customer’s data stream). Based on this, it is demonstrated that in
the presence of RC filtering in the loop, the slave oscillator will lock
to the master oscillator exactly. Following these analyses, this paper
determines the transient response of the system in the master-to-slave
mode, and examines the behavior of the system in the slave-to-slave
mode. Sections II and III of this paper examine the master-to-slave
mode. Transient response, buffer-size requirements of the system, and
counter-size requirements of the rate-locked loop are determined.
Section IV considers the slave-to-slave mode. Steady-state signaling
rate of the system is determined, with its dependence on the other
system parameters examined. A simple method of designing the system
to ensure satisfactory steady-state signaling rate is presented. Section V
summarizes the results of this paper and may be read next.

II. MATHEMATICAL MODEL

In this and the following two sections, we examine the master-to-
slave mode. Consider two communication stations as depicted in
Fig. 1. Station 1 (with slave clock) represents a data station. Station 2
(with master clock) represents a station in the digital transmission
facility. The master clock at Station 2 emits a timing signal which
controls the transmission of data from Station 2 to Station 1 (for
example, Station 2 transmits a digit to Station 1 at every second zero
crossing of this timing signal). Station 2 transmits to Station 1 at some
standard rate, say, f, digits per second.

Station 1 receives data from Station 2, and derives from the received
data a timing signal s,({) = sin (wst + 6,), where w, = 2xf, and 6, is

STATION 1 STATION 2
TRANSMITTER TRANSMITTER
AND RECEIVER AND RECEIVER

[
SLAVE MASTER
CLOCK CLOCK

Fig. 1—Master-to-slave operation, block diagram.
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an arbitrary phase angle. The signal s,(t) and the output s, (¢) of a local
oscillator are compared in a digital phase detector (Fig. 2). The digital-
phase detector is a counter which counts the zero crossings of s,(f)
and s,(£), and produces an output proportional to the difference between
these two counts. Mathematically, this operation can be specified as
follows. Let it be assumed that the digital phase detector is activated
at t = 0. Let N.(t) and N,(t) be, respectively, the number of zero
crossings (both upward and downward zero crossings) of s:(t) and
8:() in the time interval 0 to ¢; then the output of the digital phase
detector is

w(f) = e[No(t) — Nl(t)] (1)

where e, is a positive constant (volts/count) and may be called the
gain of the counter. As depicted in Fig. 2, u,(f) is passed through a
filter, and the filter output v,({) controls the frequency of a voltage-
controlled oscillator (VCO,). Let w, = 2xf, be the free-running radian
frequency of VCO, , then the output of VCO, is

s(t) = sin |:w1t + f Co(r) dr + 9‘} @

where a;, is the gain of VCO, (radians/volt X second). The signal s,({)
is used to control the transmission of data from Station 1 to Station 2
(for example, Station 1 transmits a digit to Station 2 at every 2nd
zero crossing of s,(f)). Note that 8, in (2) represents the phase of &,(t)

Sq(t) Salt)

DIGITAL

PHASE . . e
DETECTOR

- & & . @

uyit)
Vi)
L_{ wvco, . FiS)

Fig. 2—Digital phase detector and the rate-locked loop at Station 1.
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Fig. 3—Tllustration of Sa(t), Na(t), and ya(t).

at ¢ = 0. Without loss of generality, we may assume 0 < 4, < =, and
0=6=mr

Let us derive an analytic expression for the number of zero crossings
of s;(t) from ¢ = 0 to a particular time instant 7. As illustrated in Fig. 3,
¢’ is the time instant at which the last zero crossing prior to { = 0 takes
place, and ¢ is the time instant at which the last zero erossing prior
to ¢t = 7 takes place. It is obvious from Fig. 3 that the number of zero
crossings in the time interval 0 to 7 is

o’ [
Nyr) =t b ®)

Note from (3) that the phase cumulated from " to = does not con-
tribute to the value of N,(r). This residual phase (or phase quantiza-
tion error) will be designated ¢.(7), i.e.,

Vo(1) = wor — wot”. 4)

Equations (3) and (4) hold for all » > 0; therefore, we can replace their
r by the time variable {. The variation of ¥,(f) with ¢ is illustrated in
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Fig. 3. Note that y,(¢) increases from 0 to =. When () reaches =
radians, a zero crossing takes place; and y.(¢) drops to zero and increases
from zero again. Clearly, 0 < y.(f) = . Since s:(t) is a pure sine wave,
V(1) is a sawtooth wave.

From (3) and (4), we have

wzt + 92 - ‘bZ(t)_ (5)

m

Ny(t) =
Similarly, one can write the number of zero crossings of s, (t) as

wit + e f‘ vy(7) dr + 8, — ()
N,(t) = . (6)

™

where ¢,(f) is the residual phase as illustrated in Fig. 4. As can be
seen, 0 < ¢,(t) £ = Note that ¢,(¢) is not shown as a sawtooth wave
in Fig. 4 because s,(t) is not a pure sine wave in the transient stage
after t = 0.

In this paper, the filter F(s) in Fig. 2 is assumed to be the usual BC
filter (Fig. 5). Thus, its transfer function F(s) is 1/(1 + sCR). Sub-
stituting (5) and (6) into (1), and rearranging the equation, we obtain

S1(t) =SlN[m1t+a|j;;\:f1(1‘ldT+0|]

Yt

Fig. 4—TIllustration of Si(¢), Ni(t), and ¢4 (2).
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Fig. 5—RC filter in the rate-locked loop.

w,(f) = k[&t - a j: o(r) dr 4+ 0, — 6, + (1) — \l’z(t)] (7)
where
k=2 ®)

6 = wy — w; . (9)

We shall use one-sided Laplace transform in the analysis (the words
one-sided will be omitted). As usual, the Laplace transform of a time
function will be consistently denoted by the appropriate capital letter.
For instance, U,(s) will denote the Laplace transform of u,(f). The
symbol L[f(£)] denotes the Laplace transform of f(¢), and the symbol
L '[F(s)] denotes the inverse Laplace transform of F(s). Taking the
Laplace transform of (7), we obtain

Us) = k[% o LD 8 Oy g - w,(s)]- (10)

S 8 S S

Multiplying both sides of (10) by F(s), using F(s)U,(s) = Vi(s), and
rewriting the resulting equation in time domain we obtain

u(t) = L"[H(s) siz:l + L’I[H(s) %] — L"‘[H(s) %l]

— LT'[H(s)¥o(s)] + L7'[H(s)¥,(s)], t>0 (11)
where

ks

HE) = Gris F r)6 + 1)
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_ 14+ V1 — 4CRka,
- 2CR

1 — /1 — 4CRka;

2CR

7

?‘2=

The two roots r, and r, are real numbers when 1 — 4CRke; > 0, and
are complex numbers when 1 — 4CRka, < 0. It can be shown that in
the second case the frequency of s,(f) overshoots that of s,(f) before
it finally settles. Such an overshooting should be avoided because
Station 1 may be required to operate in the slave-to-slave mode (see
Section V). Therefore, throughout this paper we assume

1 — 4CRka, > 0. (12)

III. STEADY-STATE AND TRANSIENT ANALYSES

In the master-to-slave mode, we have to consider the following
questions:

(¢) Can the signaling rate of Station 1 lock to that of Station 2
in the presence of phase quantization errors?

(77) What is the steady-state frequency of VCO, ?

(77) During the transient stage after ¢ = 0, the signaling rate of
Station 1 can be higher than that of Station 2. Therefore, data
can be transmitted from Station 1 to Station 2 faster than it
can be transmitted out of Station 2. Consequently, a buffer
storage is required at Station 2. What should be the size of this
buffer?

() The digital phase detector is a counter that counts the dif-
ference between the number of zero crossings of s,(f) and s,(¢).
How many stages are required in the counter to avoid overflow
(i.e., to ensure pulling in)?

We shall first determine the transient response of the system in
Section 3.1, and then consider these questions in Sections 3.2 to 3.4.

3.1 Transient Response and Setiling Time

We evaluate the first three inverse transforms in (11) to obtain

-1 k —ryt —ral
L [H(S) ;2] = mh [y = 10) + o™ —re™™]  (13)
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L"[H(s) %} — L“[H(s) %] = H [ — ™. (14)

The fourth inverse transform L™'[H (s)¥,(s)] is more difficult to evaluate.
We obtain after lengthy manipulations
L' [H(s)¥2(s)] = a(®) + p(D) (15)

where

k |:w2 et ] -y
al) = —m——|—— 6, + e
O = T aRka, e~ " T 1=t
+ _k l:_‘ﬂ + 6, — Lﬂa-]e_"' (16)
V1 — 4CRkay L 7= 1 —e"l
p() = a periodic function of period T, identical with p,(f) in the time

period 0 £t =T amn

Tils

wWa kme

= —14+ 1 —e"Mult — t))e ™"
o ¥ /T = 4CRka, (1—3'”)[ + (e ult = tle

Po(t) =

rats

+ feme
V1 — 4CRka, (1 —e"")

[1— (1 —e*Mu(t — t)le ™. (18)

Note that a(t) is the sum of two decaying exponential terms. When ¢
increases, a(f) approaches zero, and only the periodic steady-state
response p(f) remains. It can be shown that p(f) has zero mean.

Now consider the last inverse transform L™'[H(s)¥,(s)] in (11).
Since ¥,(s) is the Laplace transform of ¢ (f), L™'[H (s)¥,(s)] can be
evaluated if ¥,() can be determined. As illustrated in Fig. 4, Yu(t)
depends on the positions of the zero crossings of s,(t). Furthermore,
because we are dealing with a closed-loop control system, ¥,(¢) and the
phase of s,(f) must satisfy the integral equation (7). In order to determine
¥, (1), one must simultaneously consider (7) and the zero crossings of
8;(¢). The mathematical problem is extremely complex and it is im-
possible to obtain a closed-form expression of ¢.(f) for all £, Con-
sequently, the inverse transform L '[H(s)¥,(s)] cannot be evaluated
in closed form. However, we have obtained a tight upper and lower
bound for its value as follows:

L H () (9)]] < 26, . (19)
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We have obtained the closed-form expression of the first four com-
ponents of v,(t), and tightly bounded the fifth component of »,(¢). This
gives the transient response of the system. Note from (13) to (19)
that transients in v,(f) either decay exponentially or can be bounded
by a small number. Thus, the system is well behaved in the transient
stage. Furthermore, from these equations, one can plot »,(t) vs ¢, and
easily estimate the settling time of VCO, . The settling time of VCO,
can be rather long when CR is large. For example, consider the first
term L7'[H(s)8/s°] in v,(f) (this is usually the dominating term in
v,(f)). From (13) it can be rewritten as

-1 61 _ 8 -t re ™ — e_n‘):l_

: I:H(S) sz:l oy I:l ¢ t fp — 1
Since r; > r; > 0, the last term in the right-side bracket is negative
for all ¢. Thus, the convergence of L™ '[H(s)5/s"] is even slower than the
convergence of the time funetion 1 — e™™*. This clearly shows that
v,(2) converges slowly when the filter time constant CR is large.

3.2 Steady-State Frequency of VCO,

Now we answer the first two questions at the beginning of Section ITI.
First, we have found that the signaling rate of Station 1 will lock to
that of Station 2 in the presence of phase quantization errors. The
proof of this is complicated, and is given in the Appendix. In this
section, we examine the steady-state frequency of VCO, , and point
out an important difference between digital and analog phase detectors.
The instantaneous frequency of VCO, is [w, 4+ au,(f)/2x]. In order
to see if it approaches a fixed steady-state value, we evaluate
lim,_.. »,(f), which can be found by evaluating the limits of the five
inverse transforms in (11). As shown in the Appendix, when signaling
rate of Station 1 locks to that of Station 2, the zero crossings of s, ()
and s,(t) will alternate with probability one, and ¢, (f) will be a periodic
function of period T. This means that L '[H(s)¢,(s)] also approaches
a periodic function of period T. Let this periodie function be denoted
by ¢(f). Then, one can show from (11) that

Instantaneous fre-\ a @
(quency of VCO, ) =l - o p(t) + o q(?). (20)

When signaling rate of Station 1 locks to that of Station 2, zero
crossings of s,(f) and s.(f) alternate. Therefore, y,(f) # ¥.(f) and
p(t) # q¢(t). Thus, from (20), instantaneous frequeney of VCO, does
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not lock to the master clock frequency f. . Instead, it is a periodic
function f, — (e./2m)p(t) + (e./2m)q(t). The output s,(f) of VCO, is
a periodic wave with the same period as s,(t); however, it is not a pure
sine wave as one would expeet from experience with analog-phase
lock loops. The digital loop locks lo neither the instantaneous frequency
nor the phase of the incoming signal s,(t). It locks only to the rate of zero
crossings of s,(t). For this reason, it should be referred to as a digital
rate-locked loop, rather than a digital frequency-locked loop or a digital
phase-locked loop. This difference between digital and analog loops
should be noted in the applications.

3.3 Size of the Data Buffer at Station 2

As deseribed in Section II, Station 2 transmits to Station 1 at a
standard rate of f, digits per second. In general, Station 1 is also re-
quired to transmit to Station 2 at this standard rate. To achieve this,
Station 1 transmits a digit to Station 2 at every second zero crossing
of s,(f) [this enables station 1 to transmit also at the standard rate
when s,(t) is synchronized to s,(f)].

Usually, Station 2 relays the data it receives from Station 1 to another
station at the standard rate of f, digits per second. Thus, when the
system is in synchronization, data is transmitted to Station 2 at the
same rate as it is transmitted out of Station 2. However, when Station 1
is first synchronized (that is, during the transient stage of synchroniza-
tion), the transmission rate of Station 1 can be higher than f, . Con-
sequently, during the transient stage, data can be transmitted from
Station 1 to Station 2 faster than it can be transmitted out of Station 2.
This means a data buffer is required at Station 2. In this section, we
determine the size of this buffer.

As defined in Section II, N,(t) is the number of zero crossings of
s:({) in the time interval 0 to {. Since Station 1 transmits a digit to
station 2 at every second zero crossing of s,(t), the number of digits
transmitted from Station 1 to Station 2 in the time interval 0 to ¢ is
N.()/2 or N,(t) — 1/2, depending on whether N,(t) is even or odd.
To simplify our discussions, we shall use the following definition through-
out this paper.

Definition: For any positive number a, (a) denotes the integer im-
mediately less than @ when a is not an integer. (@) = a when a is an
integer.

Using this definition, the number of digits transmitted from Station 1
to Station 2 in the time interval 0 to ¢ is (¥,(f)/2). The number of
digits Station 1 should transmit in this time interval is (N,(t)/2). If
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(N,(t)/2) is larger than (N,(¢)/2), a buffer would be required at Station 2
and the buffer size is (N,(t)/2) — (N,(f)/2) digits. It can be shown
from the previous equations that

w’ '
—[Z;l + 3:| < N,(t) — Ny(t) < » + 3. (21)
Since the buffer size is (N,({)/2) — (N,(t)/2), we obtain from (21)
Buffer Size < 261a1 + 2. (22)

Equation (22) gives an upper bound for the buffer size. It can also be
shown that in order to prevent overflow the buffer size must be greater
than («'/2e;e;) — . Combining this with (22), we have

r

w 1 . w
e 2 < Buffer Size < e, + 2. (23)
Let us define B = {&'/2e,a; + 2). It can be seen from (23) that the
buffer size is B, B — 1, or B — 2. Thus, the buffer size is determined
to within two digits. Since the two-digit difference is negligible, one
may use the simple formula

Buffer Size = B = < + 2> digits. (24)

2e,01,

As explained at the end of Section II, in this paper we use the con-
straint 1 — 4CRka, > 0. From this constraint, we can rewrite (24) as

Buffer Size = <2ng 4 2> digits (25)

where 8, = 4CRee; /7. Clearly, 0 < 8, < 1. Equation (25) will be
used in later discussions.

3.4 Counter Size of the Digital Phase Detector

The counter in the digital phase detector counts the difference between
N,(t) and N,(t). Now we determine the counter size so that the counter
will not overflow when the maximum positive count or negative count
is reached. Consider first the case of negative counts. It ean be shown
that N,({) — N.(f) can be larger than «'/e,a; . It has been shown in
the preceding subsection that N,(f) — N,(f) must be less than «'/e;e,
+ 3. Thus, if we define

_ 4CRw’
N = €10y T 3> < > ’
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the integer N,(f) — N,(f) can be as large as N — 2, but will not exceed
N. Therefore, the counter will not overflow if it can count N,(f) — N2(?)
up to N,(t) — N.(t) =

Next, consider posﬂ:we counts. One can show that the counter w111
not overflow if it can count N,(t) — N,(f) up to N,(t) — N,(t) =
Combining the two cases, we see that the counter will not overflow if

’
Counter Size = N counts = + % + 3> counts  (26)

where g, is defined after (25).

IV. SLAVE-TO-SLAVE SYNCHRONIZATION USING DIGITAL RATE-LOCKED
LOOPS

In this section, we consider mutual synchronization between two
data stations where each station regards the clock at the other station
as the master clock. Such a mutual synchronization is usually called
slave-to-slave synchronization.

A mathematical model of slave-to-slave synchronization is depicted
in Fig. 6. The local oscillator at Station 1 (VCO, in Fig. 6) emits a
timing signal S,,(f) which controls the transmission of data from

STATION 1 STATION 2
Snfy Sa21t)
DELAY T12 DELAY ™21
Siilt) Sa(t) Sqalt) Sa221(t)
1
sll (t) aae s LEC aae 522“,
eee s e K] s
VCO4y VCO2
vi(t) uylt) uz(t) va(t)
Fqls) Fals)

Fig. 6—Slave-to-slave synchronization with digital rate-locked loops at both stations.
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Station 1 to Station 2. [For example, Station 1 may transmit a digit
to Station 2 at every second zero crossing of Sy, (f).] Station 2 derives
from the received data a timing signal S,.(f) and compares S,,(f) with
its local oscillator output S.,(f) at the digital phase detector. The
digital phase detector is essentially a counter which counts the zero
crossings of S,,(f) and S,:(f) and produces an error signal u,(f) pro-
portional to the difference between these two counts. The error signal
u,(t) is passed through a filter F,(s) to control the frequency of VCO, .
Thus, in this fashion, Station 2 adjusts its clock rate toward that of
Station 1. Similarly, as depicted in Figure 6, Station 1 regards the
clock at Station 2 as the master clock and adjusts its clock rate toward
that of Station 2.

Practically, it is impossible to activate the two counters at the two
different stations at the same time instant. Therefore, in this study,
we consider an arbitrary starting sequence as follows:

() At an arbitrary time instant i, , either the counter at Station 1
or the counter at Station 2 is activated.

(77) The other counter is activated at an arbitrary later time instant
tats > ).

For analytical purpose, we shift the time origin such that ¢, = 0.
We shall analyze the behavior of the system for ¢ > 0.

Let w, be the free-running radian frequeney of VCO, , then we can
write

81:(t) = sin py,(1)

sin [wlt + o fo “u(e) dr + a.l] @7

and
512(f) = sin [p1:(t — 712)] (28)

where 7., is the time delay introduced by the channel. Similarly, the
free-running frequeney of VCO, is denoted w, and

855(t) = sin paz(l)

sin [w,t + fo a(r) dr + e,,] (29)

and

Szl(t) = gin [Pza(t - Tn)]- (30)



DATA-RATE SYNCHRONIZATION SYSTEM 1895

We define N;;({) as the number of counts from s;;(f) in the time
interval 0 to t. Let us first derive an analytical expression for Ny (f).
From (27), we can write '

wl + o f! v (r) dr + 6, = MxN () + du(f) (31)

where the parameter M is defined by: M equals one when the counters
at the two stations count both the upward and downward zero crossings;
M equals two when the counters count only the upward (or downward)
zero crossings. The last term ¢,,(f) in the above equation represents
phase quantization errors and 0 =< ¥n(f) < Mm. From the above
equation we have

Nu(t) = —Ilf}—'rr [mlt + j: vy(r) dr + 0y — \bu(t)] . (32)

Similarly, one can write analytical expressions for N,,(f), N,y (f), and
Na(0).
At Station 1, the digital counter output is

w(l) = u (0) + [N (t) — Nu()] (33)

where u,(0) is the initial count at ¢ = 0. Let us define

= &
ky, = Mr (34)
5 = Wy — W, (35)
6, = 6, — (36)
0
Ru(s) = ™ f ua(t)e™"" dL. @7

The filters F,(s) and F,(s) in Fig. 6 are assumed to be the usual
RC filters, i.e.,

1
Fio) = TR TR (38)
Fas) = ——rr (39)
28) = 11T C,R,

At Station 2, the digital filter output is
uz(t) = u.(0) + ex[Nio(t) — N oo ()] (40)
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where u,(0) is the initial count at { = 0. Furthermore, we define

ky = T (41)
62 = 812 - 622 (42)
Ruls) = =™ f e dt. 43)

From the previous equations, we can determine V,(s) and V,(s).
The results are:

A, (s) Ay(s) | Ax(s) |, Aus) |, A
Bs) T Be TB6 T BG T B (44)

Vi(s) =

where

A@=%?mfﬁy+m%m9+%@Q&E@+ﬁmm@W@q

8
Foy(s)
-[1 + koo, . :I
Ay(s) = [—kplrz.(s)F,(s) + kl‘I’u(S)Fl(s)]l:l + ke,

A = | OB | BELG 4 cpp, + beRaOR0)]

8
=5 ]

F@]

ALs) = [—h¥a()Fs(s) + keTaal(6)Fa(s)] [k[ag . Fl(s)]
Ass) = Ky aF ) [1 + ko ;(S) a-— em,.)]
B) = 1+ ko T8 0, 20
+ b, PO T [
Similarly, we obtain
O = F R e @
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where

Ayls) = [uz(O)f‘z(S) n kzﬂze( ) 1 0, (O)CRFA(S) + kgalRll(s)Fz(s)]

[i+att)

Ai(s) = [— k¥ 12(8)Fa(s) + kz‘I’zz(s)Fz(s)][ 1 + ko F, (8)]

Ay(s) = I:u:(O)SF1(S) +kle.f'l(s) 4 0 0)CRFAS) + la,Rm(s)Fl(s):]

S
. I:kza 18_ T F——Z(S)]

Ay(s) = [~k T ()F () + k¥, (s)F(5)] [kgale_"" FQT(S):‘

Aw(s) = —k, 8 F”(s) [1 + ki F‘S(S) a-— e-"--)]

Note that our problem is not solved. Equation (44) is not a closed-
form solution of V,(s) because ¥,;(s), which appears in A4,(s) and
A,(s), depends on V,(s) and V,(s) (the phase quantization errors ;(f)
depends on v,(¢) and v,(¢)). Similarly, (45) is not a closed-form solution
of Va(s). These equations will, however, enable us to examine the
steady-state behavior of the system in the following sections.

4.1 A Steady-State Solution of Signaling Rates

As described previously, the zero crossings of s,,(f) are used to control
the transmission from Station 1 to Station 2 (for example, Station 1
may transmit a digit to Station 2 at every second zero crossing of
si:(f)). Similarly, the zero crossings of s:o(f) are used to control the
transmission from Station 2 to Station 1. Therefore, to determine the
steady-state signaling rates of these two stations, it suffices to determine
the steady-state distribution of the zero crossings of s,;(f) and ss(f).
To facilitate our discussion, let us first introduce the following definition.
Definition: so(f) denotes a sine wave sin wet with

1
by + ooty + k1a1k2a2(712 + 1'21)

+ W1kla1k20527'12 + Wzkla1k2a2‘i"21
+ [u.,(0) + k.0, + klaszl(O)]szhﬂz
+ [uz(o) + ko6, + kzalRIE(O)]klalaz]- (46)

Wy = [lezaz + w.kya;
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Based on (44) and (45), a steady-state solution of the zero-crossing
distribution has been obtained.'"” In order to conserve space, let us
omit the lengthy derivations and write only the results as follows:
A Steady-State Solution: When the counters at the two stations count
both the upward and downward zero crossings of s;;(¢), 7, 7 = 1, 2,
the upward and downward zero crossings of s;(), 1, j = 1, 2, are
uniformly spaced when { — « and the time interval between each two
consecutive zero crossings of s;;(¢), 7, j = 1, 2, is identical with the
time interval between each two consecutive zero crossings of s,(f).

If the counters count only the upward (or downward) zero crossings,
the above solution should be modified: When the counters at the two
stations count only the upward (or downward) zero crossings of s;;(t),
1, j = 1, 2, the upward (or downward) zero crossings of s;;(f), 7, j =
1, 2, are uniformly spaced when { — o, and the time interval between
each two consecutive upward (or downward) zero crossings of s,;(?),
i, § = 1, 2, is identical with the time interval between each two con-
secutive upward (or downward) zero crossings of s,(¢).

4.2 Analysis of the Steady-State Signaling Rate

In this section, we show that the system can be easily designed such
that the steady-state signaling rate lies within desired limits.

Before the two stations are mutually synchronized, s,,(f) is sin w,f
and the signaling rate of Station 1 is hw, digits/second. (h is a pro-
portionality constant. For example, 2 = 1/27 when Station 1 transmits
a digit at every second zero crossing of s;,(f).) Similarly, before the
two stations are synchronized, s,,(f) is sin w,t and the signaling rate of
Station 2 is hw, digits/second. When the two stations are mutually
synchronized, s,,(f) and s,,(f) have the same zero-crossing distribution
as 8,(t) = sin w,t and the signaling rates of the two stations are hw,
digits/second. The synchronization is satisfactory if hw, is sufficiently
close to hw, or hw, . More specifically, the steady-state signaling rate
is satisfactory if

hw, — € < hwy < hw, + € 47)
when v, < w,, and if
h{:Jz — e < hOJD < hwl + € (48)

when w, < w;, . The number ¢ is a preseribed small number.

As can be seen from (46), w, depends on w, , w, , and the following
parameters: gains e, and e, of the two counters, gains a; and a, of the
two oscillators, initial counter outputs u,(0) and u,(0), initial phases
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g, and 6, , initial filter outputs v,(f) and v.(f), and the time delays 7.,
and 75, in the communication channels. Since w, depends on so many
parameters, it is not immediately clear whether w, satisfies the specifica-
tions in (47) and (48). In the following, we derive simple design con-
straints such that when these constraints are satisfied, w, will satisfy
the specifications in (47) and (48).

So far, we have considered the arbitrary starting sequence described
at the beginning of this section. Since we may always designate the
station that is started first as Station 1, we need to consider only the
following starting sequence in the sequel: At an arbitrary time 4, < 0,
the counter at Station 1 is activated. The counter at Station 2
is activated at ¢ = 0.

There are two cases to be considered: w, < w; and w, > w; . Our
analyses of these two cases yield the same design constraint; hence,
we describe only the case w, = w, .

Note from the starting sequence that for ¢ < 0, Station 2 is the
master and Station 1 is the slave. We therefore can use the results in
Section IIT to bound v,(f) for ¢ < 0. From this, we can show that e,

always satisfies the following inequalities:

(klal + kla1kzaz"'21)(w2 - wl)

Wy > w F ko, + koo + klalknaz(‘rlz + '1'21) (49)
_ [Bkoay 4+ kiaikaoyT o600,
klal + koo, + klalkzﬂfz(ﬁz + Tm)
and
[%kzaz + kla,kzazfm]ﬁela;
. 5
wo < vz F klal + kzaz + klalk2a2(rl2 + Tzl) ( 0)

It should be clear from (49) and (50) that, regardless of the values
of the time delays 7,, and 7, , one can easily select the gain e,a, of
the first station so that w, will satisfy the constraint in (47). To show
this more explicitly, we further simplify (49) and (50) (this simplifica-
tion will, however, make the constraint on e,a, slightly more stringent).
Since w, satisfies (49) and (50), w, will definitely lie in the following
broader range

w; — ﬁe;al < Wy < Wa + ﬁelal . (51)

Comparing (51) with (47) shows that w, satisfies the specification
in (47) if

ey < — (52)

6h
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From (52), one can easily determine the value of e,«;, . Since we have
designated the station that is started first as Station 1, and since either
station can be started first, (52) should be applied to both stations.
To emphasize this, we replace (62) with the following two constraints

e, < geﬁ (53)
< = (54)
G = g,

Now, to summarize this section: we have shown that if the gains
of the two stations are designed to satisfy the simple constraints in
(53) and (54), w, will satisfy (47) and the steady-state signaling rates
will be satisfactory. Since (53) and (54) can be easily satisfied, and
are independent of all the other parameters in (46), we conclude that
the steady-state signaling rate can be easily made satisfactory re-
gardless of the starting sequence, the initial system conditions, and
the time delays in the communication channels.

V. SUMMARY AND CONCLUSIONS

Sections II and III examine the behavior of the system in the master-
to-slave mode. The station with the slave clock (Station 1 in Fig. 1)
represents a data station, while the station with the master clock
(Station 2) represents a station in the digital transmission facility.
The slave clock at Station 1 employs a digital rate-locked loop which
consists of a digital counter, an RC filter, and a slave oscillator (Fig. 2).
The counter is not restricted to have only one stage. A mathematical
model of the system is formulated in Section II. Transient response
of the system is determined in Section 3.1. It is shown that, under
the condition 1 — 4CRke; > 0 in (12), the signaling rate of Station 1
approaches that of Station 2 in a monotone fashion (transients either
decay exponentially as shown in (13), (14), (15) and (16), or can be
tightly bounded as shown in (19)).

From the transient response, settling time of the slave oscillator
can be easily estimated. As discussed at the end of Section 3.1, this
settling time can be rather long when the RC filter has a large time
constant. For fast start-up purpose, it may be desirable for Station 1
to transmit data before the slave oscillator is completely settled. Thus,
during the start-up period, data can be transmitted from Station 1
to Station 2 faster than it can be transmitted out of Station 2. Con-
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sequently, a buffer storage is required at Station 2. This buffer size is
determined and is given in (25). Section 3.4 examines the size of the
counter in the rate-locked loop (counter size determines the pull-in
range of the rate-locked loop). In order to avoid counter overflow
(that is, to ensure pulling in), the counter must have a certain minimum
size. This minimum size is determined and is given in (26).

As emphasized in Section 3.2, the slave oscillator in the rate-locked
loop locks to meither the instantaneous frequency nor the phase of
the master oscillator. It locks only to the rate of zero crossings of the
master oscillator. For this reason, we refer to this control loop as a
rate-locked loop, instead of a frequeney-locked loop or a phase-locked
loop. This difference, while immaterial in the present application,
should be carefully noted in other applications.

Section IV examines the behavior of the system in the slave-to-slave
mode. The two stations to be mutually synchronized represent two
data stations connected by analog transmission facilities. A rate-
locked loop is used at each station, and an RC filter is included in
each loop. A random starting sequence is considered where either
station can be started first, with the other station activated at an
arbitrary later time. When the two stations are mutually synchronized,
the two stations settle to the same steady-state signaling rate hw,
(h is a proportionality constant and w, is given in (46)). Equation
(46) shows that w, depends on the gains of the counters and oscillators,
the initial conditions of the counters, filters, and oscillators, and the
time delays in the communication channels. It is shown that, although
w, depends on so many parameters, the steady-state signaling rate
hw, will lie within desired limits if the simple design constraints in (53)
and (54) are satisfied (these conditions can be relaxed by using the
more complicated equations (49) and (50)). These results show that
the steady-state signaling rate of the system can easily be made satis-
factory regardless of the starting sequence, the initial system conditions,
and the time delays in the communication channels. Therefore, there
is no need to attempt to activate the two stations simultaneously or
to equalize the delays and gains of the communication channels.

In conclusion, the detailed transient and steady-state analyses
show that a synchronization system employing digital rate-locked
loops can be designed to operate successfully both in the master-to-
slave mode and in the slave-to-slave mode. Such a synchronization
system, therefore, is useful in applications where both digital and
analog transmission facilities are utilized in connecting data stations
or other types of terminals.
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APPENDIX

In this appendix, we first introduce the concept of equilibrium.
The system is said to be in equilibrium if, corresponding to every
digit received from Station 2 (the station with master clock), Station 1
(the station with slave clock) also transmits a digit back to Station 2.
Then we prove a general theorem which states that the system will
reach equilibrium if the arbitrary filter F(s) (not necessarily an RC
filter) satisfies a simple condition. Based on this general theorem, we
then show that when an RC filter is used, the signaling interval of
Station 1 will lock to that of Station 2 exactly.

For brevity, we define p,(f) as w,t + @, [o v:(7)dr + 6, . The lowpass
filter transfer function F(s) can always be normalized such that F(0) = 1.
Clearly, any useful lowpass filter must cut off as frequency approaches
infinity; therefore, we can write F(«) = 0. By changing units, we
can and shall set e, = = and «; = 1. Without loss of generality, we
assume that w, — w, > 0, and that the counter counts both upward
and downward zero crossings. The zero crossings of s,(f) and s,(f)
control the signaling rate of Station 1 and Station 2, respectively.
Let 7 be the time interval between each two consecutive zero crossings
of s,(f), that is, T' = m/w, . When the time interval between each two
consecutive zero crossings of s,(f) also becomes T, signaling rate of
Station 1 locks to that of Station 2. Thus, to determine the locking
behavior, we need only to examine N,(f) when ¢ — . Since N,({)
can be deduced from p,(t), v,(¢), or u,(t), we shall examine either p,(t),
or v,(t), or u,(f) in the following analysis (depending on which one is
the most convenient).

The behavior of the system is governed by the equation

pt) = el + j: [f*ui(p,)] dr + 6, (55)

where * denotes convolution, and the symbol w,(p,) indicates that u,
is a function of p, . Since u, depends on p, through the nonlinear zero-
crossing counting process, (55) is a nonlinear differential-integral
equation. It is impossible to solve this equation for all ¢, so we shall
first examine »,(f) and w,(f) to obtain a steady-state solution of this
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equation. Then we shall consider the uniqueness of this steady-state
solution.
From the mathematical formulation in text,

u:(t) = [(wz - Wl)t - j;‘ vl(‘r) dr + 6, — 6, + \bl(t) - \f’z(t)] (56)

Let U.(s), V.i(s), ¥,(s), and ¥,(s) be the Laplace transforms of w.(t),
v, (1), ¥i(t), and ¥.(t), respectively. From (56) and V.(s) = F(s)U.(s),
we obtain

Wy — W, 32 — 6, S S
U = 7 F6] s 7 7o) s+ Fe 0O T s re O 6D
and
_ F(s)(w: —w) | F(s)(8, — 6:) F(s)s F(S)S
Vi@ = i r@e T s+re Tsr ke YO it re O

(58)

We wish to determine the N,(¢) that satisfies the system equation
(55) when ¢t — . For brevity, such a solution is called a steady-state
solution. From (58), a steady-state solution is obtained, and is stated
in the following theorem.

Theorem 1: At steady-state (that is, when t — o), (55) is satisfied if
Ni(t) = Ny(t — 7) (59)
where T, is such that the mean value of u,(t) is w; — w, .

Proof: Since ¢, (t) and ¢,(t) do not approach a limit when ¢t — o,
one cannot apply final value theorem to the last two terms in (58).
However, final value theorem can be applied to the first two terms.
This yields

I — o, (60)

The condition ¢ — e applies to the rest of the proof. Clearly, (59)
is equivalent to the statement that

pi() = wot + (1) (61)

where 5,(t) is a periodic function of period 7'. Thus, to prove Theorem 1,
one needs only to show that the right side of (55), when computed
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from (59), is identical with the right side of (61). From (59), ¢,(t) is a
periodic function of period 7'. Consequently, £ {[F(s)s/s + F(s)]¥,(s)}
is a zero-mean periodic function of period 7. Since y,(f) is a period
function with period T, £ '{[F(s)s/s + F(s)]¥.(s)} is also a zero-
mean periodic function of period T. Thus, from (60)

?)1(t) = w, — o + ﬁl(t) (62)

where 7,(f) is a zero-mean periodic function with period T'. Substituting
the »,(f) in (62) for the integrand [f * u;(p;)] in (55), we see that the
right side of (55) is identical with the right side of (61). This proves
Theorem 1.

Equation (59) in Theorem 1 implies that signaling rate of Station 1
locks to that of Station 2. Now we consider the problem of uniqueness
(that is, whether (59) is the only steady-state solution). We first prove
that, under a simple condition, Station 1 cannot add or delete bits
from a customer’s data stream.

As described in Section 11, the zero crossings of s,(t) and s,(¢) control
the signaling rates of Station 1 and Station 2, respectively. More
specifically, Station 2 transmits the mth digit to Station 1 at the mn.th
zero crossing of 8,(t); and Station 1 transmits the mth digit to Station 2
at the mnyth zero crossing of s,(#) (in practice, n, = 1). Thus, Station 2
transmits a digit to Station 1 every n,T seconds. We say that the
system is in equilibrium if, corresponding to every digit received from
Station 2, Station 1 also transmits a digit back to Station 2. More
precisely, the system is in equilibrium if we can partition the time
axis into N,T-second time intervals such that Station 1 will transmit
a digit back to Station 2 in each of the n,7-second time intervals.
Theorem 2: The system will reach equilibrium if

— -1 —.s
Tr< £ [s T ‘Ifl(s):l <m. (63)
Proof: The condition { — e is implied throughout this proof. Using
the final-value theorem, one can show from (57) that when ¢t — «,

() = wy — w; — aa(t) + a1(t) (64)

where
oa(f) = s[ﬁ() wz(s)] (65)
o(t) = s[ﬁ wl(s)] (66)

and £ denotes inverse Laplace transform.
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Since y.(f) is periodic with period T, o,(f) is a zero-mean periodic
function of period 7. Let max o,(f) and min o.(f) be the maximum
and minimum value of o,(t), respectively. We now determine max o5(f) —
min o,(f). Note that ¥,(t) can be written as

Va(l) = (0ot + 0;) — 2 mult — (¢ + 4T)] (67)

where u({) is the unit step function defined by
u(t) = 0, t<0
=1, t>0. (68)

When y,(t) is applied to a network with transfer function [s/s + F(s)]
(hereafter called network A), the output is o»(t). Clearly, when the
first term wyt + 6. in (67) is applied to network A, the output is a
continuous time function for ¢ > 0. The second term in (67) consists
of unit step functions. It can be shown that, when a unit step function
u(t) is applied to network A, the output is unity when ¢ = 07, ap-
proaches zero when { — <, and is continuous for 0 < ¢ < . From
these results, it is clear that

max o,(!) — min o,(t) = =. (69)

We have set e, = w. Therefore, u,(f) is a multiple of =. We are con-
sidering the case w, — w, > 0. Asillustrated in Fig. 7, let n be an integer
such that

nr s w — w < NT+ T (70)

It is clear from (70) and (69) that there is a ¢ at which w, — w, — a2(1)
equals nr or (n + 1)« (let this ¢ be denoted by ¢,). Note that w, — w, —
o(t) may intersect only the level nw, or only the level (» + 1), or
both the levels. For this proof, we need to consider only the first case.
Since o,(f) is periodic with period T, w, — w, — o5(t) is also periodic

(n+1)7

wa-un

nmT & & &
=T ty t1+T t1+2T
t—

Fig. 7—Illustration for the proof of Theorem 2 (showing the definition of n and
the partition of the time axis into successive T-second intervals).
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with period T. Thus, w, — @, — o2(f) must intersect the level nr also
at time instants ¢, + 7, ¢ = +1, £2, --- . These intersections are
illustrated in Fig. 7.

Now consider the value of ,(f) at an intersection ¢, + T, 7 = 0,

+1, +2, --. , From (63), we have, at { = ¢, + T
nr — 7 < () < nw + 7. (71)
Since u, (f) must be a multiple of m, (71) implies that
() = nw (72)
att =1, + 17,7 =0, £1, £2, --- . Since N,(¢) increases by one every

T seconds, (72) requires that N,(t) increase by one in each of the T-
second intervals illustrated in Fig. 7. This proves Theorem 2.

Now we consider the case where the filter F(s) is the usual RC filter.
We first prove that eq. (63) is satisfied in this case (consequently, the
system will reach equilibrium).

When RC filter is used,

FO) = 15508 73)
T YO T - e e te 9
where
n=1+VﬁIﬁ 75)
2CR
. V1 —4CR 76)
2CR
The system is designed such that
1 — 4CR > 0. (77)

Therefore r, and 7, are real numbers and
> 1y > 0. (78)
Let [1/CR(s + 7,)(s + 7,)] be denoted by G(s), then
1 -
— -1 — rat o~k
ot) = 7106 = g —7y [ — . 79)

From (78) and (79),
g(t) >0, t>0. (80)
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From (80), we can write

[ AOEO)
=f0 Ut — 1) dr < fo gt — 1) dr < f:wg(f) dr. (81

Clearly, [ g(r)dr = G(0) = 1. From this and (81), we have
0 < £7'[¥,(s)G(s)] < . (82)
From (82) and (74)

—1r<£_[ +F()‘Il(s):|<1r (83)

Hence, (63) is satisfied and the system will reach equilibrium.

Next, we examine the detailed behavior of the rate-locked loop.
Note that there are two basic variables in the rate-locked loop, namely,
u,(t) and v,(f). Let the u,(f) and v,(?) corresponding to the steady-state
solution in (59) be denoted by u*%(f) and v%(f), respectively. First, we
sketch u*(¢) and v%(t). From Section II in text, s,(f) = sin [wal + 6]
To simplify our graphs let us omit 6, . Then N,(¢) jumps by 1 at ¢ =
IT,1=0,1,2, . From this and (59), we see that u%({) is as sketched
in Fig. 8§, where ! denotes an arbitrary 1nteger The pulse width y*
in Fig. 8 is such that the mean-value of u*(f) is wa — w, . Therefore,

T
y* = ; [ws — oy — nr). (84)
uy*(t)
’
(n+ 1} ya
] s
=V —= -
Wa—t — - - 2. - pa
~y e g ~-Fn
~
nmT ~vytit)

| | | [

| | | |

fy > peye

I I | |

' [

I |

' |

| ] -t
LT LT+T

Fig. 8—=Sketch of w,*(t) and ».*(f).
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Since u*(t) is periodiec with period T, v*(¢) is also periodie with period 7.
As can be seen from v*(f) in Fig. 8, u*(f) charges the capacitor C in
the time interval IT to IT + y* and the capacitor C discharges in the
time interval IT + y* to IT + T. Let »* denote the value of v*(f)
at ¢ = IT + y* Clearly, »* must have such a value that »%(¢) has a
mean-value of w; — w, .

In order to show that »*(f) and v%(¢) are the only steady-state solu-
tion, we begin by assuming different «,(¢) and »,(f), and demonstrate
that they must approach u*(f) and v%(f) as ¢ increases. We have proved
that the system must reach equilibrium. From (72), when the system
reaches equilibrium, u,(f) = nratt = ¢, + T, 7 = 0, &1, £2, --- .
[As can be seen from the discussion after (70), w,(!) may assume the
other value (n + 1) at such time instants. However, these two cases
are similar and we need to consider only the first case.] Therefore, u, (t)
can assume only one of the two forms in Fig. 9 in each of the time
intervals ¢, + ¢ to t, + ¢T 4+ T. The first form is illustrated in the
time interval ¢, to {;, + T in Fig. 9, while the second form is illustrated
in the time interval {, + T to {, + 27 In the first form, the zero crossing
of s,(f) (represented by the downward arrow) takes place prior to the
zero crossing of s;(f) (represented by the upward arrow). The order
is reversed in the second form. Note that, if u,(f) always assumes the
first form, one would have #,(f) < nw. From this, one can easily show
that w,({) cannot always assume the first form in the successive T-
second intervals. Next, consider the width of the pulse when w,(t)

pe— Y —
{n+1)m
_—uylt)
L&
wz2—- w1
1.
nT —y " 4 L4
| | |
| [ |
| | |
| | |
(n-1)7 | I !
| I |
I | |
] ] 1 >t
t t+T ty+2T

Fig. 9—Illustration of the two forms of Ui(t).
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(n+1)m
‘,-uﬂtl ,\"m
‘--..-”‘ -.___.--”__.Jh.,__‘-
nmT v ! 4
| I |
] i l |
| }(—VE—H ! '{-‘—vﬁ"
I | I I | |
l | Il | |
| | || | I
| | | | | | ot
0T 1 T [} [}
T 1 LT+T oy
T+iT+T

Fig. 10—Sketch of w(t) and n(t).

assumes the second form. This width, designated by y in Fig. 9, may
vary from one T-second interval to the next. If this width were always
less than 3*, v,(f) would be less than »* for all ¢. From this, one can show
that this width cannot always be less than y* From these results,
there must be some T-second intervals in which w,(f) assumes the
second form and the pulse width y is equal to or greater than y*. We
shall select one such time interval (say, the time interval ¢, + T =
{ < t; + iT + T illustrated in Fig. 10) and examine u,(f) and v,(f)
fort > t, + iT. We need to consider only two cases (refer to Fig. 10):

Case 1: v, (f;) < »*

Case 2: u(l;,) = v*

The instantaneous radian frequeney of VCO, is w, + eqv(t), where
w, is the free-running radian frequency and a,v,(t) is the correction
term. In data eommunications, w; is very close to the radian frequency
w; of the master clock. (For example, it may be specified that the
maximum difference between o, and w. be limited to 0.005 percent
of w,.) Consequently, only a very small correction term a,v, (¢) is needed.
For this season, the time interval between each two consecutive zero
crossings of s,(f) is essentially determined by the term w.¢ in pi(t).
Therefore, the pulse width y changes only very slightly from one pulse
to the next (in other words, in Fig. 10 y;., is very close to y:).

For the purpose of illustration, in Fig. 10 v,(t) is shown to increase
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and decrease quite rapidly in each T-second interval. In practice, the
filter time constant RC is several orders larger than the time interval T
(for example, RC = 107" seconds, T = 10~° seconds). Thus, v,(f) is
essentially a constant in each T-second time interval.

Now consider y;,; and v,(,,;), 7 = 1, 2, 3, --- . It can be shown
rigorously that if there is an & such that

Yien = Y*
’U](l‘q...;.) = y*

then y,.; = y* and »,(f;,;) = v* for all § > h. Therefore, to show that
u,(¢) and v,(¢) approach u*(¢) and v%(f), we need only show that y,.;
and »,(t;.;) approach y* and v*, respectively.

Now consider Case 1; after ¢, + T, y;.; and »({;,;) approach y*
and »* in three stages. Immediately after ¢, 4+ T, v,(¢;,;) is less than
v*. Consequently, the time interval between each two consecutive
zero crossings of s,(¢) is slightly larger than T, and ¥, ; increases slowly
with j. (Note from Theorem 2 that y,,; must remain less than T.)
Since »,(f;,;) is less than »* and y,.; remains larger than y*, v,(f,,;)
must increase slowly with j. The second stage starts when v,(f;.;)
reaches v*. Since the pulse width y,.; is larger than y* v,(¢;,;) keeps
increasing with j. (Note from Theorem 2 that v,(¢,,;) cannot exceed
(n + 1)=.) This implies that v, (¢, ;) will be larger than »*. Consequently,
y1+; must decrease with j. Clearly, when y,.; decreases, the rate of
increase of ,(f;,;) decreases. The third stage starts when y;.; de-
creases to such a value (still larger than y*) that »,(¢;.;) ceases in-
creasing. Sinee v, (¢, ;) is now larger than »* y,,; must keep decreasing.
Clearly, this must also reduee v,(f; ;). Consequently, #,,; and v, (f,.;)
approach y* and »*, respectively.

The above disecussion is for Case 1. It can easily be extended to
Case 2. Thus, when the system reaches equilibrium, the time interval
between each two consecutive zero crossings of s,(¢) will be exactly T
seconds.
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