Copyright @ 1972 American Telephone and Telegraph Company
Tue BeLL SysTem TECHNICAL JOURNAL
Vol. 51, No. 8, October, 1972
Printed in U.5.4.

Almost-Coherent Detection of
Phase-Shift-Keyed Signals Using an
Injection-Locked Oscillator

By M. EISENBERG
(Manuscript received August 18, 1971)

We analyze a proposed scheme of detection of phase-shift-keyed signals
using an injection-locked oscillator the bandwidth of which is much less
than the modulation rate. The output of the oscillator is a carrier with
essentially all of its modulation removed. We analyze the effect of noise and
signal modulation on the phase of this reference tone and compute its effect
on the probability of detection error. If a suilable encoder and decoder are
used for the transmitted signal, this technique can provide nearly ideal
coherent demodulation.

I. INTRODUCTION

The two generally recognized methods of detection of phase-shift-
keyed (PSK) signals are coherent detection and differential detection.
Coherent detection has been shown to be optimum in the presence of
Gaussian noise,' but, due to the difficulty of storing an absolute phase
reference at the receiver, it is seldom used in practice.

In a recent paper,® B. Glance showed that an injection-locked oscil-
lator, the locking bandwidth of which is much less than the modulation
rate can, under certain conditions, be used to derive a phase reference
from the input signal itself. This is actually a form of a quadrature
reference system, where the phase of one quadrature remains essentially
unkeyed, and is used to provide the reference tone.>* In this paper, we
examine the effectiveness of this scheme for a two-phase PSK system
where the modulation is a random digital signal and additive Gaussian
noise is present. We derive an expression for the probability distribution
of the reference phase, and from this calculate the average probability of
a detection error. We find that if the modulation rate is much greater
than the bandwidth of the oscillator, and if a suitable encoder and
decoder are used, the method very nearly approaches the ideal perform-
ance of coherent detection.
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II. LOCKING EQUATION ANALYSIS—ZERO ORDER SOLUTION

A portion of the received signal is used as the input to the injection-
locked oscillator. This signal may be represented as

z(t) = V2 A cos [wt + 0(1)] + n(t), (1)

where A is the signal power, o is the carrier frequency, and 6(f) is the
phase modulation. The received signal is assumed to be contaminated by
additive white Gaussian noise, n(t), with double-sided spectral density
No/2. If w is sufficiently close to the natural oscillator frequency, w, ,
locking will occur and the output of the oscillator will be

y(t) = V2 B cos [wt + 0(t) — ¢(0)], @)

where B can be assumed to be constant.’ ¢(f) is the phase difference
between the input and output signals of the oscillator. In the case of
interest, the total phase modulation of the oscillator output, (t) =
8(f) — (1), is small, and y(¢) is used as the phase reference in the coherent
detection of the remaining portion of the received signal.

In the absence of noise, the phases of the input and output signals of
the oscillator are related by the well-known locking equation®

a6(%)
TR 6))

where 2A is the locking bandwidth of the oscillator. This equation takes
the same form as that for a first order phase-locked loop.” The effect of
the noise at the input has been analyzed by Viterbi." The effect is to add
an additional term to eq. (3),

dqb(t)

d¢(t) + Asing(l) = w — wy +

dﬂ(t) A

4+ Asing(t) = 0 — wp + —5-° ﬂ'(t): 4)

where n'(t) has the same statistics as n(f). We rewrite eq. (4) in terms of

7(t).
d’ﬂ(t) + Asin [n(f) — 6()] = wo — + 1 n'(t). (5)

For the case of zero input phase modulation, i.e., 8(f) = 0, eq. (5)
becomes

drp(t) + Asin n(f) = wo — w + —n'(t) (6)

Using Fokker-Plank techniques, Viterbi derived from this equation
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p(n), the steady-state probability density of 3. For @ = w, the solution is
a? cos

p(n) = orlo(ad)’ )]

where I,(-) is the zeroth order modified Bessel funetion of the first kind,
and &’ = 44%/N,A is the signal-to-noise ratio in the bandwidth of the
oscillator. For a 3> 1, this distribution for » small is nearly Gaussian
with mean zero and standard deviation 1/«. For w # w, the distribution
becomes centered about the point 8§ = sin™' (w, — w)/A. In the case,
a> 1land [(wy, — w)/A| K 1, 8 & (0o — @)/A and for y small, the
distribution is very nearly equal to
a? cos (n—f)

p(n) ~ ol €))

We now consider the case 6(f) # 0. In a binary PSK signal, 6(¢) is a
waveform of the form

o) = X ap(t — ), ©

where a, = =1, and p(f) is assumed to be a pulse which is nonzero only
over the range 0 < { < T. For the moment we assume zero noise. The
resulting equation is

B0 4 Asin (1) — 0] = wo — o (10)

which we rewrite as

O 1 Asin 1(t) cos 0(1) — A cos n(D)sin 0) = @y —w. (1)
Our technique for the solution of this case will suggest a method of
handling the stochastic problem when the noise term is reintroduced.

The exact solution to eq. (11) is difficult or impossible to obtain for
general 6(f). Let us therefore take advantage of the fact that T << 1/A to
derive a differential equation, the solution of which approximates that
of eq. (11).

We assume that there exists an interval of length = with the property
that T << 7 << 1/A, and we take the average of eq. (11) over 7. Letting { )
denote this averaging operation, i.e.,

a0 =2 [ ) du (12)

t—(r
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there results
%ﬂ% + Alsin 5(f) cos 6(£)) — A{cos n(t) sin 6(f)) = wo — w. (13)

Choosing 7 < 1/A insures that n(t) is very nearly constant over the
interval of averaging, for, from eq. (10), we have |dn(f)/dt| < A +
lwo — w| < 2A. Consequently, n(t) = (n()) and the quantities sin 7(t)
and cos 7(t) may be taken outside the averaging operator.

: Zl(tt) + Asin (n(t))cos 8(1)) — A cos {n()}sin 6(0)) X wo —w.  (14)

On the other hand, the choice 7 3> T insures that there will be many data
pulses over the interval of averaging. Thus the quantity (cos 8(t)) is very
nearly constant and is equal to

C = (cos (1)) = % f " cos pld) dt. (15)

(Table I lists the value of this quantity for three important pulse shapes.)

Since we usually have no control over the transmitted message, the
quantity (sin 8(f)) will not, in general, be time-independent. However, a
scheme has been suggested by C. L. Ruthroff and W. F. Bodtmann® in
which, through the use of a simple encoder and decoder, this quantity
can be made very nearly equal to zero.

TarLE I—VALUES oF €' AND ¢ FOR THREE PuLsSE SHAPES

1 [T |
p(t) C—?j; cos p(t) dt a-=Tj; sin p(t) dt

raised cosine

2 .. (9_) [ (a_) A
B) [1 cos T] J02 cos 5 J'02 sin
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in T 4 5~ Janea(8o)
o sin 75 ¢ Jo(6o) r = 2k + 1
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The encoder is a device which stores a block of N bits of the message,
and counts the net difference of +1’s and —1’s contained in the block.
It also keeps a separate count of the net difference in +1’s and —1’s
which have been sent over the entire past history of the message. The
entire block is transmitted either with normal polarity, or with reversed
polarity, in such a way as to cause the accumulated count to come as
close as possible to zero. Preceding each block is a single ““code” bit which
specifies the polarity of that block. (The code bits are included in the
counts.) The decoder decodes the message in an obvious manner.

We assume that 8(£) is the output signal of such an encoder. Assuming
> NT, we have

{sin 8(f)) =~ 0, (16)
so that our approximating differential equation becomes
iﬁ;g—ﬂ + AC sin no(D) = wo — . (17)

We call the solution to this equation the ‘‘zero-order approximation to
1(8)”.

We note that this equation has the identical form as eq. (10) for the-
case of zero modulation. Thus the “zero-order effect’”’ of the modulation
is to reduce the effective value of the locking bandwidth by a factor C.

In Figs. 1 and 2, we demonstrate the above results. In both figures,
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Fig. 1—n(t) with square-wave modulation.
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Fig. 2—n(t) with random modulation.

A = 7/80T. The lower curve of Fig. 1 shows the behavior of (f) versus
time for the case of zero modulation, i.e., 8(f) = 0. The saw-tooth wave
shows the behavior of (t), that is, the exact solution to eq. (10), for the
case where 6(f) is a square wave with amplitude 37/8 and period 4T
The smooth curve drawn over the saw-tooth wave shows the zero-order
approximation obtained from eq. (17). As can be seen, the main effect of
the modulation has been an increase in the decay time of the resulting
curve. This is a result of the decrease in the effective locking bandwidth
caused by the modulation, as predicted above.

In addition to this, the true curve has a “wiggle’” which seems to
increase in size as the curve approaches zero, and which reaches a
maximum magnitude of about 0.02 X #/2.

Figure 2 shows the true curve and the zero-order approximation where
the phase modulation is a random binary signal with Prob (+1) =
Prob (—1) = } which has then been passed through an encoder with
N = 5; and a rectangular pulse shape of amplitude 3x/8 is used. We
note the curve follows the same overall path as in Fig. 1. The “wiggles”
are now random in character; we note that their amplitude again appears
to grow as the curve approaches zero.

III. FIRST ORDER SOLUTION

To better understand the behavior of these ‘‘wiggles” we now derive a
correction term, n,(¢), which, when added to 7,(t), improves the accuracy
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of our solution. We call 5,(t) + #.(t) the “first-order approximation to
n().”

We define #'(f) = 5(t) — n,(t). Subtracting eq. (17) from eq. (10),
there results

dﬂ__(;gt) + A sin 'q'(f) cos [Tln(t) - G(t)]

= AC sin no(f) — A cos 9'(?) sin [ne(t) — 6(t)].  (18)

If the assumptions we have made above are valid, the error in the zero-

order approximation will be small, |¢'(f)| < 1, and we may linecarize eq.

(18).
dy'(t
I 1 An'() cos [n) — 000)

= ACsin ny(t) — Asin [no(f) — 6()].  (19)

Since |7’ (#)| < 1, the second term on the left-hand side may be neglected,
and we have approximately

rO~ [ " |ACsin n(t) — Asin [no(t) — 0]} dt,  (20)

where we assume the initial conditions are accounted for in #,(t). no(¢)
varies slowly compared to 8(¢), so we treat it as a constant in the integral.
Our correction term is

m(f) = Asin n(f)
: f (€ = cos 0] di + A cos nol) f “sin () dt. (1)

Equation (21) explains the behavior of the “wiggles” in Figs. 1 and 2.
If rectangular pulses are used, cos 6(t) = C, and

(D) = A cos no(l) f sin o(t) dt. (22)

For a square wave of period 47T and amplitude 37/8, #,(¢) is a saw-tooth
wave with amplitude AT cos 5,(t) sin 37/8 = 0.924 AT cos 5.(¢). The
amplitude of the saw-tooth wave is seen to vary as the cosine of 5,(¢),
and reach a maximum amplitude of 0.924 AT, which is 0.023 X /2 for
Fig. 1. This behavior agrees with our earlier observations. The accuracy
of our approximation in this case is quite good. A plot of 5,() + 7:(f)
superimposed on the figure can not be distinguished by eye from the
true curve 5(f).
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We remark that the first term of eq. (21), which is zero for a rec-
tangular pulse shape, may in general be ignored relative to the second
term. The first term equals zero at the beginning and end of each pulse,
and never achieves magnitude greater than AT sin 5,(t). The second
term, however, increases monotonically during a positive pulse and
decreases monotonically during a negative pulse. The magnitude of this
term can reach a maximum of 2 NAT s cos 7,(t), where

- = ;—, f " sin p(0) dt. (23)

(The factor $ arises because of the possibility of having a message block
consisting of N +1’s followed by a block consisting of N/2 +1’s and
N/2 —1’s). For the case of interest, no(f) will be near zero and N will be
greater than about 10 or 20. This means that the second term of eq. (21)
will predominate, and thus eq. (22) may be used for arbitrary pulse
shapes. (Table I lists the value of o for three important pulse shapes.)

1IV. THE EFFECT OF NOISE

We now consider a system where both noise and modulation are
present. We saw in eq. (17) that the zero-order effect of the modulation
was simply to reduce the locking bandwidth by a factor C.

Accordingly, we take as our zero-order approximation the solution to
the stochastic differential equation

d (]t . A ’
—ndE) + AC sin 90(t) = wo — @ + anr @. (24)

In this case, we are interested in the steady-state probability density for
70, P(m). By comparison with egs. (6) and (8), the solution can be
written down immediately.
aq® cos (no—Ffe)
P(ne) = ol (25)
where o? , the effective signal-to-noise ratio in the presence of modulation,
is higher than the zero-modulation signal-to-noise ratio by a factor of

1/C.

2 2
2 44 .
“ =T~ N,Al (26)
The average phase shift due to frequency offset is increased.
B, —gin U y—u _B @)

AC T AC T C
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To get a correction term in our solution, we proceed as before, by
taking the difference between eqs. (24) and (5). We notice that the
noise term cancels, and we again obtain eq. (18) and the approximate
solution, eq. (22). For the case of large signal-to-noise ratio, «, , 5, will,
with high probability, be in the vicinity of zero (assuming 8, =~ 0). Since
7, effects 7, only as the cosine, #, is essentially independent of #, in this
case and is equal to

n@® = A f sin 6(2) dL. (28)

1:() depends on the particular digital signal being transmitted.
However, the use of the encoder described earlier insures that

lm@)| < 3 NAT. (29)

Thus if each of the components is small, the output phase is seen to
consist of the sum of three essentially independent parts:

() A constant (w, — w)/AC resulting from the difference between
the carrier frequency and the natural oscillator frequency.
(77) A time varying part which depends upon the digital modulation,
and which has a maximum magnitude of § NATe.
(727) A random part, due to noise, the distribution of which has a
standard deviation of 1/a, = /' N,AC/2A.

Thus we can write the probability distribution of the reference phase
approximately as

ae? cos (n—¢)
p(n) = ol @)

where ¥, the nonrandom portion of the phase, has a magnitude less than
or equal to § NATe + |(w, — w)/AC|.

(30)

V. CALCULATION OF ERROR PROBABILITY

If n has a known value, the probability of a decoding error, assuming
equal likelihood detection, is

P, = 1 erfe (p cos 3), (31)

where p* is the signal-to-noise ratio in the bandwidth of the signal.'® If
the receiving filter has a bandwidth 2W, then

2 A’

P = Now (32)
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where A is the rms signal amplitude, and N,/2 is the double-sided
spectral density of the noise. The average error probability P, , is
obtained by averaging the quantity in eq. (31) over the possible values
of 7.

aeg? cos (n—y)

~ 1 e
P, = f_ § exfe (p cos ) gy dn. (33)

This integral was performed using an expansion technique similar to
that described in Ref. 10.

VI. DEMONSTRATION OF RESULTS

In order to reduce the noise as much as possible, the bandwidth of
the receiving filter in a PSK system is usually set at the value which
allows the signal to pass essentially undistorted. This bandwidth 2W
is roughly given by

1.6
2W =~ T (34)
Thus the signal-to-noise ratio in the bandwidth of the loop, o) =
(44*/N, AC), is related to the signal-to-noise ratio of the received
signal, p* = (4?/N.2W), as
,_ 64
% = ATC *-

The effect of noise on the output phase is thus reduced by a factor of
ATC/6.4 from its input value. We have already seen that the effect of
the phase modulation on the output phase was proportional to ATe.
Thus the size of the quantity AT is important in determining the per-
formance of the system: it should be kept as small as possible. The extent
to which this can be done, however, is limited by the need to keep the
difference between the carrier frequency and the natural oscillator
frequency small relative to AC. This frequency difference may be re-
duced by the use of a negative feedback loop.”" A reasonable value of AT
presently obtainable in the laboratory for which these conditions can be
satisfied is AT ~ 107°.

Using the value AT ~ 107% and the relationship of eq. (35), the
methods of the preceding section were employed to compute the average
error probability. Under the assumption that the nonrandom portion of
the output phase is 10 degrees, the results of this computation for a
raised cosine pulse shape are plotted in Fig. 3. Also plotted in the figure
are the curves representing true coherent detection, P, = % erfe (p), and

(35)
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differential detection P, = e *."* As can be seen, the curve comes
quite close to the ideal of coherent detection. The curve corresponding
to a nonrandom phase shift of 5 degrees was also computed but is not
plotted in Fig. 3 because it comes so close to the coherent curve that the
two cannot be distinguished on the scale of the drawing.

By taking the nonrandom part of the output phase to be zero, it is
possible to determine the increase in error probability (over the coherent
case) which is due to noise. We found the error probability to be virtually
identical to coherent detection in this case. This indicates that the
effect of the noise on the output phase shift is negligible.

For reasonably small values of AT(=<107%), and for the range of
signal-to-noise ratios usually of interest (>5 db) the output phase shift
resulting from noise may be safely ignored: the increase in error prob-
ability of the proposed system over coherent detection is almost entirely
due to the effects of modulation and the offset in the carrier frequency.
Consequently, under these conditions an approximate expression for the
error probability, which is very nearly correct is P, = % erfe (p cos ¢),
where ¢ is the phase shift resulting from the modulation and carrier
offset. In Fig. 3, for example, the plotted curve is almost identical to
1 erfe (o cos 10 degrees).

For AT = 107°%, a total of 289 consecutive raised-cosine pulses of
maximum amplitude /2 with the same polarity are needed to shift the
output phase by 10 degrees. For AT = 107 this number is reduced to
29. For positive sine pulses of maximum amplitude =/2, the correspond-
ing numbers are 241 and 24 respectively. We remark that increasing AT
from 107 to 107* also increases the effect of the noise on the output
phase, but that this effect remains negligible.

In order to demonstrate the effect of the noise on the output phase, we
must consider an extremely high-noise example. Figure 4 plots the
average error probability versus the signal-to-noise ratio over a range of
from —7 to +7 db, for the case AT = 107". Nonrandom phase shifts
of zero and 10 degrees were assumed respectively. As can be seen, the
zero-phase shift curve almost coincides with the coherent curve for
p = 4 db, even for this large value of AT

VII. CONCLUSIONS

We have analyzed the proposed system of PSK detection for the case
of random modulation and additive Gaussian noise. If the modulation
rate is much greater than the bandwidth of the oscillator (AT « 1),
and if a suitable encoder and decoder are used, we have shown that the
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system will perform as almost a perfect coherent detector. For a binary
system, this means a power savings of about 1 db over the presently
employed method of differential detection. This is not very great.
However, with only a slightly more complex encoder and decoder, this
same technique may be utilized for higher level systems. (The analysis
requires only minor modifications.) For a 4-level system, for example,
the power savings over differential detection is about 3 db which is
significant.
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Construction of an experimental encoder and decoder is presently

being carried out in the laboratory, and tests of the system are planned
to confirm the theoretical results.
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